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Abstract

In this paper, we introduce good definitions of some weaker and stronger
forms of L-fuzzy compactness in L-fuzzy topological spaces in Šostak’s
sense, where L is a fuzzy lattice. We define these concepts on arbitrary
L-fuzzy sets, obtain various characterizations and study some of their
properties.
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1. Introduction

Kubiak [11] and Šostak [19-21] introduced the notion of (L-) fuzzy topological spaces
as a generalization of L-topological spaces (originally called (L-) fuzzy topological spaces
by Chang [4] and Goguen [7]). It is the grade of openness of an L-fuzzy set. A general
approach to the study of topological-type structures on fuzzy powersets was developed
in [8-12].

The notion of compactness is one of the most important concepts in general topology.
Therefore, the problem of generalizing classical compactness to fuzzy topological spaces
has been intensively discussed over the past 30 years. Many papers on fuzzy compactness
have been published and various kinds of fuzzy compactness have been presented and
studied. Among these compactness, the fuzzy compactness in L-fuzzy topological spaces
introduced by Warner and McLean [22] and extended to arbitrary L-fuzzy sets by Kudri
[13] possesses several nice properties, such as: this compactness is defined for arbitrary
L-fuzzy sets, is inherited by closed L-fuzzy sets, is preserved under fuzzy continuous
functions and arbitrary products; is a good extension and every compact Hausdorff space
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is regular and normal. Good extensions of some weaker and stronger fuzzy covering
properties were introduced and studied by Kudri and Warner.

Aygün et al. [2], introduced the notion of L-fuzzy compactness in L-fuzzy topological
spaces in the sense of Šostak as a generalization of the L-fuzzy compactness introduced
by Warner and McLean [22]. Based on this definition various kinds of compactness in
L-fuzzy topological spaces in Šostak’s sense have been introduced and studied in [2,3,15].

In this paper, good definitions of some weaker and stronger forms of L-fuzzy compact-
ness on arbitrary fuzzy sets are introduced in L-fuzzy topological spaces in Šostak’s sense
along the same lines as the L-fuzzy compactness defined by Aygün et al. [2]. We prove
the goodness of the proposed definitions, obtain various characterizations and study some
of their properties.

2. Preliminaries

Throughout this paper X will be a non-empty ordinary set and L = L(≤,∨,∧,′ ) will
denote a fuzzy lattice, i.e., a completely distributive lattice with a smallest element 0
and a largest element 1 (0 6= 1) and with an order reversing involution a → a′ (a ∈ L)
[14]. We shall denote by LX the lattice of all L-fuzzy sets on X. For an ordinary subset
A of X, we denote by χA the characteristic function of A.

2.1. Definition. [6]. An element p of L is called prime iff p 6= 1 and whenever a, b ∈ L
with a ∧ b ≤ p then a ≤ p or b ≤ p. The set of all prime elements of L will be denoted
by Pr(L).

2.2. Definition. [6] An element q of L is called union-irreducible iff whenever a, b ∈ L

with q ≤ a ∨ b then q ≤ a or q ≤ b. The set of all nonzero union-irreducible elements of
L will be denoted by M(L).

Thus, p ∈ Pr(L) iff p′ ∈M(L).

2.3. Definition. [2] Let (X,T ) be an ordinary topological space. A function f :
(X,T ) → L, where L has its Scott topology (topology generated by the sets of the
form {t ∈ L : t 6≤ p} where p ∈ Pr(L)[22]), is said to be Scott continuous iff for every
p ∈ Pr(L), f

−1{t ∈ L : t 6≤ p} ∈ T .

2.4. Definition. [2] Let (X,T ) be an ordinary topological space, and q ∈ L. A function
f : (X,T ) → L, where L has its Scott topology, is said to be q-Scott continuous iff for
every p ∈ Pr(L) with q 6≤ p, f−1{t ∈ L : t 6≤ p} ∈ T .

It is clear that if f is Scott continuous then f is q-Scott continuous for every q ∈ L.
Moreover, f is 1-Scott continuous iff f is Scott continuous. Naturally, every function
from (X,T ) to L is 0-Scott continuous.

2.5. Definition. [20] An L-fuzzy topology on X is a map T : LX → L satisfying the
following three axioms:

(O1) T(χφ) = T(χX) = 1,
(O2) T(f ∧ g) ≥ T(f) ∧ T(g), for every f, g ∈ LX ,
(O3) T(

∨

i∈I fi) ≥
∧

i∈I T(fi), for every family (fi)i∈I in LX .

The pair (X,T) is called an L-fuzzy topological space (L-fts, for short). For every f ∈ LX ,
T(f) is called the degree of openness of the L-fuzzy subset f .

2.6. Definition. [20] Let (X,T) be an L-fts. The map FT : LX → L defined by
FT(g) = T(g′) for every g ∈ LX is called the degree of closedness on X.

2.7. Definition. [5] Let (X,T) be an L-fts and f ∈ LX .
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(1) The closure of f , denoted by cl (f), is defined by

cl (f) =
∧

{

g ∈ LX : T(g′) > 0, f ≤ g

}

.

(2) The interior of f , denoted by int (f), is defined by

int (f) =
∨

{

g ∈ LX : T(g) > 0, g ≤ f

}

.

2.8. Definition. [16-18] Let (X,T) be an L-fts and f ∈ LX .

(1) f is called fuzzy semi-open iff for every p ∈ Pr(L) there exists g ∈ LX with
T(g) 6≤ p such that g ≤ f ≤ cl (g).

(2) f is called fuzzy α-open iff for every p ∈ Pr(L) there exists g ∈ L
X with T(g) 6≤ p

such that g ≤ f ≤ int (cl (g)).
(3) f is called fuzzy regular open iff f = int (cl (f)).
(4) f is called fuzzy pre-open iff f ≤ int (cl (f)).
(5) f is called fuzzy β-open iff f ≤ cl (int (cl (f))).
(6) f is called fuzzy γ-open iff f ≤ int (cl (f)) ∨ cl (int (f)).
(7) f is called fuzzy regular semi-open iff there exists fuzzy regular open L-fuzzy set

g ∈ LX with g ≤ f ≤ cl (g)

2.9. Definition. Let F : (X,T)→ (Y,T∗) be a function. Then,

(1) F is called fuzzy continuous iff ∀g ∈ LY , T(F−1(g)) ≥ T
∗(g) [20].

(2) F is called fuzzy irresolute iff for each fuzzy semi-open set g ∈ LY , F−1(g) is a
fuzzy semi-open set of X [16].

(3) F is called fuzzy α-irresolute iff for each fuzzy α-open set g ∈ LY , F−1(g) is a
fuzzy α-open set of X [18].

2.10. Theorem. [2] Let (X,T ) be an ordinary topological space. Then, the function
W (T ) : LX → L defined by

W (T )(f) =
∨

{

q ∈ L : f is q–Scott continuous
}

,

for every f ∈ LX , is an L-fuzzy topology on X.

2.11. Theorem. [2] If F : (X,T ) → (Y, T ∗) is continuous, then F : (X,W (T )) →
(Y,W (T ∗)) is fuzzy continuous.

Thus, by Theorems 2.10, 2.11, we obtain an L-fts from a given ordinary topological
space, and the functor W from the category TOP of ordinary topological space into
the category FTS of L-fts. This provides a “goodness of extension” criterion for L-fuzzy
topological properties. An L-fuzzy extension of a topological property of (X,T ) is said to
be good when it is possessed by the L-fts (X,W (T )) iff the original property is possessed
by (X,T ).

2.12. Lemma. [15] Let (X,T ) be a topological space and f ∈ LX . Considering the L-fts
(X,W (T )) we have:

(i) (cl (f))−1
{

t ∈ L : t 6≤ p
}

⊆ cl
(

f−1
{

t ∈ L : t 6≤ p
})

.

(ii) (int (f))−1
{

t ∈ L : t 6≤ p
}

⊆ int
(

f−1
{

t ∈ L : t 6≤ p
})

.

2.13. Corollary. [15] Let (X,T ) be a topological space and A ⊆ X. Considering the
L-fts (X,W (T )), we have

χcl (A) = cl (χA) and χint (A) = int (χA).
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2.14. Definition. [2] Let (X,T) be an L-fts and g ∈ LX . The L-fuzzy subset g is said
to be compact iff for every p ∈ Pr(L) and every collection (fi)i∈I of L-fuzzy sets with
T(fi) 6≤ p∀ i ∈ I and (

∨

i∈I fi)(x) 6≤ p ∀x ∈ X with g(x) ≥ p′, there is a finite subset I0
of I such that (

∨

i∈I0
fi)(x) 6≤ p ∀x ∈ X with g(x) ≥ p′. If g = 1X , we say that the L-fts

(X,T) is compact.

In the crisp case of T, fuzzy compactness coincides with the compactness introduced
by Warner and McLean [22], and extended to arbitrary L-fuzzy sets by Kudri [13].

2.15. Definition. [15] Let (X,T) be an L-fts and g ∈ LX . The L-fuzzy subset g is said
to be almost compact iff for every p ∈ Pr(L) and every collection (fi)i∈I of L-fuzzy sets
with T(fi) 6≤ p ∀, i ∈ I and

(
∨

i∈I fi
)

(x) 6≤ p, ∀, x ∈ X with g(x) ≥ p′, there is a finite

subset I0 of I such that
(
∨

i∈I0
cl (fi)

)

(x) 6≤ p ∀, x ∈ X with g(x) ≥ p′. If g = 1X , we

say that the L-fts (X,T) is almost compact.

2.16. Definition. [3] Let (X,T) be an L-fts and g ∈ LX . The L-fuzzy subset g is
said to be RS-compact (resp. S-closed) iff for every p ∈ Pr(L) and every collection
(fi)i∈I of semi-open L-fuzzy sets with

(
∨

i∈I fi
)

(x) 6≤ p, ∀x ∈ X with g(x) ≥ p′,

there is a finite subset I0 of I such that
(
∨

i∈I◦
int (cl(fi))

)

(x) 6≤ p, ∀x ∈ X (resp.
(
∨

i∈I◦
cl (fi)

)

(x) 6≤ p, ∀x ∈ X) with g(x) ≥ p′. If g = 1X , we say that the L-fts (X,T)

is RS-compact (resp. S-closed).

3. Proposed Definitions and their Goodness Theorems

3.1. Definition. Let (X,T) be an L-fts and g ∈ LX . The L-fuzzy subset g is said to be
α-compact (resp. α-closed) iff for every p ∈ Pr(L) and every collection (fi)i∈I of α-open
L-fuzzy sets with

(
∨

i∈I fi
)

(x) 6≤ p, ∀x ∈ X with g(x) ≥ p′, there is a finite subset I0
of I such that (

∨

i∈I◦
(fi))(x) 6≤ p, ∀x ∈ X (resp.

(
∨

i∈I◦
cl (fi)

)

(x) 6≤ p, ∀x ∈ X) with

g(x) ≥ p′. If g = 1X , we say that the L-fts (X,T) is α-compact (resp. α-closed).

In the following theorem we shall prove the goodness of the notions of α-compactness
and α-closedness in L-fts’s.

3.2. Theorem. Let (X,T ) be an ordinary topological space. Then (X,W (T )) is α-
compact (resp. α-closed) iff (X,T ) is α-compact (resp. α-closed).

Proof. (Necessity). Let (Ai)i∈I be an α-open cover of (X,T ). Then for each i ∈ I, there
exists Bi ∈ T such that Bi ⊆ Ai ⊆ int (cl (Bi)). But, the characteristic function of every
open set is 1-Scott continuous, so W (T )(χBi) = 1 6≤ p, ∀ i ∈ I and p ∈ Pr(L). Also,
χBi ≤ χAi ≤ χint (cl(Bi)) = int (cl(χBi)) (Corollary 2.13). Hence (χAi)i∈I is a family of

α-open L-fuzzy sets in X with
(
∨

i∈I χAi

)

(x) = 1 6≤ p, ∀x ∈ X. From the α-closedness

of (X,W (T )), there exists a finite subset I◦ of I such that
(
∨

i∈I◦
cl (χAi

)

(x) 6≤ p, ∀x ∈

X. Then by Corollary 2.13, we have
(
∨

i∈I◦
χcl (Ai)

)

(x) 6≤ p, ∀x ∈ X, i.e., ∀x ∈ X,

x ∈
(
∨

i∈I◦
χcl (Ai))

−1
{

t ∈ L : t 6≤ p
}

, then by [2, Lemma 3.3], x ∈
⋃

i∈I◦
(χcl (Ai))

−1
{

t ∈

L : t 6≤ p
}

=
⋃

i∈I◦
cl (Ai). Hence, X ⊆

⋃

i∈I◦
cl (Ai)). Thus, (X,T ) is α-closed.

(Sufficiency). Let p ∈ Pr(L) and let (fi)i∈I be a family of α-open L-fuzzy sets in
(X,W (T )) with

(
∨

i∈I fi
)

(x) 6≤ p, ∀x ∈ X. For each x ∈ X, there is i ∈ I with fi(x) 6≤ p,

i.e., there exists i ∈ I with x ∈ f−1
i

{

t ∈ L : t 6≤ p
}

. Then, X ⊆
⋃

i∈I f
−1
i

{

t ∈ L : t 6≤ p
}

.

We also have that, for each i ∈ I, f−1
i {t ∈ L : t 6≤ p} is α-open in (X,T ) because, for
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each i ∈ I, there is gi ∈ L
X , W (T )(gi) 6≤ p with gi ≤ fi ≤ int (cl (gi)). Then

g
−1
i {t ∈ L : t 6≤ p} ⊆ f

−1
i {t ∈ L : t 6≤ p}

⊆ (int(cl(gi)))
−1{t ∈ L : t 6≤ p}

⊆ int(cl(g−1
i {t ∈ L : t 6≤ p}), (Lemma 2.12)

∀p ∈ Pr(L). Since W (T )(gi) 6≤ p then g−1
i {t ∈ L : t 6≤ p} ∈ T . Hence f−1

i {t ∈ L : t 6≤ p}
is α-open for every i ∈ I. Therefore, the family (f−1

i {t ∈ L : t 6≤ p})i∈I is a family of
α-open sets in (X,T ) covering X. From the α-closedness, there is a finite subset I◦ of I
such that X ⊆

⋃

i∈I◦
cl (f−1

i {t ∈ L : t 6≤ p})). Then for every x ∈ X, there is i ∈ I◦ such

that cl (fi))(x) 6≤ p. So,
(
∨

i∈I◦
cl (x)

)

6≤ p. Hence (X,W (T )) is α-closed.

The proof for α-compactness is similar. ¤

3.3. Definition. Let (X,T) be an L-fts and g ∈ LX . The L-fuzzy subset g is said to be
γ-compact (resp. γ-closed) iff for every p ∈ Pr(L) and every collection (fi)i∈I of γ-open
L-fuzzy sets with

(
∨

i∈I fi
)

(x) 6≤ p, ∀x ∈ X with g(x) ≥ p′, there is a finite subset I0
of I such that

(
∨

i∈I◦
(fi)

)

(x) 6≤ p, ∀x ∈ X (resp.
(
∨

i∈I◦
cl (fi)

)

(x) 6≤ p, ∀x ∈ X) with

g(x) ≥ p′. If g = 1X , we say that the L-fts (X,T) is γ-compact (resp. γ-closed).

3.4. Lemma. Let (X,T ) be a topological space and A ⊆ X. Then A is γ-open in (X,T )
iff χA is γ-open in the L-fts (X,W (T )).

Proof. A is γ-open in (X,T ) iff A ⊆ int (cl (A)) ∪ cl (int (A)) [1] iff

χA ≤ χ[int (cl (A))∪cl (int (A))]

= χint (cl (A)) ∨ χcl (int (A))

= int (cl (χA) ∨ cl (int (χA)). (this equality is due to Corollary 2.13)

Then, χA is γ-open in (X,W (T )). ¤

3.5. Lemma. Let (X,T ) be a topological space, p ∈ Pr(L) and f ∈ LX . Then f is
γ-open in the L-fts (X,W (T )) if f−1{t ∈ L : t 6≤ p} is γ-open in (X,T ).

Proof. Suppose that f is a γ-open L-fuzzy set in (X,W (T )). Then f ≤ int (cl (f)) ∨
cl (int (f)), which implies that for p ∈ Pr(L),

f
−1{

t ∈ L : t 6∈ p
}

⊆
(

int (cl (f)) ∨ cl (int (f))
)−1{

t ∈ L : t 6≤ p
}

⊆
(

int (cl (f))
)−1{

t ∈ L : t 6≤ p
}

∪
(

cl (int (f))
)−1{

t ∈ L : t 6≤ p
}

(Lemma 3.3[2])

⊆ int
(

cl
(

f
−1{

t ∈ L : t 6≤ p
}))

∪ cl
(

int
(

f
−1{

t ∈ L : t 6≤ p
}))

.

(Lemma 2.12)

So, f−1{t ∈ L : t 6≤ p} is γ-open in (X,T ). ¤

With the following theorem we prove the goodness of the notions of γ-compactness
and γ-closedness in L-fts’s.

3.6. Theorem. Let (X,T ) be an ordinary topological space. Then (X,W (T )) is γ-
compact (resp. γ-closed) iff (X,T ) is γ-compact (resp. γ-closed).

Proof. By Lemmas 3.4, 3.5, the proof is similar to that of Theorem 3.2. ¤
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3.7. Definition. Let (X,T) be an L-fts and g ∈ LX . The L-fuzzy subset g is said to be
β-compact (resp. strongly-compact) iff for every p ∈ Pr(L) and every collection (fi)i∈I
of β-open (resp. preopen) L-fuzzy sets with (

∨

i∈I fi)(x) 6≤ p, ∀x ∈ X with g(x) ≥ p′,

there is a finite subset I0 of I such that (
∨

i∈I◦
fi)(x) 6≤ p, ∀x ∈ X with g(x) ≥ p′. If

g = 1X , we say that the L-fts (X,T) is β-compact (resp. strongly-compact).

With the following theorem we prove the goodness of the notions of β-compactness
and strong-compactness in L-fts’s.

3.8. Theorem. Let (X,T ) be an ordinary topological space. Then (X,W (T )) is β-
compact (resp. strongly compact) iff (X,T ) is β-compact (resp. strongly-compact).

Proof. The proof is similar to that of Theorem 3.2. ¤

3.9. Definition. Let (X,T) be an L-fts and g ∈ LX . The L-fuzzy subset g is said to be
S
∗-closed iff for every p ∈ Pr(L) and every collection (fi)i∈I of regular semi-open L-fuzzy

sets with
(
∨

i∈I fi
)

(x) 6≤ p, ∀x ∈ X with g(x) ≥ p′, there is a finite subset I0 of I such

that
(
∨

i∈I◦
fi
)

(x) 6≤ p, ∀x ∈ X with g(x) ≥ p′. If g = 1X , we say that the L-fts (X,T)

is S
∗-closed.

To prove the goodness of S
∗-closedness, we need the following lemma.

3.10. Lemma. Let (X,T ) be an ordinary topological space, f a regular open L-fuzzy set
in the L-fts (X,W (T )) and p ∈ Pr(L). Then we have

(i) int
(

cl (f−1{t ∈ L : t 6≤ p})
)

⊆ f−1
{

t ∈ L : t 6≤ p
}

.

(ii) f−1
{

t ∈ L : t 6≤ p
}

is regular open in (X,T ).

Proof. (i) We are going to prove that any regular open set C in (X,T ) with f−1
{

t ∈ L :

t 6≤ p
}

⊆ C satisfies int
(

cl
(

f−1
{

t ∈ L : t 6≤ p
}))

⊆ C. Let f−1
{

t ∈ L : t 6≤ p
}

⊆ C, and
let g : X → L be a function defined by

g(x) =

{

1 if x ∈ C,

p otherwise.

Since for every e ∈ L,

g
−1{

t ∈ L : t ≥ e
}

=

{

X if e ≤ p,

C if e 6≤ p,

we have g−1
{

t ∈ L : t ≥ e
}

is regular open in (X,T ) for all e ∈ L. Also, we have f ≤ g.

Then f−1
{

t ∈ L : t 6≤ p} ⊆ g−1
{

t ∈ L : t 6≤ p
}

= C. So, int
(

cl
(

f−1{t ∈ L : t 6≤ p
}))

⊆
int (cl (C)) = C. Hence,

int
(

cl (f−1{
t ∈ L : t 6≤ p

}))

⊆ f
−1{

t ∈ L : t 6≤ p
}

.

(ii) Since f is a regular open L-fuzzy set in (X,W (T )), we have f = int (cl (f). Then

f−1
{

t ∈ L : t 6≤ p
}

= int
(

cl (f)
)−1{

t ∈ L : t 6≤ p
}

⊆ int
(

cl (f−1
{

t ∈ L : t 6≤ p
}))

(Lemma 2.12). Hence by using (i), we have f−1
{

t ∈ L : t 6≤ p} = int (cl (f−1
{

t ∈ L : t 6≤

p
}))

. ¤

3.11. Theorem. Let (X,T ) be an ordinary topological space. Then (X,W (T )) is S
∗-

closed iff (X,T ) is S
∗-closed.

Proof. By Lemma 3.10, the proof is similar to that of Theorem 3.2. ¤
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4. Characterizations and Comparisons

The next theorem provides a different description of α-compactness in L-fuzzy topo-
logical spaces.

4.1. Theorem. Let (X,T) be an L-fts and g ∈ LX . The L-fuzzy set g is α-compact iff
for every p ∈ Pr(L) and every collection (fi)i∈I of α-open L-fuzzy sets with

(
∨

i∈I fi ∨

g′
)

(x) 6≤ p for all x ∈ X, there is a finite subset I◦ of I such that
(
∨

i∈I◦
fi ∨ g

′
)

(x) 6≤ p

for all x ∈ X.

Proof. (Necessity). Let p ∈ Pr(L) and (fi)i∈I a collection of α-open L-fuzzy sets with
(
∨

i∈I fi∨g
′
)

(x) 6≤ p for all x ∈ X. Then,
(
∨

i∈I fi
)

(x) 6≤ p for all x ∈ X with g(x) ≥ p′.

Since, g is α-compact, there is a finite subset I◦ of I such that
(
∨

i∈I◦
fi
)

(x) 6≤ p for all

x ∈ X with g(x) ≥ p′.

Take an arbitrary x ∈ X. If g′(x) ≤ p then g′(x)∨
(
∨

i∈I◦
fi
)

(x) =
(
∨

i∈I◦
fi∨g

′
)

(x) 6≤

p because
(
∨

i∈I◦
fi
)

(x) 6≤ p. If g′(x) 6≤ p then we have

g
′(x) ∨

(

∨

i∈I◦

fi
)

(x) =
(

∨

i∈I◦

fi ∨ g
′
)

(x) 6≤ p.

Thus, we have
(
∨

i∈I◦
fi ∨ g

′
)

(x) 6≤ p for all x ∈ X.

(Sufficiency). Let p ∈ Pr(L), and let (fi)i∈I be a collection of α-open L-fuzzy sets of
X with

(
∨

i∈I fi
)

(x) 6≤ p for all x ∈ X with g(x) ≥ p′. Hence,
(
∨

i∈I fi∨g
′
)

(x) 6≤ p for all

x ∈ X. From the hypothesis, there is a finite subset I◦ of I such that
(
∨

i∈I◦
fi∨g

′
)

(x) 6≤ p

for all x ∈ X. Then,
(
∨

i∈I◦
fi
)

(x) 6≤ p for all x ∈ X with g′(x) ≤ p. Hence, g is α-
compact. ¤

As stated in the next theorems similar descriptions are valid for the properties of
α-closed, γ-compact, γ-closed, β-compact, strongly compact, S-closed, RS-compact and
S
∗-closed in L-fts.

4.2. Theorem. Let (X,T) be an L-fts and g ∈ LX . The L-fuzzy set g is α-closed iff
for every p ∈ Pr(L) and every collection (fi)i∈I of α-open L-fuzzy sets with

∨

i∈I

[

(fi) ∨

g′
]

(x) 6≤ p for all x ∈ X, there is a finite subset I◦ of I such that
(
∨

i∈I◦
cl (fi)∨g

′
)

(x) 6≤ p

for all x ∈ X.

Proof. Very similar to the proof of Theorem 4.1. ¤

4.3. Theorem. Let (X,T) be an L-fts and g ∈ LX . The L-fuzzy set g is γ-compact iff
for every p ∈ Pr(L) and every collection (fi)i∈I of γ-open L-fuzzy sets with

(
∨

i∈I fi ∨

g′
)

(x) 6≤ p for all x ∈ X, there is a finite subset I◦ of I such that
(
∨

i∈I◦
fi ∨ g

′
)

(x) 6≤ p

for all x ∈ X.

Proof. Very similar to the proof of Theorem 4.1. ¤

4.4. Theorem. Let (X,T) be an L-fts and g ∈ LX . The L-fuzzy set g is γ-closed iff
for every p ∈ Pr(L) and every collection (fi)i∈I of γ-open L-fuzzy sets with

∨

i∈I

[

(fi) ∨

g′
]

(x) 6≤ p for all x ∈ X, there is a finite subset I◦ of I such that
(
∨

i∈I◦
cl (fi)∨g

′
)

(x) 6≤ p

for all x ∈ X.

Proof. Very similar to the proof of Theorem 4.1. ¤

4.5. Theorem. Let (X,T) be an L-fts and g ∈ LX . The L-fuzzy set g is β-compact
(resp. strong compact) iff for every p ∈ Pr(L) and every collection (fi)i∈I of β-open
(resp. preopen) L-fuzzy sets with

(
∨

i∈I fi ∨ g
′
)

(x) 6≤ p for all x ∈ X, there is a finite

subset I◦ of I such that
(
∨

i∈I◦
fi ∨ g

′
)

(x) 6≤ p for all x ∈ X.
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Proof. Very similar to the proof of Theorem 4.1. ¤

4.6. Theorem. Let (X,T) be an L-fts and g ∈ LX . The L-fuzzy set g is S-closed iff for
every p ∈ Pr(L) and every collection (fi)i∈I of semiopen L-fuzzy sets with

∨

i∈I

[

(fi) ∨

g′
]

(x) 6≤ p for all x ∈ X, there is a finite subset I◦ of I such that
(
∨

i∈I◦
cl (fi)∨g

′
)

(x) 6≤ p

for all x ∈ X.

Proof. Very similar to the proof of Theorem 4.1. ¤

4.7. Theorem. Let (X,T) be an L-fts and g ∈ LX . The L-fuzzy set g is RS-compact iff
for every p ∈ Pr(L) and every collection (fi)i∈I of semiopen L-fuzzy sets with

∨

i∈I

[

(fi)∨

g′
]

(x) 6≤ p for all x ∈ X, there is a finite subset I◦ of I such that
(
∨

i∈I◦
int(cl(fi)) ∨

g′
)

(x) 6≤ p for all x ∈ X.

Proof. Very similar to the proof of Theorem 4.1. ¤

4.8. Theorem. Let (X,T) be an L-fts and g ∈ LX . The L-fuzzy set g is S
∗-closed

iff for every p ∈ Pr(L) and every collection (fi)i∈I of regular semiopen L-fuzzy sets
with

∨

i∈I

[

(fi) ∨ g
′
]

(x) 6≤ p for all x ∈ X, there is a finite subset I◦ of I such that
(
∨

i∈I◦
(fi)

)

∨ g′)(x) 6≤ p for all x ∈ X.

Proof. Very similar to the proof of Theorem 4.1. ¤

4.9. Theorem. Let (X,T) be an L-fts and g ∈ LX . Then we have the following impli-
cations:

g is strongly compact =⇒(i) g is α-compact =⇒(ii) g is compact.

That is, α-compactness is stronger than compactness and is weaker than strong com-
pactness.

Proof. (i) Since every α-open L-fuzzy set is preopen, this follows directly from the defi-
nitions.

(ii) Since every f ∈ LX with T(f) 6≤ p, p ∈ Pr(L), is α-open, this follows directly from
the definitions. ¤

4.10. Theorem. Let (X,T) be an L-fts and g ∈ LX . Then we have the following
implications:

g is S-closed =⇒(i) g is α-closed =⇒(ii) g is almost compact.

That is, α-closedness is stronger than almost compactness and is weaker than S-
closedness.

Proof. (i) Since every α-open L-fuzzy set is semi-open, this follows directly from the
definitions.

(ii) Since every f ∈ LX with T(f) 6≤ p, p ∈ Pr(L), is α-open, this follows directly from
the definitions. ¤

4.11. Theorem. Let (X,T) be an L-fts and g ∈ LX . Then we have the following
implications:

g is γ-compact =⇒(i) g is γ-closed =⇒(ii) g is S-closed.

That is, γ-closedness is stronger than S-closedness and weaker than γ-compactness.

Proof. (i) Since for every f ∈ LX , f ≤ cl (f), this follows directly from the definitions.

(ii) Since every semi-open L-fuzzy set is γ-open, this follows directly from the defini-
tions. ¤
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4.12. Theorem. Let (X,T) be an L-fts and g ∈ LX . Then we have the following
implication:

g is β-compact =⇒ g is strongly compact.

Proof. Since every preopen L-fuzzy set is β-open, this follows directly from the defini-
tions. ¤

4.13. Definition. [3] An L-fts (X,T) is said to be a fuzzy extremely disconnected space
iff for each p ∈ Pr(L), T(cl (g)) 6≤ p for every g ∈ LX with T(g) 6≤ p.

4.14. Theorem. For an fuzzy extremely disconnected L-fts (X,T), the following state-
ments are equivalent:

(i) X is β-compact.
(ii) X is strongly compact.

Proof. (i) implies (ii). This follows from Theorem 4.12.

(ii) implies (i). Let p ∈ Pr(L) and let (fi)i∈I be a family of β-open L-fuzzy sets
of X with

(
∨

i∈I fi
)

(x) 6≤ p, ∀x ∈ X. Then for each i ∈ I, fi ≤ cl (int(cl (fi))) =
int (cl (int (cl )(fi)))) = int (cl (fi)) from the fuzzy extremely disconnectedness of X.
Hence fi ≤ int cl (fi)) for each i ∈ I and so (fi)i∈I is a family of preopen L-fuzzy
subsets of X with

(
∨

i∈I fi
)

(x) 6≤ p. So, there exists a finite subset I◦ of I such that
(
∨

i∈I◦
fi
)

(x) 6≤ p. ¤

5. Applications of S-closedness in L-fts’s

5.1. Theorem. Let F : (X,T) → (Y,T∗) be a fuzzy continuous, α-irresolute function
and let g ∈ LX be S-closed relative to X. Then F (g) is α-closed relative to Y .

Proof. Let p ∈ Pr(L) and (hi)i∈I be a collection of α-open L-fuzzy sets of Y such that

(

∨

i∈I

hi
)

(y) 6≤ p, ∀ y ∈ Y with F (g)(y) ≥ p
′
.

Then, from the α-irresoluteness of the function F , (F−1(hi))i∈I is a family of α-open
L-fuzzy sets of X which is also a family of semiopen L-fuzzy sets of X, with

(

∨

i∈I

F
−1(hi)

)

(x) 6≤ p, ∀x ∈ X with g(x) ≥ p
′
,

because, if g(x) ≥ p′, then F (g)(F (x)) ≥ p′. So,

(

∨

i∈I

F
−1(hi)

)

(x) =
(

∨

i∈I

hi
)

(F (x)) 6≤ p.

From the S-closedness of g in (X,T), there exists a finite subset I◦ of I such that

(

∨

i∈I◦

cl (F−1(hi))
)

(x) 6≤ p, ∀x ∈ X with g(x) ≥ p
′
.

We also have that
(

∨

i∈I◦

cl (hi)
)

(y) 6≤ p, ∀ y ∈ Y with F (g)(y)) ≥ p
′
.
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In fact, if F (g)(y) ≥ p′, then
∨

x∈F−1(y) g(x) ≥ p′ which implies that there is x ∈ X with

g(x) ≥ p′ and F (x) = y. So,

F
(

∨

i∈I◦

cl (F−1(hi))
)

(F (x)) =
∨

i∈I◦

F
(

cl (F−1(hi))
)

(F (x))

≤
(

∨

i∈I◦

FF
−1(cl (hi))

)

(F (x)) [5,Proposition 2.4]

=
∨

i∈I◦

(

cl (hi)
)

(y) 6≤ p, ∀ y ∈ Y,

with F (g)(y) ≥ p′. So, F (g) is α-closed in (Y,T∗). ¤

5.2. Corollary. If a function F : (X,T)→ (Y,T∗) is fuzzy continuous and α-irresolute,
and X is a S-closed L-fts, then F (X) is α-closed. ¤

5.3. Theorem. Let F : (X,T)→ (Y,T∗) be a fuzzy continuous, irresolute function and
let g ∈ LX be γ-closed relative to X. Then F (g) is S-closed relative to Y .

Proof. This is very similar to the proof of Theorem 5.1, and is omitted. ¤

5.4. Corollary. If a function F : (X,T) → (Y,T∗) is fuzzy continuous and irresolute,
and X is a γ-closed L-fts, then F (X) is S-closed. ¤
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