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Abstract

In probability sampling, the inclusion probability of any element in the
population is the probability of the element which will be chosen in
the sample. Al-Saleh and Samawi (A note on inclusion probability in

ranked set sampling and some of its variations, Test., in press) intro-
duced inclusion probabilities in ranked set sampling for sample sizes 2
and 3. In this paper we gave a generalized formula of these inclusion
probabilities for any sample size. Also we compare these probabilities
with simple random samplings for various given samples and population
sizes.
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1. Introduction

The most basic probability sampling technique is Simple Random Sampling (SRS). In
this technique, all elements of the population have an equal inclusion probability. If the
population consists of N distinct elements and the sample size is n, then each element
of the population has an inclusion probability of n/N . Let πN (k) be the probability
that element uk of a population of size N will be chosen in a sample of size n. Then
N
∑

k=1

πN (k) = n for all probability sampling techniques.

In SRS, because of the equal inclusion probability, there is no control over which
element enters the sample. On the other hand, Ranked Set Sampling (RSS) introduced
by McIntre [3], is a more controlled sampling technique than SRS. RSS is a common
sampling technique that has been used recently in some areas such as; environment,
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E-mail: (Y.A. Özdemir) yaprak@gazi.edu.tr (F. Gökpınar) fikri@gazi.edu.tr
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ecology and agriculture. In these areas, the measurements of the units according to
variables of interest can be quite difficult in some cases, in terms of cost, time and other
factors. In such conditions, by using RSS, the sample selection process is done with less
cost and time, than with the SRS technique.

RSS was first used by McIntyre [3] to estimate the mean a pasture yields. But this
first study was not based on a mature mathematical theory. The mathematical theory of
RSS was developed later by Takahasi and Wokimoto [8]. They showed that the sample
mean obtained by RSS is an unbiased estimator for the population mean. Moreover, the
variance of this estimator is smaller than the variance of the sample mean obtained from
SRS with the same sample size. Dell and Clutter [2] indicated that the RSS estimator
was also an unbiased estimator for the population mean under the presence of ranking
error. Even if there are ranking errors, the RSS design is at least as efficient as SRS for
the same sample size. Most of these studies are based on the assumption of an infinite
population. In recent years, RSS has also been investigated under a finite population
assumption. Takahasi and Futatsuya [6, 7] were the first to give a finite population
theory in RSS. Patil et al. [4] generalized the results of Takahasi and Futatsuya [6, 7] for
a larger set size. Ozturk et al. [5] demonstrated the practical use of RSS relative to SRS
for the estimation of the population mean and variance in a finite population. In these
studies, for obtaining the RSS sample, they used the same selection procedure as for a
infinite population. This procedure may cause some problems for small population sizes.
For this reason, Al-Saleh and Samawi [1] gave an adjusted selection procedure for RSS.
In this study, we have adopted the same adjusted procedure as follows;

1) A SRS of size m is selected (without replacement) from the population and the
minimum of the sample with respect to the characteristic of interest is identified
by judgment. All other elements returned to the population.

2) A second SRS of size m is selected (without replacement) from the popula-
tion and the second minimum of the sample with respect to the characteristic
of interest is identified by judgement. All other elements are returned to the
population.

3) In the ith step, ith minimum of the ith chosen SRS is identified by judgment;
i = 1, 2, . . . ,m.

The m identified elements make up a Ranked Set Sample of size m. The entire cycle may
be repeated, if necessary, r times to produce a Ranked Set Sample of size n = mr [1].
In this study we consider only the case r = 1. Our main interest is to find a generalized
formula for the inclusion probabilities for any sample size in the RSS procedure.

In the second section, we generalize the formula for the inclusion probabilities and
gave an illustration of this formula for m = 3 and N = 5. In the third section, we
calculate the inclusion probabilities to compare the RSS and SRS designs under different
sample and population size.

2. Inclusion probabilities of population elements in RSS

Knowing the inclusion probability of each element in the population is very important
for sampling theory. Inclusion probabilities give an insight into how the RSS design
has more control over which element enters the sample than SRS has. Also, we can
determine the probability distribution of any statistics from the ranked set sample using
these inclusion probabilities.

In this section, we give a generalized formula for calculating inclusion probabilities in
RSS for any given sample size m and population size N .

Let u1 < u2 < . . . < uN be the ordered population elements.
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Also let the inclusion probability of any element uk be defined as,

(1) πN (k) = π
(1)
N (k) + π

(2)
N (k) + · · ·+ π

(m)
N (k),

where π
(j)
N (k) is the inclusion probability of uk in the j

th selection, (j = 1, 2, . . .m).
Using conditional probabilities this can be written as follows :

(2) π
(j)
N (k) =

∑

P (Aj/B
lj−1

j−1 ∩B
lj−2

j−2 ∩ . . .∩B
l1
1 )P (B

lj−1

j−1 /B
lj−2

j−2 ∩ . . .∩B
l1
1 ) . . . P (B

l1
1 ).

In (2) the summation is over all the 2j−1 possible permutations of the values lj . Some
necessary definitions for these inclusion probabilities are as follows:

Aj : the event of choosing uk in the j
th selection

yj : the element selected in the j
th selection

lj =

{

0 yj > uk

1 yj < uk

B
lj
j = B0

j : the event {yj > uk} when lj = 0,

B
lj
j = B1

j ; the event {yj < uk} when lj = 1,

and a = j − (1 + l1 + l2 + · · · + lj−1) denotes the number of elements greater than uk

selected in previous selections.

When lj = 0, that is yj > uk in the j
th selection, then all possible selection cases of

yj in the j
th selection where yj > uk are as given in Table 1.

In Table 1, the number of elements smaller than uk is k−j+a, the number of elements
greater than uk is N − k − a and because of the distinctness of the population elements
there is only one uk. Thus, the population size in the j

th selection is N − j+1. We want
to choose yj to be greater than uk. One of the possible cases is when all m elements
are chosen from elements greater than uk, another possible case is where m− 1 elements
are chosen from elements greater than uk and the other is uk, and so on. These are
summarized in Table 1.

Table 1. Possible selection cases for yj > uk.

The number of elements smaller The number of elements greater

than uk in the j
th selection uk than uk in the j

th selection

k− j+ a 1 N− k− a

- - m
- 1 m− 1
1 - m− 1
...

...
...

j − 2 1 m− (j − 1)
j − 1 - m− (j − 1)

Using Table 1, the probability of P (B0
j /B

lj−1

j−1 ∩B
lj−2

j−2 . . . ∩Bl1
1 ) can be written as,

(3)

P (B0
j /B

lj−1

j−1 ∩B
lj−2

j−2 ∩ . . . ∩B
l1
1 ) =

(

k−j+a

0

)(

1
0

)(

N−k−a

m

)

+
(

k−j+a

0

)(

1
1

)(

N−k−a

m−1

)

(

N−j+1
m

)

+ · · ·+

(

k−j+a

j−2

)(

1
1

)(

N−k−a

m−(j−1)

)

+
(

k−j+a

j−1

)(

1
0

)(

N−k−a

m−(j−1)

)

(

N−j+1
m

)
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Using Pascal’s rule, this equation can be simplified as follows:

(4)

P (B0
j /B

lj−1

j−1 ∩B
lj−2

j−2 ∩ . . . ∩B
l1
1 ) =

(

N−k−a

m

)

+
(

k−j+a+1
1

)(

N−k−a

m−1

)

(

N−j+1
m

)

+ · · ·+

(

k−j+a+1
j−1

)(

N−k−a

m−(j−1)

)

(

N−j+1
m

)

=

j−1
∑

i=0

(

k−j+a+1
i

)(

N−k−a

m−i

)

(

N−j+1
m

)

When lj = 1, that is yj < uk in the j
th selection, then all possible selection cases of yj

where yj < uk are as given in Table 2.

Table 2. Possible selection cases for yj < uk.

The number of elements smaller The number of elements greater

than uk in the j
th selection uk than uk in the j

th selection

k− j+ a 1 N− k− a

m - -
m− 1 1 -
m− 1 - 1
...

...
...

m− (m− j) 1 (m− j + 1)
m− (m− j) - (m− j)

Using Table 2, the probability of P (B1
j /B

lj−1

j−1 ∩B
lj−2

j−2 ∩ . . . ∩B
l1
1 ) can be written as,

(5)

P (B1
j /B

lj−1

j−1 ∩B
lj−2

j−2 ∩ . . . ∩B
l1
1 ) =

(

k−j+a

m

)(

1
0

)(

N−k−a

0

)

+
(

k−j+a

m−1

)(

1
1

)(

N−k−a

0

)

(

N−j+1
m

)

+ · · ·+

(

k−j+a

m−(m−j)

)(

1
1

)(

N−k−a

m−j−1

)

+
(

k−j+a

m−(m−j)

)(

1
0

)(

N−k−a

m−j

)

(

N−j+1
m

)

Using Pascal rule, this equation can be simplified as follows:

(6)

P (B1
j /B

lj−1

j−1 ∩B
lj−2

j−2 ∩ . . . ∩B
l1
1 ) =

(

k−j+a

m

)

+
(

k−j+a

m−1

)(

N−k−a+1
1

)

(

N−j+1
m

)

+ · · ·+

(

k−j+a

m−(m−j)

)(

N−k−a+1
(m−j)

)(

N−j+1
m

)

(

N−j+1
m

)

=

m−j
∑

i=0

(

k−j+a

m−i

)(

N−k−a+1
i

)

(

N−j+1
m

) ,

and for choosing uk in the j
th selection, j−1 elements must be chosen from those greater

than uk and m − j elements from those less than uk. So the probability of choosing uk

in the jth selection can be written as

(7) P (Aj/B
lj−1

j−1 ∩B
lj−2

j−2 ∩ . . . ∩B
l1
1 ) =

(

k−j+a

j−1

)(

N−k−a

m−j

)

(

N−j+1
m

)

Using these formulae, the inclusion probabilities for all the elements in the population
can be derived easily. For example, when N = 5 and m = 3, the population consists of
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u1 < u2 < u3 < u4 < u5 elements. The inclusion probability of uk, (k = 1, 2, 3, 4, 5), can
be written using (1) as follows:

(8) π5(k) = π
(1)
5 (k) + π

(2)
5 (k) + π

(3)
5 (k).

In (8), the probability of choosing uk in the first selection can be written as

(9) π
(1)
5 (k) = P (A1) =

(

k−1+0
1−1

)(

5−k−0
3−1

)

(

5−1+1
3

) =

(

5−k

2

)

(

5
3

) .

The inclusion probabilities of all elements in the first selection (i.e. j = 1) can now be
calculated:

(10)

π
(1)
5 (1) =

(

5−1
2

)

(

5
3

) =
6

10
, π

(1)
5 (2) =

(

5−2
2

)

(

5
3

) =
3

10
,

π
(1)
5 (3) =

(

5−3
2

)

(

5
3

) =
1

10
, π

(1)
5 (4) =

(

5−4
2

)

(

5
3

) = 0,

π
(1)
5 (5) =

(

5−5
2

)

(

5
3

) = 0.

As seen in (10) the smaller values (i.e. u1, u2) have greater inclusion probabilities
(6/10, 3/10) in the first selection. If we compare RSS with SRS in terms of inclusion
probabilities of elements in the first selection, all elements have the same inclusion prob-
ability in SRS (i.e. 1/5), however in RSS the smaller elements have a greater chance of
being selected. On the contrary the greater elements have no chance of being selected
(i.e. u4, u5).

The inclusion probability of all elements in the second selection, can be written as:

(11) π
(2)
5 (k) = P (A2/B

0
1)P (B

0
1) + P (A2/B

1
1)P (B

1
1),

where, using (4)-(6),

P (A2/B1
1 ) =

(

k−2+0
2−1

)(

5−k−0
3−2

)

(

5−2+1
3

) =

(

k−2
1

)(

5−k

3−2

)

(

5−1
3

) ,(12)

P (A2/B0
1 ) =

(

k−2+1
2−1

)(

5−k−1
3−2

)

(

5−2+1
3

) =

(

k−1
1

)(

5−k−1
3−2

)

(

5−1
3

) ,(13)

P (B1
1 ) =

3−1
∑

i=0

(

k−1+0
3−i

)(

5−k+1−0
i

)

(

5−1+1
3

) =

(

k−1
3

)

+
(

k−1
2

)(

5−k+1
1

)

+
(

k−1
1

)(

5−k+1
2

)

(

5
3

) ,(14)

P (B0
1 ) =

1−1
∑

i=0

(

k−1+1+0
i

)(

5−k−0
3−i

)

(

5−1+1
3

) =

(

5−k

3

)

(

5
3

) .(15)

Thus, the inclusion probability of uk in the second selection is given by (16):

(16)

π
(2)
5 (k) =

(

k−2
1

)(

5−k

3−2

)

(

5−1
3

)

(

k−1
3

)

+
(

k−1
2

)(

5−k+1
1

)

+
(

k−1
1

)(

5−k+1
2

)

(

5
3

)

+

(

k−1
1

)(

5−k−1
3−2

)

(

5−1
3

)

(

5−k

3

)

(

5
3

) .
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For k = 1, 2, . . . , 5, respectively, the inclusion probability of uk can be written as follows:

π
(2)
5 (1) = 0 + 0 = 0

π
(2)
5 (2) = 0 +

(

2−1
1

)(

5−2−1
3−2

)

(

5−1
3

)

(

5−2
3

)

(

5
3

) =
2

40

π
(2)
5 (3) =

(

3−2
1

)(

5−3
3−2

)

(

5−1
3

)

0 +
(

3−1
2

)(

5−3+1
1

)

+
(

3−1
1

)(

5−3+1
2

)

(

5
3

) + 0 =
18

40

π
(2)
5 (4) =

(

4−2
1

)(

4−1
3−2

)

(

5−1
3

)

(

4−1
3

)

+
(

4−1
2

)(

5−4+1
1

)

+
(

4−1
1

)(

5−4+1
2

)

(

5
3

) + 0 =
20

40

π
(2)
5 (5) = 0 + 0 = 0

Hence we have,

N=5
∑

k=1

π
(2)
5 (k) = 0 +

2

40
+
18

40
+
20

40
+ 0 = 1.00.

In the third selection, using (2) the inclusion probabilities are:

(17)

π
(3)
5 (k) =

∑

P (A3/B
l2
2 ∩B

l1
1 )P (B

l2
2 /Bl1

1 )P (B
l1
1 )

= P (A3/B
0
2 ∩B

0
1)P (B

0
2/B

0
1)P (B

0
1) + P (A3/B

1
2 ∩B

0
1)P (B

1
2/B

0
1)P (B

0
1)

+ P (A3/B
0
2 ∩B

1
1)P (B

0
2/B

1
1)P (B

1
1) + P (A3/B

1
2 ∩B

1
1)P (B

1
2/B

1
1)P (B

1
1),

P (B1
2/B

1
1 ) =

∑3−2
i=0

(

k−2+0
3−i

)(

5−k+1−0
i

)

(

5−2+1
3

) =

(

k−2
3

)

+
(

k−2
2

)(

5−k+1
1

)

(

5−1
3

) ,(18)

P (B0
2/B

1
1 ) =

∑1
i=0

(

k−2+1+0
i

)(

5−k−0
3−i

)

(

5−2+1
3

) =

(

5−k

3

)

+
(

5−k

2

)(

k−1
1

)

(

5−1
3

) ,(19)

P (B0
2/B

0
1 ) =

∑1
i=0

(

k−2+1+1
i

)(

5−k−1
3−i

)

(

5−2+1
3

) =

(

5−k−1
3

)

+
(

k

1

)(

5−k−1
2

)

(

5−1
3

) ,(20)

P (B1
2/B

0
1 ) =

∑3−2
i=0

(

k−2+1
3−i

)(

5−k+1−1
i

)

(

5−2+1
3

) =

(

k−1
3

)

+
(

k−1
2

)(

5−k

1

)

(

5−1
3

) .(21)

Using (7),

P (A3/B
1
2 ∩B

1
1) =

(

k−3+0
3−1

)(

5−k−0
3−3

)

(

5−3+1
3

) ,(22)

P (A3/B
1
2 ∩B

0
1) = P (A3/B

0
2 ∩B

1
1) =

(

k−3+1
3−1

)(

5−k−1
3−3

)

(

5−3+1
3

) ,(23)

P (A3/B
0
2 ∩B

0
1) =

(

k−3+2
3−1

)(

5−k−2
3−3

)

(

5−3+1
3

) .(24)

Now, using (17)–(24), the inclusion probabilities for k = 1, 2, . . . , 5, can be written as:

(25)
π

(3)
5 (1) = π

(3)
5 (2) = π

(3)
5 (3) = π

(3)
5 (4) = 0,

π
(3)
5 (5) = 1.
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Table 3. The inclusion probabilities of uk (k = 1, 2, 3, 4, 5) in the jth selection,

(j = 1, 2, 3), when m = 3 and N = 5.

u1 u2 u3 u4 u5 Total

π
(1)
5 (k) 0.60 0.30 0.10 0 0 1.00

π
(2)
5 (k) 0 0.05 0.45 0.50 0 1.00

π
(3)
5 (k) 0 0 0 0 1.00 1.00

Total 0.60 0.35 0.55 0.50 1.00 3.00

As seen from Table 3, in the first selection, the smaller elements (i.e. u1, u2) have
greater inclusion probabilities (0.6, 0.3), on the other hand, greater elements (i.e. u4, u5)
have zero inclusion probabilities. In the second selection, the extreme values have zero
inclusion probability, but the remaining elements, especially u3 and u4, have the highest
inclusion probabilities (0.45, 0.5). In the third selection, no element except u5 has non-
zero inclusion probabilities, on the other hand u5 is definitely chosen in the sample. Also,
the equality

∑N=5
k=1 π5(k) = 3.00 is satisfied.

In addition, as seen from the total inclusion probabilities of uk, (k = 1, 2, . . . , 5); u1

and u5 have greater inclusion probabilities (0.6, 1) than the others. Thus, this situation
agrees with the RSS design which represents the population better than SRS. But these
interpretations can vary under different sample and population sizes. For this purpose,
we calculate some inclusion probabilities under different sample and population sizes in
section 3.

3. Inclusion probabilities for various population and sample sizes

In this section, we investigate the effects of sample size m and population size N on
the inclusion probability of elements in the population. The inclusion probabilities are
calculated using MATLAB 7.0. The inclusion probabilities calculated are compared with
the inclusion probabilities according to SRS with the same sample and population sizes.
For this comparison, sample sizes m = 3, 4, 5 and population sizes N = 5(1)12 are used.
These probabilities are given in Table 4–6. In addition, to compare inclusion probabilities
for even larger populations, Figure 1-9 are given for N = 10, 20 and 500.

Table 4. Inclusion probabilities for m = 3

m = 3

N Method 1 2 3 4 5 6 7 8 9 10 11 12

5 RSS 0.600 0.350 0.550 0.500 1.000

SRS 0.600 0.600 0.600 0.600 0.600

6 RSS 0.500 0.360 0.414 0.501 0.475 0.750

SRS 0.500 0.500 0.500 0.500 0.500 0.500

7 RSS 0.429 0.343 0.354 0.407 0.427 0.440 0.600

SRS 0.429 0.429 0.429 0.429 0.429 0.429 0.429

8 RSS 0.375 0.319 0.317 0.344 0.368 0.377 0.400 0.500

SRS 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375

9 RSS 0.333 0.295 0.289 0.302 0.320 0.331 0.340 0.362 0.428

SRS 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333

10 RSS 0.300 0.272 0.265 0.272 0.283 0.294 0.301 0.309 0.329 0.375

SRS 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300

11 RSS 0.273 0.252 0.245 0.248 0.256 0.264 0.270 0.276 0.284 0.300 0.333

SRS 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273

12 RSS 0.250 0.234 0.228 0.229 0.234 0.240 0.245 0.250 0.254 0.262 0.275 0.300

SRS 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250
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Table 5. Inclusion probabilities for m = 4.

m = 4

N Method 1 2 3 4 5 6 7 8 9 10 11 12

7 RSS 0.571 0.343 0.471 0.495 0.520 0.600 1.000

SRS 0.571 0.571 0.571 0.571 0.571 0.571 0.571

8 RSS 0.500 0.347 0.397 0.451 0.446 0.539 0.520 0.800

SRS 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500

9 RSS 0.444 0.337 0.354 0.397 0.407 0.434 0.484 0.476 0.667

SRS 0.444 0.444 0.444 0.444 0.444 0.444 0.444 0.444 0.444

10 RSS 0.400 0.322 0.325 0.353 0.368 0.380 0.409 0.432 0.439 0.571

SRS 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400

11 RSS 0.364 0.305 0.301 0.319 0.334 0.343 0.358 0.379 0.392 0.405 0.500

SRS 0.364 0.364 0.364 0.364 0.364 0.364 0.364 0.364 0.364 0.364 0.364

12 RSS 0.333 0.289 0.282 0.293 0.305 0.313 0.322 0.336 0.350 0.359 0.374 0.444

SRS 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333

Table 6. Inclusion probabilities for m = 5.

m = 5

N Method 1 2 3 4 5 6 7 8 9 10 11 12

9 RSS 0.556 0.337 0.483 0.461 0.460 0.558 0.524 0.667 1.000

SRS 0.556 0.556 0.556 0.556 0.556 0.556 0.556 0.556 0.556

10 RSS 0.500 0.340 0.387 0.427 0.422 0.475 0.496 0.557 0.563 0.833

SRS 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500

11 RSS 0.455 0.333 0.354 0.389 0.393 0.416 0.450 0.465 0.521 0.510 0.714

SRS 0.455 0.455 0.455 0.455 0.455 0.455 0.455 0.455 0.455 0.455 0.455

12 RSS 0.417 0.323 0.329 0.356 0.365 0.377 0.401 0.419 0.440 0.476 0.471 0.625

SRS 0.417 0.417 0.417 0.417 0.417 0.417 0.417 0.417 0.417 0.417 0.417 0.417

Figure 1. Inclusion probabilities

for m = 3, N = 10
Figure 2. Inclusion probabilities

for m = 4, N = 10
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Figure 3. Inclusion probabilities

for m = 5, N = 10
Figure 4. Inclusion probabilities

for m = 3, N = 20

Figure 5. Inclusion probabilities

for m = 4, N = 20
Figure 6. Inclusion probabilities

for m = 5, N = 20

Figure 7. Inclusion probabilities

for m = 3, N = 500
Figure 8. Inclusion probabilities

for m = 4, N = 500
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Figure 9. Inclusion probabilities

for m = 5, N = 500

As shown in Tables 4–6 and Figures 1–9, in the RSS design, the elements (u1, uN ) at the
two extremes get higher inclusion probabilities than the others. But uN takes greater
values than u1. This difference gets smaller as the population size N increases. For
example in Table 4, the difference between uN and u1 is 0.4 (1−0.6) when the population
size N = 5, but this difference is 0.05 (0.3 − 0.25) when N = 12. Also, the difference
in the inclusion probabilities between uN and u1 gets smaller when the population size
N increases. For example, the difference between the greatest and smallest inclusion
probabilities is 0.65(1 − 0.35) when N = 5, but the difference between the greatest and
the smallest inclusion probabilities is 0.072 (0.3−0.228 = 0.072) when N = 12. Thus, the
difference between SRS and RSS decreases. This decrease can be also seen from Figures
1-9.

Moreover, we note that because of the selection process of the RSS design, the mini-
mum population size must satisfy N ≥ 2m− 1

4. Conclusion

Inclusion probabilities indicate which elements in the population have a greater chance
of being selected. In SRS, all elements in the population have an equal probability of
being selected. On the other hand, RSS represents the population better than SRS,
because it gives a higher probability to extreme values in the population, especially when
the population and sample sizes are small. In this study, we generalized the inclusion
probabilities in the RSS design for any population and sample size. Using these inclusion
probabilities, test statistics of any hypothesis can be obtained theoretically. This study
can also be modified for extreme and median RSS designs.
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