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Abstract

Discriminant Analysis is a method for determining group classifications
for a set of similar units or observations. A number of new efficient
mathematical programming approaches have been developed as an al-
ternative to examining classification problems using statistical models.
In this study two new mathematical programming approaches are devel-
oped for the minimization of the sum of the deviations and the concept
of relative efficiency for Data Envelopment Analysis when solving the
two group classification problem. The efficiency and practicability of
the suggested approaches are supported with a simulation study involv-
ing three different distributions and different cases for the units in the
groups.
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1. Introduction

Discriminant Analysis (DA) involves the classification of samples into two or more
given groups according to certain known classification attributes. Discriminant Analy-
sis is used for two purposes: to classify observations into one of a number of mutually
exclusive groups, and to explain differences between these groups based one or more
observable attributes. Linear discriminant analysis is a widely used research tool in the
social sciences, in business areas such as finance, marketing, and accounting, and in other
areas involving taxonomical and classification analyses such as biology [11]. In general,
the two-group scenario is most widely used in real applications. Typical applications are
credit scoring, targeting consumer groups for sales, etc. Linear discriminant analysis,
developed by Fisher, is the classical method for the classification task. It is theoreti-
cally optimal for situations where the underlying populations are multivariate normal
and where all the different groups have equal covariance structures. With multivariate
populations having unequal covariance structures, quadratic discriminant analysis can be
used [1]. However, when the normality assumption is not guaranteed, these well-known
DA approaches are usually unable to provide good or even satisfactory classification
results. In order to overcome such difficulties, mathematical programming approaches
have been developed. These approaches have been found to outperform the statistical
procedures in many applications, and have received a great deal of attention. In the
study of classification problems many efficient mathematical programming techniques
have been developed as an alternative to statistical models, see Bajgier and Hill[2], Fred
and Glover[6,7,8], Glover[10], Koehler and Erenguc[11], Lam, Choo and Moy[12], Lam
and Moy[13,14,15], Ragsdale and Stam[16], etc.

In this study, two new mathematical programming approaches are developed for the
minimization of the sum of the deviations and for the relative efficiency concept of Data
Envelopment Analysis in solving two group classification problems. The practicability of
the suggested approaches are supported with a simulation study.

The remainder of this article is organized as follows: Mathematical programming
approaches to two-group Discriminant Analysis are briefly discussed in section 2. Data
Envelopment Analysis and the proposed CCR-DA and BCC-DA methods are discussed
in section 3. Performance evaluation methods for classification models are discussed
in section 4. Section 5 reports and discusses the results of the simulation. Section 6
concludes the study.

2. Mathematical Programming Approaches to Two-Group

Discriminant Analysis

The first method in Discriminant Analysis had a statistical basis and was developed
by Fisher. Fisher developed the discriminant function by maximizing the ratio of the
among-group sum of squares to the within-group sum of squares. Then mathemati-
cal programming techniques, namely linear programming, were applied to Discriminant
Analysis by Fred and Glover [6,7]. Fred and Glover suggested a classification model which
is based on minimizing the sum of deviations. Bajgier and Hill [2] provide an experimen-
tal comparison of statistical discriminant analysis and linear programming approaches to
classification problems. Following these studies, many linear programming approaches
based on classification criteria such as minimizing the sum of the deviations, minimizing
the sum of the misclassified objects and maximizing the distance of the intra groups have
been developed. As with Fisher’s original method, linear programming models are useful
when the classification is to be independent of the distribution [11].
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Consider the two-group classification problem with k attributes. Let x be the k × n

matrix of attribute scores of a sample of size n drawn from the groups G1 and G2. If
w1, w2, . . . , wk are the attribute weights, then the classification score of any object is
defined as Si =

∑k

j=1
xijwj . The assignment of an object to a group depends on the

value of its classification score. The Minimization Sums of Deviations Model (MSD) can
be formulated as follows [6]:

(2.1) min

n
∑

i=1

di

k
∑

j=1

wjxij + di ≥ c, i ∈ G1,

k
∑

j=1

wjxij − di ≤ c, i ∈ G2,

where di ≥ 0, i = 1, 2, . . . , n), wj , j = 1, 2, . . . , k, and c are unrestricted variables. The
inequality di > 0 indicates an occurrence of misclassification on the i

th observation. A
normalization constraint is needed to avoid trivial solutions (that is, an all zero solution).
Solving this model gives us the values of wj and c, from which we can obtain the classi-

fication score, Si =
∑k

j=1
xijwj , of any object. An object will be classified into G1 if its

classification score is greater than or equal to c, otherwise into G2.

This model, and many of the other existing linear programming models, determine
the attribute weights and cut-off values taking place here at the same time. Lam, Choo
and Moy [12] divide the process of their model into two steps: the first constitutes
the determination of attribute weights, and the second determines the cut-off values for
the classification. Their model (in the first step) makes use of an objective function
minimizing the sum of deviations from the group mean classification scores. The model
of Lam, Choo and Moy [12] (LPMEAN) can be formulated as follows:

LPMEAN 1

(2.2) min

n
∑

i=1

di

k
∑

j=1

wj (xij − µ1j) + di ≥ 0, i ∈ G1,

k
∑

j=1

wj (xij − µ2j)− di ≤ 0, i ∈ G2,

k
∑

j=1

wj (µ1j − µ2j) ≥ 1,

where di ≥ 0, i = 1, 2, . . . , n, wj , j = 1, 2, . . . , k, are unrestricted variables, and µ1j is
the mean of the jth variable in group G1 and µ2j is the mean of the j

th variable in group
G2. With the aid of this model, wj , j = 1, 2, . . . , k, the attribute weights are found, and
then the object scores are obtained. In this model, the weights are obtained by making
the object scores close to the mean score of the group in which they take place. Then
the object scores are used in the following model, and the classification is made:

LPMEAN 2

(2.3) min
n
∑

i=1

hi,
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Si + hi ≥ c, i ∈ G1,

Si − hi ≤ c, i ∈ G2,

where hi ≥ 0, i = 1, 2, . . . , n, and c is an unrestricted variable. As seen, the classification
is made in two independent steps.

Rasgdale and Stam [16] proposed a two-stage linear programming model (RS) for
solving classification problems. The model discussed currently works in this way:

(RS)

(2.4) min
n
∑

i=1

di

k
∑

j=1

wjxij + di ≥ c1, i ∈ G1,

k
∑

j=1

wjxij − di ≤ c2, i ∈ G2,

where di ≥ 0, i = 1, . . . , n, the wj , j = 1, 2, . . . , k) are unrestricted variables and c1,
c2 are predetermined variables such that c1 > c2. It is important to note that when
a classification score of an observation is between c1 and c2, the observation is in the
classification gap. In the second stage, a linear programming problem that minimizes
the sum of the deviations related with observations whose classification scores fall in the
classification gap in the first stage, is solved properly.

3. Data Envelopment Analysis and Classification Models

Data Envelopment Analysis (DEA), developed by Charnes, Cooper and Rhodes, pro-
vides a non parametric methodology for evaluating the efficiency of each of a set of
comparable decision making units (DMUs), relative to one another [3]. An important
feature of DEA is its capability to provide efficiency scores, while taking account of both
multiple inputs and multiple outputs. Charnes, Cooper and Rhodes who developed Far-
rel’s [5] idea extended the single output / input ratio measure of efficiency to the multiple
output / input measure of efficiency. Then the relative efficiency of any DMU is calcu-
lated by forming the ratio of a weighted sum of outputs to a weighted sum of inputs,
where the weights for both outputs and inputs are to be selected so that the the resulting
efficiency measure of each DMU satisfies the constraint that no DMU can have a relative
efficiency score grater than unity.

In DEA there are many models which can be used to measure efficiency, these models
being derived from the ratio models in which the efficiency is measured as the ratio of the
weighted sum of the outputs to the weighted sum of the inputs [3]. Considering n units,
each of which has m inputs denoted by xij , i = 1, 2, . . . ,m) and s outputs denoted by
yrj , r = 1, 2, . . . , s, the mathematical programming problem in ratio form can be given
as follows:

(3.1) max

s
∑

r=1

uryro

/

m
∑

i=1

vixio

s
∑

r=1

uryrj

/

m
∑

i=1

vixij ≤ 1, j = 1, 2, . . . , n

ur, vi ≥ 0.
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If the sum of the weighted inputs of DMU whose efficiency is to be measured is made equal
to 1 (i.e

∑m

i=1
vixio = 1), then the basic efficiency model, known as CCR, is obtained as

follows:

(3.2) max wo =
s
∑

r=1

uryro

s
∑

r=1

uryrj −

m
∑

i=1

vixij ≤ 0, j = 1, 2, . . . , n

m
∑

i=1

vixio = 1

ur, vi ≥ 0, i = 1, 2, . . . ,m, r = 1, 2, . . . , s.

Likewise, the BCC model can be derived in the same way [4]:

(3.3) max wo =

s
∑

r=1

µryro + u0

m
∑

i=1

vixio = 1

s
∑

r=1

µryrj −

m
∑

i=1

vixij + u0 ≤ 0, j = 1, 2, . . . , n

µ, v ≥ 0, i = 1, 2, . . . ,m, r = 1, 2, . . . , s, uounrestricted.

While the efficiency of DMUs has been measured by these models, it is necessary to
solve the model n-times for each DMU. The optimum value of the objective function
gives the efficiency score of the DMU of interest in the model. A different set of weights
are selected ur, vi for each DMU. Therefore, the set of optimum weights identifies a
hyperplane for each DMU. Any DMU whose efficiency score is equal to one is defined as
efficient, otherwise inefficient.

It is necessary to separate the variables as input and output in DEA. This separation
depends on their effects related to DMU. Instead of input and output variables, Retzlaff-
Roberts [17] prefered to use the concept of positive effect variables and negative effect
variables on units. Any factor whose increase (while the others are held constant) leads
to a unit considered better or more efficient is defined as positive. On the contrary, any
factor whose decrease (while the others are held constant) leads to a unit considered
better or more efficient is defined as negative.

Both DA and DEA can be considered as methods to calculate the performance when
measuring the DMUs using linear programming. In order to distinguish the members of
a group, each method uses some factor weights. In DA it is initially known which group
each unit is a member of, and a set of factor weights and “threshold” value are sought
which produce the best possible separation of two groups. The resulting weights and
threshold value, which define a hyperplane that attempts to separate the two groups,
can then be used to predict membership for subsequent observations. While DEA is not
generally thought of as a two-group classification technique, it does classify units into
two groups, namely the inefficient and DEA-efficient units. In DEA it is not initially
known to which group units belong, but the threshold that separates the two groups is
known, an efficiency score below 1 categorizes a unit as inefficient and the others are
deemed DEA-efficient. A set of factor weights, which also form a hyperplane, is sought
for each unit which attempts to classify that unit into DEA efficient groups [17].
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Consider a Discriminant Analysis problem, whose classification attributes consist of
m input attributes and s output attributes. We denote by xij , i = 1, 2, . . . ,m and yrj ,
r = 1, 2, . . . , s the values of the ith input and rth output attributes of the jth sample. One
of the advantages of DEA is its capability for dealing with multiple inputs and multiple
outputs. When the efficiency of the multiple inputs and multiple outputs is used as the
classification criterion, it is naturally hoped that there will exist an efficiency cut of value
1 (threshold, boundary value) that separates two groups.

(3.4) max
s
∑

r=1

uryro

/

m
∑

i=1

vixio

s
∑

r=1

uryrj

/

m
∑

i=1

vixij ≥ 1, j ∈ G1

s
∑

r=1

uryrj

/

m
∑

i=1

vixij ≤ 1, j ∈ G2

ur, vi ≥ 0, j = 1, 2, . . . , n

If the sum of the weighted inputs of DMU whose efficiency is to be measured is made
equal to 1 (i.e.

∑m

i=1
vixio = 1), then the model (3.5) is obtained as follows:

(3.5) max
s
∑

r=1

uryro

s
∑

r=1

uryrj −

m
∑

i=1

vixij ≥ 0, j ∈ G1

s
∑

r=1

uryrj −

m
∑

i=1

vixij ≤ 0, j ∈ G2

m
∑

i=1

vixio = 1, j = 1, 2, . . . , n

ur, vi ≥ 0, i = 1, 2, . . . ,m, r = 1, 2, . . . , s.

Considering the deviation variable dj which is a measure of the misclassification ratio, we
introduce the external deviation variables and its minimum sum criterion into the above
model, which results in a multi objective linear programming model shown as follows:

(3.6) max
s
∑

r=1

uryro

min
n
∑

j=1

dj

s
∑

r=1

uryrj −

m
∑

i=1

vixij − dj ≥ 0, j ∈ G1

s
∑

r=1

uryrj −

m
∑

i=1

vixij + dj ≤ 0, j ∈ G2

m
∑

i=1

vixio = 1, j = 1, 2, . . . , n

ur, vi, dj ≥ 0, i = 1, 2, . . . ,m, r = 1, 2, . . . , s.

The model (3.6) is a classification model based on both minimizing the sum of the external
deviations and maximizing the sum of the weighted outputs for the related DMUs. This
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model is a multi objective linear programming model. There are several solution methods
for solving a multiple objective linear programming model. We used the basic weighted
approach in order to solve this multi objective linear programming model.

(3.7) max

(

s
∑

r=1

uryro −M

n
∑

j=1

dj

)

s
∑

r=1

uryrj −

m
∑

i=1

vixij − dj ≥ 0, j ∈ G1

s
∑

r=1

uryrj −

m
∑

i=1

vixij + dj ≤ 0, j ∈ G2

m
∑

i=1

vixio = 1, j = 1, 2, . . . , n

ur, vi, dj ≥ 0, i = 1, 2, . . . ,m, r = 1, 2, . . . , s,

where M is a large number. We call this model CCR-DA.

After solving the above model, the classification score (
∑s

r=1
uryro) for each unit will

be obtained. These scores are compared with 1, if greater than 1 we assign the unit to
the first group, otherwise to the second group.

Likewise, applying the same process to the BCC model gives:

(3.8) max

(

s
∑

r=1

uryro + u0 −M

n
∑

j=1

dj

)

s
∑

r=1

uryrj + u0 −

m
∑

i=1

vixij − dj ≥ 0, j ∈ G1

s
∑

r=1

uryrj + u0 −

m
∑

i=1

vixij + dj ≤ 0, j ∈ G2

m
∑

i=1

vixio = 1, j = 1, 2, . . . , n

u0 unrestricted,ur, vi, dj ≥ 0, i = 1, 2, . . . ,m, r = 1, 2, . . . , s.

We call this model BCC-DA. Here the relative efficiency of a unit under classification is
defined as

∑s

r=1
uryro + u0. When it is greater than or equal to 1, the unit should be

classified into the first group, otherwise into the second group.

4. Performance Evaluation for Classification Models

The performance of classification models is generally assessed in terms of hit rates,
i.e. the proportion of observations classified correctly. Although the apparent hit rate,
which is obtained by using the model to classify the observations used in its derivation,
is widely used in this context, this measure is positively biased. The hit rate in a holdout
sample, i.e. a sample of observations of known class membership that is separate from
the training sample, can be used to overcome this difficulty. Since the holdout sample
hit rate is training/holdout sample specific, the average holdout hit rate for a number
of training/holdout samples should be determined, although the average holdout hit
rate may be affected by sampling bias. The LOO (leave-one-out) is another type of
performance indicator used in classification problems [9]. A reasonable estimate of future
classification performance can be obtained from the LOO. In order to calculate the LOO
hit ratio for each model each observation is omitted in turn from the whole sample and
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the remaining observations used to generate a classification function which is then used to
classify the omitted observations. The LOO examines whether the omitted observation
is correctly classified by the estimated classification function. In this study, the LOO hit
rate is used.

5. Simulation Experiment

We carried out a Monte Carlo simulation study with 100 repetitions to compare the
performance of the methods FLDF (Fisher’s Linear Discriminant Function), MSD, LP-
MEAN, RS, CCR-DA and BCC-DA for the two-group classification problem. All of the
results for these methods were obtained using the program MATLAB 7.0. and WINQSB.
The distributions considered in this study and their parameters are as follows:

Multivariate Normal G1 ∼ ( 6 6 6 ) G2 ∼ ( 5 5 5 ) Σ = I.

Exponential G1 ∼ ( 2 ) G2 ∼ ( 1 ).

Uniform G1 ∼ ( 20 40 ) G2 ∼ ( 15 30 ).

It is necessary to separate the variables (factors) as input and output in the CCR-DA
and BCC-DA classification models. In order to use the same variables in the models
considered (FLDF, MSD, LPMEAN, RS, CCR-DA, BCC-DA), all of the variables in the
CCR-DA and BCC-DA models are taken as output variables. Also, the input variable is
taken as one (“1”) in these models. Similar applications in DEA can be found Charnes
et al [4].

For the two-groups, the unit number in the first group is n1, and that in the second
group is n2, the characteristics for the different values of n1 and n2 are taken randomly
from the distributions given above (as n1 = 50, n2 = 50; n1 = 60, n2 = 40; n1 = 30,
n2 = 70; n1 = 80, n2 = 20). For example, n1 = 50 units for the first group and n2 = 50
units for the second group are selected from the related distributions for the case of
n1 = 50 and n2 = 50. For the case n1 = 60 and n2 = 40, n1 = 60 units for the first
group and n2 = 40 units for the second group are chosen from the related distributions.
The selection of unit process for the other cases is done in a similar way.

In Table 1, the different values of n1 and n2, the three different choices of distribution
(multivariate Normal, exponential, uniform), and the average LOO hit rate (correct
classification) numbers obtained from the 100 repetitions of the sample are presented for
the six different classification methods.

Upon examination of Table 1, it is seen that the CCR-DA model and especially the
BCC-DA model usually have a higher LOO hit rate than the other four methods.

There are three main hypotheses we wish to test, and these hypotheses were repeated
for the three distributions and four different sample cases taken from the groups (n1 =
n2 = 50; n1 = 60, n2 = 40; n1 = 30, n2 = 70 and n1 = 80, n2 = 20). The hypotheses for
the CCR-DA model are:

H0 : There is no difference between the average LOO hit rate of CCR-DA and the
average LOO hit rate of the ith method,

H1 : The average LOO hit rate of CCR-DA is higher than average LOO hit rate
of the ith method.

Here i = FLDF, MSD, LPMEAN, RS. In a similar way, the hypotheses for the BCC-DA
model are:

H0 : There is no difference between the average LOO hit rate of BCC-DA and the
average LOO hit rate of the ith method,

H1 : The average LOO hit rate of BCC-DA is higher than average LOO hit rate
of the ith method.
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Table 1. Average LOO hit rate (correct classification) of the six approaches.

METHOD

n1, n2 Distribution FLDF MSD LPMEAN RS CCR-DA BCC-DA

n1 = 50 Mult.Norm.
85.01
(5.16)∗

81.02
(5.21)

85.98
(4.68)

82.10
(4.96)

86.22
(5.03)

86.88
(4.81)

n2 = 50 Exponential
75.63
(5.27)

76.33
(4.87)

78.13
(5.04)

77.06
(4.32)

79.87
(5.07)

80.09
(4.68)

Uniform
83.62
(4.72)

80.03
(5.26)

85.13
(4.68)

81.26
(5.11)

85.06
(4.51)

86.91
(4.92)

n1 = 60 Mult.Norm.
86.61
(4.18)

84.12
(4.89)

86.78
(4.68)

85.51
(4.42)

87.91
(5.17)

88.54
(4.79)

n2 = 40 Exponential
76.15
(4.87)

75.81
(5.21)

77.02
(5.09)

76.63
(4.71)

78.84
(4.96)

79.47
(4.84)

Uniform
87.35
(4.84)

83.11
(5.01)

88.96
(4.50)

86.79
(5.11)

89.61
(4.72)

90.91
(4.87)

n1 = 30 Mult.Norm.
87.17
(4.82)

83.61
(5.09)

87.92
(4.22)

84.63
(5.29)

88.17
(4.52)

88.89
(4.38)

n2 = 70 Exponential
77.22
(5.15)

77.18
(5.27)

79.42
(4.96)

79.17
(5.03)

81.52
(4.26)

81.87
(5.09)

Uniform
87.15
(4.57)

81.87
(5.11)

89.46
(4.91)

84.28
(4.46)

89.28
(4.62)

90.81
(4.69)

n1 = 80 Mult.Norm.
85.56
(5.25)

82.48
(4.70)

88.11
(5.23)

83.96
(4.42)

90.03
(5.09)

90.57
(4.71)

n2 = 20 Exponential
77.18
(4.57)

78.38
(4.78)

78.93
(5.17)

78.88
(5.12)

80.92
(4.83)

81.82
(4.46)

Uniform
86.58
(4.83)

82.38
(5.21)

87.59
(4.53)

85.43
(4.92)

88.26
(5.09)

89.94
(4.78)

∗ The values in parentheses are standard deviations for the LOO hit rate
(correct classification number).

Table 2 lists the results of the hypotheses tests which claim the average LOO hit rate of
models CCR-DA and BCC-DA is greater than the average LOO hit rate of the models
FLDF, MSD, LPMEAN and RS.

In Table 1, for example, the values 75.63 and 5.27 pertaining to the FLDF model for
the case n1 = 50, n2 = 50 and the exponential distribution are the average LOO hit
rate and the standard deviation of the model over 100 random samples. Similarly the
values 79.87 and 5.07 of the model CCR-DA are also the average LOO hit rate and the
standard deviation over 100 samples, respectively. Using this knowledge, we perform the
following hypothesis test.

H0 : There is no difference between the average LOO hit rate of CCR-DA and the
average LOO hit rate of the FLDF method,

H1 : The average LOO hit rate of CCR-DA is higher than average LOO hit rate
of the FLDF method.

After testing these hypothesis, the value 4.10 in Table 2 shows the value of the test statis-
tic t for the hypothesis that the average LOO hit rate of the model CCR-DA is greater
than the average LOO hit rate of the method FLDF for the exponential distribution. In
Table 2, the letter “a” shows that the calculated p− value corresponding to 4.10 is less
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than 0.05. A decision on the outcome of the hypothesis can be given according to the
value 4.10 of the test statistic, or the value of p. The fact that the value of p is less than
0.05 implies that the hypothesis H0 is rejected with a significance level of 0.05. As a
result, the average LOO hit rate of CCR-DA is found to be statistically greater than the
average LOO hit rate of FLDF.

A similar result holds for a comparison of the methods BCC-DA and FLDF. The
calculated value of 4.48 shows that for the cases n1 = 50, n2 = 50 and the exponential
distribution, the average LOO hit rate of the model BCC-DA is greater statistically than
the average LOO hit rate of the method FLDF. Furthermore, the model BCC-DA is
superior to CCR-DA for the FLDF method (the calculated value is 4.10 for CCR-DA,
and 4.48 for BCC-DA). The superiority of the model BCC-DA over the model CCR-DA
is clearly seen in all cases.

Table 2. Hypothesis test results (t-values of paired t-tests) of CCR-DA and
BCC-DA against (FLDF, MSD, LPMEAN, RS)

CCR-DA BCC-DA

n1 = 50
n2 = 50

n1 = 60
n2 = 40

n1 = 30
n2 = 70

n1 = 80
n2 = 20

n1 = 50
n2 = 50

n1 = 60
n2 = 40

n1 = 30
n2 = 70

n1 = 80
n2 = 20

Test 1 FLDF

M.Nor. 1.18 1.24 1.01 3.43a 1.87a 1.98a 1.71a 4.14a

Exp. 4.10a 2.67a 4.07a 3.05a 4.48a 3.36a 4.12a 4.05a

Uni. 1.56 2.33a 2.01a 1.21 3.44a 3.52a 3.46a 2.57a

Test 2 MSD

M.Nor. 5.07a 3.24a 4.21a 6.07a 5.84a 4.13a 4.97a 6.94a

Exp. 3.57a 2.91a 3.79a 2.03a 3.93a 3.47a 3.97a 2.93a

Uni. 5.13a 6.54a 6.65a 4.55a 6.81a 7.62a 8.01a 5.97a

Test 3 LPMEAN

M.Nor. 0.29 1.10 0.27 1.50 0.94 1.81a 1.02 2.22a

Exp. 1.80a 1.79a 2.12a 1.62 2.01a 2.42a 2.20a 2.47a

Uni. -0.07 0.61 -0.16 0.53 1.97a 2.06a 1.20 1.88a

Test 4 RS

M.Nor. 4.22a 2.44a 3.19a 4.89a 4.89a 3.19a 3.87a 5.69a

Exp. 3.11a 2.26a 2.23a 1.67a 3.36a 2.90a 2.41a 2.54a

Uni. 4.04a 2.88a 5.12a 2.23a 5.75a 4.09a 6.52a 3.52a

a H0 reject (p value < 0.05).

When the model CCR-DA is compared with the FLDF, MSD, LPMEAN and RS meth-
ods, the model CCR-DA is superior statistically in 34 of 48 different hypothesis tests.
In the remaining 14 hypothesis tests, there is no difference statistically between the four
methods. While the method of CCR-DA is superior to the methods MSD and RS in all
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the situations considered, it is superior to the methods FLDF and LPMEAN for the ex-
ponential distribution. It is found that the model BCC-DA is superior statistically than
the methods FLDF, MSD, LPMEAN and RS in 45 of 48 different hypotheses test. While
the method CCR-DA is superior to the methods FLDF, MSD and RS in all the cases
considered, for the values n1 = 50, n2 = 50 and the multivariate Normal distribution,
and n1 = 30, n2 = 70 and the multivariate Normal and exponential distributions, there
is no statistical difference between LPMEAN and BCC-DA.

As a result of the simulation studies, we deduce that the model of CCR-DA, and
especially the model of BCC-DA, can be used efficiently in the two-group classification
problems.

6. Conclusion

In this study, two new mathematical programming models CCR-DA and BCC-DA
are developed to solve two-group classification problems by using the relative efficiency
concept model and the model minimizing the sum of deviations. When these suggested
approaches are applied to simulation data, the results show that these are practicable
and efficient. Especially, the model BCC-DA is superior to all other classification models,
in the majority of experiments.

References

[1] Anderson, T.W. An Introduction to Multivariate Statistical Analysis (Wiley, New York,
1984)

[2] Bajgier, S.M. and Hill, A.V. An experimental comparison of statistical and linear program-
ming approaches to the discriminant problem, Decision Sciences 13, 604–618, 1982.

[3] Charnes A, Cooper W.W. and Rhodes E.Measuring the efficiency of decision making units,
European Journal of Operational Research 2, 429–444, 1978.

[4] Cooper, W.W., Seiford, L.M. and Tone, K. Data Envelopment Analysis (Kluwer Academic

Publishers, Boston, 2000).
[5] Farrell M. J. The measurement of productivity efficiency, Journal of Royal Statistical Society,

Series A, CXX, 253–287, 1957.
[6] Fred, N. and Glover, F. Simple but powerful goal programming formulations for the statistical
discriminant problem, European Journal of Operational Research 7, 44–60, 1981.

[7] Fred, N. and Glover, F. A linear programming approach to the discriminant problem, Deci-
sion Sciences 12, 68–74, 1981.

[8] Fred, N. and Glover, F. Evaluating alternative linear programming models to solve the two-

group discriminant problem, Decision Sciences 17, 589–585, 1986.
[9] Glen, J. J. A comparison of standard and two-stage mathematical programming discriminant

analysis methods, European Journal of Operational Research 171, 496–515, 2006.

[10] Glover, F. Improved linear programming models for discriminant analysis, Decision Sciences
21, 771–785, 1990.

[11] Koehler, G. J. and Erenguc, S. S. Minimizing misclassifications in linear discriminant anal-
ysis, Decision Sciences 21, 63–85, 1990.

[12] Lam, KF., Choo, E.U. and Moy, J.W. Minimizing deviations from the group mean: A new

linear programming approach for The two-group classification problem, European Journal
of Operational Research 88, 358–367, 1996.

[13] Lam, KF. and Moy, J.W. Improved linear programming formulations for the multi-group

discriminant problem, Journal of Operational Research Society 47, 1526–1529, 1996.
[14] Lam, KF. and Moy, J.W. An experimental comparison of some recently developed linear

programming approaches to the discriminant problem, Computers and Operations Research
24 (7), 593–599, 1997.

[15] Lam, KF. and Moy, J.W. Combining discriminant methods in solving classification prob-

lems in two-group discriminant analysis, European Journal of Operational Research 138,
294–301, 2002.



180 H. Bal, H.H. Örkcu
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