

BULLETIN OF ECONOMIC THEORY AND ANALYSIS

Journal homepage: http://www.betajournals.org

Do Agricultural Raw Materials Imports Cause Agricultural Growth? Empirical Analysis from North Africa

Sayef BAKARI • https://orcid.org/0000-0002-5395-4348

To cite this article: Bakari, S. (2019). Do Agricultural Raw Materials Imports Cause Agricultural Growth? Empirical Analysis from North Africa. *Bulletin of Economic Theory and Analysis*, 4(2), 65-77.

Received: 02 Apr 2019

Accepted: 19 Aug 2019

Published online: 01 Dec 2019

©All right reserved

Bulletin of Economic Theory and Analysis

Volume IV, Issue 2, pp. 65-77, 2019 http://www.betajournals.org

Original Article / Araştırma Makalesi Received / Alınma: 02.04.2019 Accepted / Kabul: 19.08.2019

Do Agricultural Raw Materials Imports Cause Agricultural Growth? Empirical Analysis from North Africa

Sayef BAKARI^a

^aPh.D., Department of Economics Science, LIEI, Faculty of Economic Sciences and Management of Tunis (FSEGT), University Of Tunis El Manar, TUNISIA https://orcid.org/0000-0002-5395-4348

ABSTRACT

The aim of this paper is to study empirically the impact of agricultural raw materials imports on agricultural growth since it is never done before. We have made this study in the context of three Countries from North Africa (Tunisia, Morocco and Egypt) for the period 1965-2016. By using cointegration analysis and vector error correction model, empirical analysis proves that agricultural raw materials imports produce a positive effect on agricultural growth in the long run for the three Countries and cause agricultural growth in the short run in the case of Tunisia and Egypt. It is seen that agricultural raw materials imports is a source of economic growth in the agricultural sector. For this reason, countries of North Africa should adopt to integrate foreign technology imports and not technological innovation to stimulate agricultural sector.

Anahtar Kelimeler

Agricultural Raw Materials Imports, Agricultural Growth, VECM, North Africa.

JEL Kodu F11, F13, F14, F15, L66, O47, O55, Q16, Q17

CONTACT Sayef BAKARI, ⊠<u>bakari.sayef@yahoo.fr</u> □Department of Economics Science, LIEI, Faculty of Economic Sciences and Management of Tunis (FSEGT), University Of Tunis El Manar, TUNISIA

1. Introduction

Generally, for developing countries, imports of capital goods and intermediate goods are essential inputs because these types of countries cannot produce these goods and because they are incorporated in the technology they need. And if there is not enough foreign exchange to finance imports of capital goods and intermediate goods, the economy neither functions properly nor will economic growth be strong 1. Amsden (1989) claimed that foreign technology imports are an important factor in explaining the rapid economic growth. He suggested that a growth model suitable should integrate not technological innovation but foreign technology imports. Grossman and helpman (1991), Barro and sala-I-Martin (1997), Benhabib and sepiegel (2002) and Griffith et al (2004) declare that the spreading of new technologies from developing economies to developing ones is considered as an essential driver of productivity growth for developing countries. Benhabib and Sepiegel (2002), Griffith et al (2004), Cameron et al (2005) propose that countries which are overdue behind the technological frontier will experience faster productivity growth than the leading country and thus benefit from technological catch-up.Bel Haj Hassine (2008) explored the role of human capital and trade openness in the process of technological diffusion and productivity growth in the Mediterranean agricultural sector. She found that human capital and trade openness facilitates technology diffusion and stimulates agricultural growth. Margot Anderson (1989) argues that technology transfer helps to increase agricultural productivity, reduces production costs and lowers consumer prices. Indicating that benefits depend on the way technology is transferred, the speed of transfer and the degree of influence of government policy on technology transfers. DeJanvry and Sadoulet (2001) have shown that technology in the agricultural sector can contribute to reducing poverty through direct effects (gain for adopters) and indirect effects (lower food prices, job creation, effects related to agricultural investment and agricultural growth...,). Such an empirical exercise has never been done before in the context of North Africa and in the context of the impactof agricultural raw materials imports on Agricultural growth. In this research, we try to bridge these gaps by looking into the impact of agricultural raw materials imports on agricultural growth for the period 1965 to 2016. The rest of the paper is fixed as follows. Section 2 establishes on a survey of literature. Section 3 explains the data characterization and methodological structure.

¹see: Chenery and Bruno (1962), Mckinnon (1964) and Taylor (1991)

Empirical results and analysis are engaged into account in next coming Section 4. Section 5 ends the study along with recommendations.

2. Literature Survey

The following table presents a set of empirical studies that are collected during our exploration of this research theme to inspire the realization of our empirical analysis.

Table 1

Studies Related to the Nexus Between Imports / Economic Growth and Between Imports

Diversification and Economic Growth

No	Authors	Countries	Periods	Econometric	Keys		
				Techniques	Findings		
	Imports and Economic Growth						
1	Hye (2012)	China	1978 - 2009	ARDL	$M \leq >Y$:		
				Granger Causality Tests			
2	Alavinasab (2013)	Iran	1961 - 2010	OLS	M => Y: (-)		
3	Ahmed and al (2014)	Pakistan	1983 - 2013	Cointegration Analysis			
				Granger Causality Tests	S		
4	Albiman and Suleiman	Malaysia	1967 - 2010	Cointegration Analysis	M # Y		
	(2016)			VAR			
				Granger Causality Tests	S		
5	Riyath and Jahfer	Sri Lanka	1962 - 2015	Cointegration Analysis	M # Y : SR		
	(2016)			VECM	$M \Rightarrow Y: LR$		
6	Bakari (2017)	Tunisia	1965 - 2016	Cointegration Analysis	M => Y : LR		
	, ,			VECM	M # Y : SR		
7	Bakari and Mabrouki	Panama	1980 - 2015	Cointegration Analysis	$M \Rightarrow Y$		
	(2017)			VAR			
				Granger Causality Tests	3		
8	Bakari and al (2018)	Nigeria	1981 - 2015	Cointegration Analysis			
	(' ')	8		VECM	$M \le Y$:		
					SR		
9	Ofeh and	Cameroon	1980 - 2013	Correlation Analysis	M => Y: (-)		
	Muandzevara (2017)		1,00 2016	OLS	M => Y : LR		
-		Imports diversifica	ation and economi				
10	Zhang and Zou (1995)	50 Developing	1965 – 1988	Pooled OLS	FTM => Y		
	8 (111)	Countries		Fixed Effect Model			
				Random Effect Model			
11	Ghosh (2009)	India	1970 - 2006	Cointegration Analysis	OM # Y : LR		
	Ghosh (2007)	IIIdia	1970 2000	ARDL	01,1 // 1 . 210		
12	Jayaraman and Lau	Fiji, Samoa,	1982 - 2007	PFMOLS	$OM \Rightarrow Y$:		
	(2011)	Solomon Islands,	1902 2007	Panel Cointegration	LR (-)		
	(2011)	Tonga and Vanuatu		Analysis	Lit ()		
		101154 and 1 anada		Panel Granger			
				Causality Tests			
13			1980 - 2007	PFMOLS	$OM \le Y$		
13			1700 - 2007	TIMOLS	OIVI ~ I		

	Yazdani and Faaltofighi (2012)	Turkey, South Korea Malaysia, India and Pakistan	,	PVECM	
14	Acheampong (2013)	Ghana	1967 – 2011	Cointegration Analysis	OM => Y: LR (-)
				ARDL	OM => Y: SR (-)
15	Bakari and Mabrouki (2018)	North Africa	1982 – 2016	Correlation Analysis Fixed Effect Model Random Effect Model Hausman Test	$AM \Longrightarrow Y$

Note. Y means Economic Growth, M means Imports, AM means Agricultural Imports, OM means Oil Imports, FTM means Foreign Technology Imports, LR means Long Run, SR means Short Run, (-) means Negative Effect

3. Data, Methodology and Model Specification

3.1. Data

To perambulate the impact of Agricultural raw materials imports on Agricultural GDP in North Africa, we will utilize a time series database that will spread the period 1965 - 2016 and taken from annual statistical reports of the World Bank. The short illustration of variables is specific as below in Table 2.

Table 2

Description of Variables

No	Variables	Description/Definition	Source
1	AY	Agricultural Gross Domestic Product (constant US \$): agriculture	The World Bank
		corresponds to ISIC divisions 1-5 and includes forestry, hunting, and	
		fishing, as well as cultivation of crops and livestock production.	
		Value added is the net output of a sector after adding up all outputs	
		and subtracting intermediate inputs. It is calculated without making	
		deductions for depreciation of fabricated assets or depletion and	
		degradation of natural resources. The origin of value added is	
		determined by the International Standard Industrial Classification	
		(ISIC), revision 3 or 4.	
2	AX	Agricultural Export (Constant US \$): comprises the commodities in	The World Bank
		SITC sections 0 (food and live animals), 1 (beverages and tobacco),	
		and 4 (animal and vegetable oils and fats) and SITC division 22 (oil	
		seeds, oil nuts, and oil kernels), (constant US \$)	
3	AMM	Agricultural raw materials imports (constant US \$): comprise SITC	The World Bank
		section 2 (crude materials except fuels) excluding divisions 22, 27	
		(crude fertilizers and minerals excluding coal, petroleum, and	
		precious stones), and 28 (metalliferous ores and scrap).	

3.2. Methodology

Methodologically, an estimate based on the development of VAR models introduced by Sims (1980) will be used to identify the nature of the temporal link between the main macroeconomic aggregates. The first step includes determining the order of integration of each variable (If the variables are all stationary we can apply the model of Sims, and if not, we cannot apply it). The second step is to determine the number of optimal lags included in our model to know the time needed (per year) for the independent variables to cause an effect (whether positive / negative) on the dependent variables. The third step is to check the existence or the absence of a cointegration relation between the variables (if there is a cointegration relation we will apply the VECM Model, if there is not a cointegration relation we will apply the VAR Model).

3.3. Model Specification

To inspect empirically the impact of agricultural raw materials imports on agricultural growthis expressed as²:

$$AY = F(AX, AMM) \tag{1}$$

Where AY, AX and AMM depict respectively: gross domestic product in agricultural sector (Constant US \$), agricultural export (Constant US \$) and agricultural raw materials imports (Constant US \$).

The Function can also be represented in log-linear econometric format thus:

$$Log(AY) = \beta_0 + \beta_1 Log(AX)_t + \beta_2 Log(AMM)_t + \varepsilon_t$$
 (2)

Where:

- β_0 is the constant term

² This modality of production function is very—dynamic and very transparent to substantiate the nexus between trade and economic growth, largely in the developing countries and predominately, in the countries of Africa as the case of Egypt, Morocco and Tunisia, since these countries take—holding of various natural resources and rare goods such as oil, gas, phosphate, gold, copper, iron, phosphorus for export, and generally require high-level imports to extract these resources (such as; Imports of manufactured goods, Imports of ICT goods, Imports of ores and metals). In addition, the share of investment and labor force are not of considerable effectiveness simply because of the emergence of percentages of unemployment, poverty and Corruption in these countries {See Central Bank of Tunisia (1965 - 2016), World Bank indicators and Transparency International}. In addition, there are independent researchers in this field who have applied only the two variables export and import in the function of production to extract their relations with economic growth, such as Hussain (2014); Turan and Karamanaj (2014); Mohsen (2015); Yüksel and Zengin (2016), Bakari (2017), Bakari and Mabrouki (2017), Bakari (2018).

- β_1 is the coefficient of variable 'agricultural export'
- β_2 is the coefficient of variable 'agricultural raw materials imports)
- **t** is the time rend (by year)
- ϵ is the random error term assumed to be normally, identically and independently distributed

Equation (2) can be written in Error Correction Model form as:

$$\Delta AY_{(t)} = \sum_{(i-1)}^{k} \beta_0 \, \Delta AY_{t-i} + \sum_{(i-1)}^{k} \beta_{(1)} \Delta AX_{(t-i)} + \sum_{(i-1)}^{k} \beta_{(2)} \Delta AMM_{(t-i)} + Z_{(1)} ECT_{(t-1)} + \epsilon_{(t)}$$
 (3)

Where Δ is the difference operator; k is the number of lags, β_0 , β_1 and β_2 are the short run coefficients to be estimate; $EC1_{t-1}$ is the error correction term derived from the long-run co integration relationship; Z_1 is the error correction coefficients of $EC1_{t-1}$ and ε_{1t} is the error terms in equation.

4. Empirical Analysis

As usual, the first step in performing estimation based on VAR model modeling is stationary analysis. There are several tests that determine the order of integration of each variable such as ADF, PP and KPSS. In our case, we will use the most adopted test which is the ADF test³.

Table 3

Augmented Dickey Fuller Test

Variables	Eg	ypt	Mor	occo	Tun	isia
	C	CT	C	CT	C	CT
AY	(1.463859)	(1.752586)	(0.791663)	(3.113750)	(1.102977)	(3.832720)**
	[8.315827]***	[8.545897]***	[14.51686]***	[14.35747]***	[5.082067]****	[5.527687]***
AX	(0.351095)	(1.479282)	(0.146829)	(2.781120)	(0.037970)	(2.014369)
	[6.767956]***	[6.919399]***	[7.428073]***	[7.418593]***	[9.768890]***	[9.907908]***
AMM	(2.170230)	(4.768593)***	(2.950329)	(2.773951)	(1.122097)	(3.832289)**
	[7.881689]***	[7.799699]***	[7.738695]***	[8.053752]***	[8.403844]***	[8.357375]***

Note. ***; ** and * denote significances at 1%; 5% and 10% levels respectively

⁽⁾ denotes stationarity in level

^[] denotes stationarity in first difference

³ Augmented Dickey Fuller test, See: Dickey and Fuller (1979, 1981)

The results of the ADF test are described in Table 3. All the variables are stationary and especially they are stationary in first difference. The second step in our empirical analysis is the cointegration analysis. In this case, we will apply the Johansen test which is most appropriate in checking the existence or absence of a cointegration relationship between the variables. It should be noted that the results of the Lag Order Selection VAR indicate that the number of optimal delays is equal to 4 in the case of Egypt and 2 in the case of Tunisia and Morocco.

Table 4

Johansen Test

Unrestricted Cointegration Rank Test (Trace)					
Egypt					
Hypothesized No. of CE(s)	Eigen Value	Trace Statistic	0.05 Critical Value	Prob. **	
None *	0.383183	47.42711	29.79707	0.0002	
At most 1 *	0.319348	24.71754	15.49471	0.0016	
At most 2 *	0.131686	6.636465	3.841466	0.0100	
Morocco					
Hypothesized No. of CE(s)	Eigen Value	Trace Statistic	0.05 Critical Value	Prob. **	
None *	0.453713	57.56817	29.79707	0.0000	
At most 1 *	0.317091	28.54688	15.49471	0.0003	
At most 2 *	0.192113	10.23997	3.841466	0.0014	
Tunisia					
Hypothesized No. of CE(s)	Eigen Value	Trace Statistic	0.05 Critical Value	Prob. **	
None *	0.460966	63.14962	29.79707	0.0000	
At most 1 *	0.301816	33.48673	15.49471	0.0000	
At most 2 *	0.287067	16.24162	3.841466	0.0001	

Trace test indicates 3 co-integrating equations at the 0.05 level

Johansen's test⁴ results indicate the existence of 3 cointegration relationships between the 3 variables in the 3 countries. Since all the variables are co integrated in the 3 countries, the vector error correction model will be retained. Among the virtues of applying an estimation based on the VECM model is the determination of the relationship between all variables in the long-term and the short-term.

The VECM estimate for each country gives us three long-run equilibrium equations, which are presented as follows:

^{*} denotes rejection of the hypothesis at the 0.05 level

^{**}MacKinnon-Haug-Michelis (1999) p-values

⁴ Johansen test, See: Johansen (1988, 1991); Johansen and Juselius (1990)

Egypt:

$$Log(AY) = 0.0276 + 0.0223 Log(AX) + 0.0433 Log(AMM)$$
 (4)

Morocco:

$$Log(AY) = 0.0016 + 0.7642 Log(AX) + 0.4078 Log(AMM)$$
 (5)

Tunisia:

$$Log(AY) = 0.0074 + 0.2827 Log(AX) + 0.8669 Log(AMM)$$
 (6)

Equations (4), (5) and (6) indicate that agricultural machinery imports and agricultural exports have a positive effect on long-term agricultural GDP in the three countries. It manifests that:

- ✓ In Egypt, agricultural raw material imports and agricultural exports have a positive effect on economic growth, a 1 % increase in Log (AMM) and in Log (AX) leads respectively to an increase of 0.0433 % and 0.0223% of Log(Y).
- ✓ In Morocco, agricultural raw material imports and agricultural exports have a positive effect on economic growth, a 1 % increase in Log (AMM) and in Log (AX) leads respectively to an increase of 0.4078 % and 0.7642% of Log(Y).
- ✓ In Tunisia, agricultural raw material imports and agricultural exports have a positive effect on economic growth, a 1 % increase in Log (AMM) and in Log (AX) leads respectively to an increase of 0.8669 % and 0.2827 % of Log(Y).

To verify the credibility of its results we must test the significance of equations of long-term equilibrium by using the Least Squares of Gauss Newton. If the coefficient of the error correction term (Lagged ECT) is negative and possesses a significant probability. This means that all variables in the long-term relationship are significant in explaining the dependent variables.

Table 5

VECM Estimation

Independent Variables	AY	Dependen	Dependent Variables		
_	-	AX	AMM		
Egypt					
AY		9.441692	6.312555		
	-	(0.0510)**	(0.1770)		
AX	12.12238	· · · ·	2.829385		
	(0.0165)***	-	(0.5868)		
AMM	8.462452	18.77716	, ,		
	(0.0760)*	(0.0009)***	-		
Lagged ECT	[-0.660036]**	[19.60309]	[16.47573]		
Morocco					
AY		8.711686	1.165515		
	-	(0.0128)***	(0.5584)		
AX	4.040152	,	25.61590		
	(0.1326)	-	(0.0000)***		
AMM	1.044576	1.254831	,		
	(0.5932)	(0.5340)	-		
Lagged ECT	[-0.980779]***	[1.168880]	[0.442794]		
Tunisia					
AY		0.051700	11.81685		
	-	(0.9745)	(0.0027)***		
AX	11.62245	, ,	3.132892		
	(0.0030)***	-	(0.2088)		
AMM	9.336255	5.322587	` ,		
	(0.0094)***	(0.0699)*	-		
Lagged ECT	<u>[-0.823725]***</u>	[1.356063]	[0.582888]		

Note. Values in brackets are estimated t-statistics for each cointegration equation. All other values are asymptotic Granger causality F tests (WALD Test), values in parentheses are p-values.

* ** ; ** and * denote significances at 1% , 5% and 10% levels respectively

Table 5 reports that the coefficient of error correction term (ECT) is significant and has a negative coefficient in the three cases. This means that that imports of agricultural machinery and agricultural exports have a positive effect on agricultural GDP in all countries in the longrun.

In the short run we use WALD test to determine the causal links between the different variables in each country. Table 6 summarizes the results of the WALD test included in Table 5. Table 6 reports that agricultural material imports have a positive effect on economic growth in the short run in the three countries.

Table 6

Causality links in the short run/ WALD Test

Egypt	Morocco	Tunisia	
$AX \leq AY$	$AY \Rightarrow AX$	$AX \Rightarrow AY$	
$AMM \Rightarrow AY$	$AX \Rightarrow AMM$	$AMM \le AY$	
$AMM \Rightarrow AX$		$AMM \Rightarrow AX$	

5. Conclusion

In this article, we examined the effect of agricultural material imports on economic growth in the agricultural sector in Tunisia, Morocco and Egypt. In use three time series databases that cover the period 1965 - 2016 and that have been estimated by the Co-integration analysis and the error correction vector model. Empirical results show agricultural exports, imports of materials are co-integrated with economic growth positively in the long run. In all three countries, imports of agricultural materials have a positive influence on economic growth, and in its cointegration link, agricultural exports also have a positive effect on agricultural growth. This is explained by the transfer of technology included in imported agricultural materials that contribute to increase agricultural productivity, reduce production costs, and ensure food satisfaction with the level of consumption which leads indirectly, an increase in agricultural exports. All of these effects, whether direct or indirect, emphasize that imports of agricultural materials contribute to agricultural growth in the long run. On the other hand, the labor force in the agricultural sector in the three countries has a level of human capital that allows them to learn the use of imported materials technology and to use it in an efficient and more productive way. Which explains the positive effect of imports of agricultural materials on long-term agricultural growth in the case of Tunisia, Morocco and Egypt, and which also explains the positive effect of agricultural imports on agricultural growth in the case of Tunisia and Egypt. So the countries of North Africa must continue to pursue a growth model that adapts to integrate foreign technology imports and not technological innovation to have agricultural investments characterized by huge productivity and rapid growth in the agricultural sector.

References

- Acheampong, K. (2013). Crude oil price and economic growth: The case of Ghana. *International Journal of Management Research and Technology*, 1(3), 140-167.
- Ahmed M, Hunjra A.I, Iqbal M.K & Khalil, J. (2014). Impact of Foreign Direct Investment, Imports, Exports of Goods and Services on Economic Growth of Pakistan. *Bulletin of Business and Economics*, 3(3), 155-165.
- Alavinasab, S. M. (2013). Foreign trade and economic growth in Iran: an empirical study. *International Journal of Academic Research in Business and Social Sciences*, 3(11), 508-519.
- Albiman, M., & Suleiman, N. N. (2016). The relationship among export, import, capital formation and economic growth in Malaysia. *Journal of Global Economics*, 4(2), 2375-4389...
- Amsden, A. H. (1992). *Asia's next giant: South Korea and late industrialization*. Oxford University Press on Demand.
- Anderson, M. (1989). *International Technology Transfer in Agriculture*. US Department of Agriculture, Economic Research Service.
- Bakari, S. (2017). The Three-Way Linkages Between Export, Import and Economic Growth: New Evidence from Tunisia. *Journal of Smart Economic Growth*, 2(3), 13-53.
- Bakari, S. (2018). The Impact of Citrus Exports on Economic Growth: Empirical Analysis from Tunisia. *International Journal of Food and Agricultural Economics (IJFAEC)*, 6(1), 95-112.
- Bakari, S., & Mabrouki, M. (2017). Impact of exports and imports on economic growth: new evidence from Panama. *Journal of Smart Economic Growth*, 2(1), 67-79.
- Bakari, S., & Mabrouki, M. (2018). The Impact of Agricultural Trade on Economic Growth in North Africa: Econometric Analysis by Static Gravity Model. *MPRA Paper 85116*, University Library of Munich, Germany.
- Bakari, S., Mabrouki, M., & Othmani, A. (2018). The Six Linkages Between Foreign Direct Investment, Domestic Investment, Exports, Imports, Labor Force And Economic Growth: New Empirical And Policy Analysis From Nigeria. *Journal of Smart Economic Growth*, 3(1), 25-43.
- Barro, R.J. & Sala-i-Martin, X., (1997). Technological diffusion, convergence, and growth. Journal of Economic Growth 2, 1-26.
- Benhabib, J., & Spiegel, M. M. (2002). Human Capital and Technology Diffusion. FRB of San Francisco Working Paper, (2003-02).

- Cameron, G., Proudman, J., & Redding, S. (2005). Technological convergence, R&D, trade and productivity growth. *European Economic Review*, 49(3), 775-807.
- Chenery, H. B., & Bruno, M. (1962). Development alternatives in an open economy: the case of Israel. *The Economic Journal*, 72(285), 79-103.
- De Janvry, A., & Sadoulet, E. (2002). World poverty and the role of agricultural technology: direct and indirect effects. *Journal of development studies*, 38(4), 1-26.
- Dickey, D. A., & Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series with a unit root. *Journal of the American statistical association*, 74(366a), 427-431.
- Dickey, D. A., & Fuller, W. A. (1981). Likelihood ratio statistics for autoregressive time series with a unit root. *Econometrica: journal of the Econometric Society*, 1057-1072.
- Ghosh, S. (2009). Import demand of crude oil and economic growth: Evidence from India. *Energy Policy*, *37*(2), 699-702.
- Griffith, R., Redding, S., & Reenen, J. V. (2004). Mapping the two faces of R&D: Productivity growth in a panel of OECD industries. *Review of economics and statistics*, 86(4), 883-895.
- Grossman, G. M., & Helpman, E. (1991). Innovation and growth in the global economy. MIT press.
- Hassine, N. B. (2008). Trade, human capital, and technology diffusion in the Mediterranean agricultural sector. *Economie internationale*, (1), 115-142.
- Hussain, M. A. (2014). Economic growth, exports and imports in Pakistan: Granger causality analysis. *The Journal of Business in Developing Nations*, 13, 31-62.
- Hye, Q.M.A (2012). Exports, imports and economic growth in China: an ARDL analysis. *Journal of Chinese Economic and Foreign Trade Studies*, 5(1), 42-55.
- Jayaraman, T. K., & Lau, E. (2011). Oil price and economic growth in small Pacific Island countries. *Modern Economy*, 2(2), 152-161.
- Johansen, S. (1988). Statistical analysis of cointegration vectors. *Journal of economic dynamics* and control, 12(2-3), 231-254.
- Johansen, S. (1991). Estimation and hypothesis testing of cointegration vectors in Gaussian vector autoregressive models. *Econometrica: Journal of the Econometric Society*, 1551-1580.
- Johansen, S., & Juselius, K. (1990). Maximum likelihood estimation and inference on cointegration—with applications to the demand for money. *Oxford Bulletin of Economics and statistics*, 52(2), 169-210.
- McKinnon, R. I. (1964). Foreign exchange constraints in economic development and efficient aid allocation. *The Economic Journal*, 74(294), 388-409.
- Mohsen, A. S. (2015). Effects of exports and imports on the economic growth of Syria. *Euro-Asian Journal of Economics and Finance*, *3*(4), 253-261.

Ofeh, M. A., & Muandzevara, A. T. (2017). Investigating the Effects of Migrant Remittances on the Economic Growth of Cameroon. *International Journal of Economics and Finance*, 9(2), 58-69.

- Riyath, M.I.M & Jahfer, A. (2016). Exports, Imports and Economic Growth in Sri Lanka: Evidence from Causality and Co-Integration Analysis. *5th Annual International Research Conference- 2016*. Faculty of Management and Commerce- SEUSL.
- Sims, C. A. (1980). Macroeconomics and reality. *Econometrica: journal of the Econometric Society*, 1-48.
- Taylor, L. (1991). Income Distribution, Inflation, and Growth. Cambridge, MA: MIT Press.
- Turan, G., & Karamanaj, B. (2014). An empirical study on import, export and economic growth in Albania. *Academic Journal of Interdisciplinary Studies*, *3*(3), 428-438.
- Yazdani, M. & Faaltofighi, M. (2012). Study the causal relationship between economic growth and energy consumption in energy (oil) exporting and importing counrties. *Australian Journal of Basic and Applied Sciences*, 74(4), 500-504.
- Yüksel, S., & Zengin, S. (2016). Causality Relationship Between Import, Export and Growth Rate in Developing Countries. *International Journal of Commerce and Finance*, 2(1), 147-156.
- Zhang, X., & Zou, H. F. (1995). Foreign technology imports and economic growth in developing countries (No. 1412). The World Bank.