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Abstract

The linear absolute/convective instability mechanisms of the incom-
pressible Von Karman‘s boundary layer flow over a rotating-disk are
revisited in the present paper in order to review and assemble the avail-
able results in the literature on the topic. For this purpose the linearized
system of stability equations of motion is first treated numerically, by
employing a Spectral method based on Chebyshev collocation as well
as a fourth-order Runge-Kutta method in combination with a shooting
strategy. Inviscid/viscous stationary and travelling modes which lead
to both convective and absolute instability mechanisms were success-
fully reproduced and compare favorably with those obtained by previ-
ous investigators. The validation of the zero-frequency upper-branch
modes was also accomplished by the asymptotic expansion technique
of [17], which is later extended to cover the non-zero frequency distur-
bances. The importance of the present study lies in understanding the
roles of possible instability mechanisms on the laminar-turbulent tran-
sition phenomenon in the three-dimensional boundary layer flow over
a rotating-disk, as well as related aerodynamic bodies.

Keywords: Rotating-Disk Flow, Absolute Versus Convective Instability, Matched
Asymptotic Expansion, Laminar-Turbulent Transition.

2000 AMS Classification: 76 E15.

*Mathematics Department, Hacettepe University, 06532 Beytepe, Ankara, Turkey.
E-mail : turkyilm@hotmail.com



118 M. Turkyilmazoglu

1. Introduction

Many types of instability mechanism may be operational during the physical process
of transition from laminar flow to turbulence in fully three dimensional boundary layer
flows. In this study we deal primarily with the stability of the three dimensional boundary
layer flow due to a rotating-disk. The stability properties of this flow are similar to those
due to the flow over a swept-back wing in the sense that both flows are subject to
inviscid crossflow vortex instability induced by the inflectional character of the mean
velocity profile. The present paper will review particularly the recent progress made
towards elucidating the roles of the instability mechanisms for the special case of the
three-dimensional boundary layer flow due to a rotating-disk.

The concept of absolute versus convective instability has been introduced by [6] and
[4] in plasma physics. A recent review of the topic relating to fluid flows can be found
in [20]. Absolute/convective instability describes the behavior of the impulse response
(or Green’s function) to a forcing of an unstable medium. If an impulsively generated
small amplitude disturbance wave grows exponentially in time at every fixed position in
space, the laminar state is termed absolutely unstable. Examples of such flows are closed
flow systems such as the Taylor-Couette flow and Benard convection. However, if the
resulting wave packet is convected away from the source location and ultimately leaves
the flow undisturbed then the flow is said to be convectively unstable. Plane-Poiseuille
flow and mixing layer flow (mixing layers can also show absolute instability, see [19]) are
examples of convective instability.

The early works on the stability of rotating-disk flow enlightened many of the aspects
relating to the convective nature of the flow. The experimental work of [16] (hereafter
referred to as GSW) clearly demonstrated the presence of co-rotating stationary vortices,
which arose due to the amplification of zero-frequency waves. From the theoretical point
of view, the inviscid stability properties were first investigated by GSW. Both travelling
waves and stationary waves were studied. Malik [26] calculated the neutral stability
curve for stationary disturbances and he additionally showed the existence of a viscous
stationary mode which corresponds to zero mean wall shear stress of the crossflow velocity
profile. The high Reynolds number asymptotic structure of the viscous mode of [26] was
elucidated by [17]. By considering nonlinear effects and following the framework set up
by [17], [25] extended Hall’s asymptotic analysis and obtained an amplitude equation for
the growth of disturbances close to the neutral location. The nonlinear theory showed
that the instability is subcritical. [2] conducted a theoretical analysis of some aspects of
linear and nonlinear non-stationary vortices in the rotating-disk flow and, in particular,
investigated the properties of neutrally stable nonlinear modes. The stability curves for
travelling disturbances have been computed numerically by [1].

Instead of a pure review of the literature, we intend here to validate and compare
the available results by reproducing them using both numerical and analytical means.
The first objective of the current work is thus to investigate numerically, the neu-
tral/spatial/temporal stability characteristics of disturbances evolving over a rotating-
disk boundary layer flow. For this reason, the linear disturbance equations are derived in
a rational manner using approximations which are self-consistent. When the non-parallel
terms are ignored with an additional assumption of r (the radial distance from the center
of the disk) being set to 1, the traditional sixth-order stability equations are arrived at.
These equations, which have been treated before by [26] and [1], are solved here using a
different technique based on Chebyshev collocation with a staggered grid structure. A
Runge-Kutta scheme was also employed for checking the self-consistency of our results.
The use of spatio-temporal linear stability analysis shows that, in line with the literature,
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three families of eigenfunctions are possible in the rotating-disk flow. Monitoring the de-
velopment of the eigenvalues corresponding to these families shows branch interchanging
between distinct waves at certain Reynolds numbers.

A second objective is to study the non-stationary upper branch behavior of the dis-
turbances from an analytical point of view. For this purpose the asymptotic framework
of [17] has been extended to include non-zero frequency waves. An investigation of the
second-order eigenvalue problem, allowing viscous and non-stationary effects to appear,
reveals the appearance of a phase shift across the critical layer and a wall layer shift. The
matching of these shifts generates an eigenrelation for the non-stationary modes which
is akin to the one obtained by [17] and [7] for stationary modes.

Singularities arising in the dispersion relationship enable the nature of the instability
to be determined. The variation of the Reynolds number can cause such points to occur
in the flow field and thus alter the behavior of a flow from a convectively unstable state
to an absolutely unstable regime. These points form whenever modes associated with
waves propagating in the opposite or the same directions coalesce. If the coalescing
branches originate from the waves propagating in opposite directions, the singularity
which causes resonance is said to be of pinch-type. For linearly unstable systems such
a direct resonance point separates an absolutely unstable region from a convectively
unstable region. Examples of flows demonstrating this phenomenon are near-wake flows
([5], [29] and [33]), swept-hiemenz flow ([32]) and mixing layer flows with backflow ([19]).
On the other hand, if the two coalescing modes originate from waves propagating in
the same direction, then the corresponding singularity is of the double-pole type. When
these coalescing modes are nearly neutral, the damping rates are very small and thus
a resulting short-term algebraic growth for small times or short distances may carry
the whole system into the nonlinear stage long before the exponentially growing mode
does. This is the case addressed by, amongst others, [3], [21] and [31] for Plane-Poiseuille
flow and Blasius boundary layer flow. Both resonance cases were numerically examined
by [8, 9] when the disk is coated by a compliant material. The secondary instability
mechanism due to the absolutely unstable waves was also studied by [30].

The study of [23] has motivated us to reinvestigate the absolutely unstable viscous
regime for the rotating-disk boundary layer flow and to demonstrate whether this range
matches onto the absolutely unstable inviscid flow regime of [23] in the limit for high
Reynolds number. Lingwood’s calculations were done using only a fourth-order Runge-
Kutta integrating method, but in this study we use a Spectral collocation technique.
In fact, the recent asymptotic study of [18] showed that the family of branch points
discovered by [23] is not the viscous continuation of the inviscid branch points, but is
fundamentally of a viscous long-wave character. Our numerical results well justify the
asymptotic results of [18].

The numerical simulation outcomes of [10, 11] pointed to the fact that absolute in-
stability is not an eventually dominated mode but that the transition seems to be as a
result of the convective nature of the rotating-disk boundary layer flow. There is then
the possibility that nonlinearity may be first triggered by the direct spatial resonance
instability mechanism. A numerical task is therefore undertaken here to search for the
Reynolds numbers at which direct spatial resonance takes place. The results demonstrate
that the family I and II branches both of which originate in the same wave-number plane
form a direct spatial resonance at a Reynolds number of about 445, at which the flow is
still laminar.

This review consists of two interrelated parts organized as follows. The first part is

devoted to convective instability and the second part to absolute and direct spatial reso-
nance instabilities. In §2 the general governing equations of the motion are given followed
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by the linear stability theory in §3-4. The linear stability results are then presented in
§5-5.5. For the second part, in §6 a definition of absolute/convective instabilities based on
Briggs pinching criterion is presented and also the absolute instability results are given in
87. §8 involves the modal coalescence results. Further discussion and conclusions follow
in §9.

2. The basic equations

2.1. Governing equations of the flow. We consider the three dimensional boundary
layer flow of an incompressible fluid on an infinite disk which rotates about its axis with a
constant angular velocity 2. The Navier-Stokes equations are non-dimensionalized with
respect to a lengthscale L = r, velocity scale U, = L£2, timescale L/U, and pressure scale
pUZ, where p is the fluid density. This leads to a global Reynolds number Re = % = R?,

where R is the Reynolds number based on the displacement thickness § = (5)% Thus,
relative to non-dimensional cylindrical polar coordinates (r, 6, z) which rotate with the
disk, the full time-dependent, unsteady Navier-Stokes equations governing the viscous
fluid flow are the usual momentum and the continuity equations, and these are given as
follows:
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The Laplacian operator in cylindrical coordinates is given as
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In this analysis the fluid is assumed to lie in the semi-infinite space z > 0. In the above
equations the curvature effects as well as the effects stemming from the Coriolis forces
are present. It is now well known that these terms have a strongly stabilizing impact in
the linear stability theory, as pointed out by [27] and [34].

2.2. The mean flow. The dimensionless mean-flow velocities and pressure are given
by Von Karmaén’s exact self-similar solution of the Navier-Stokes equations for steady
laminar flow. The boundary layer coordinate Z, which is of order O(1) is defined as
Z = zR, and the self-similar equations take the form

1 1
7§H[Z]aﬁ

where the functions F', G, H and P satisfy the following ordinary differential equations

3) (up,vp, wp, pr) = (rF[Z],rG[Z] P[Z)),

F? —(G+ 1)+ F'H-F"=0,
2F(G+1)+G'H-G" =0,

P +HH-H'=0,

2F + H' =0.

(4)
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Here primes denote derivative with respect to Z and the appropriate boundary conditions
are given as

F=G=H=0atZ =0,
(5) F=0,,G=-1, H=h as Z — .

The value of hs is a constant vertical velocity of the rotating fluid in the far-field above
the disk, and it has to be found numerically in the course of the solution of equations (4)

and (5).

3. Derivation of the linear stability equations

3.1. Viscous disturbance equations. We are here interested in perturbation so-
lutions of Von Kérmén’s self-similarity velocity profiles (3). The instantaneous non-
dimensionalized velocity components imposed on the basic steady flow are u, v, w and
the pressure component p, and they can be expressed as

ulr, 0, 2,t] = up +u'[r,0, 2, 1].

Having linearized the equations for small perturbations, we find that the linearized
Navier-Stokes operator has coefficients independent of § and hence the disturbances can
be decomposed into a normal mode form proportional to e*#(® 9=wt) " Such an approxi-
mation leads the disturbances to be wave-like, separable in 6 and t. Consequently, the
perturbations may be assumed to be of the form

o = fr, Z}e[iR(ﬁg_m)] + c.c.,
where 3 and w are respectively the wave-number in the azimuthal direction and the
scaled frequency of the wave propagating in the disturbance wave direction.

The separation in 6 and t simplifies the linear system of equations. However no
such simplification arises as far as the r dependence is concerned (except in the limit as
R — o0) and the full linearized partial differential system has to be solved subject to
suitable initial conditions to determine the stability of the flow. Consider next the limit
R — oo and introduce the scale X = Rr which is the appropriate scale on which the
disturbances develop. After allowing for the multiple-scale replacement of % by

0 0
Roe + =,
ax T or
and keeping only terms of O(1/R), the reduced system of equations stemming from these
approximations can be written in the following form

f"—Hf —[iR(aF + G — &) + N> + F|f +2(G + 1)g — RF'h —iaRp = 0,
¢’ —Hg —[iR(aF + 3G — &) + N> + Flg — 2(G + 1)f — RG'h — i3Rp = 0,
h' — Hh' —[iR(aF + G — &) + N> + H']h — R’ =0,

af +iBg+h. =0,

(6)

where A2 = o + 32, a = ia + %. It should be pointed out that the non-parallel terms
which are of O(1/R) were also dropped from equations (6). The linear equation system
above is identical to the one used by previous investigators, see for instance [26] and [23].

The boundary conditions for this set of equations are f = g = h = 0 at the solid wall
(Z = 0). Considering the decaying property of the disturbances, the boundary conditions
to be imposed far away from the disk surface are derived from the asymptotic form of
equations (6).
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3.2. Inviscid Rayleigh equation. Further neglect of all the terms of order R~ in (6)
leads to the well-known Rayleigh equation

(7) [(aF + BG — w)(D* = X*) — (aD*F + BD*G)]h = 0,

2 _ 2 2 _ 0
where, A* = a” + 3” and D = 5.

4. Solution Technique

4.1. Spectral treatment of the stability equations. The discretization technique
we use here is a Spectral collocation method using Chebyshev polynomials as basis func-
tions. A staggered grid is used only in the Z direction. The pressure is defined at the
cell centers, at half points, but other components at the cell faces. Since no pressure
points fall on the boundary, the critical boundary conditions for the pressure have there-
fore been avoided. Momentum equations are thus collocated at Gauss-Lobatto points
cos[k %], whereas the continuity equation is imposed at Gauss points cos[(k + 1) %]. The
Chebyshev interpolation between these two different grids, from cell centers to cell faces
or otherwise is then employed as given in [28].

The computational physical plane has been mapped onto the Spectral space by means
of the linear transformation

2
(8) n=-1+ Z.

max

Here Z,nqx is the far-field boundary of the flow, which throughout the calculations is set
to a finite value of 20, about 4 times the boundary layer thickness.

The resulting equations from the discretization ultimately can be assembled as a large
generalized matrix-eigenvalue problem of the form

(9) LU =0,

where L is a (4N + 3) x (4N 4+ 3) full matrix and U = [f, g, h, p]” is the eigenfunction.
The incorporation of boundary conditions only necessitates some modifications to the
first and last row of the matrix L.

4.2. Newton-Raphson searching technique for the branch points. To determine
a branch point in the w and «a complex planes, we have to fix 8 and R, and shoot
for simultaneous zeros of both the dispersion relation and the group velocity g_Z’ The
corrections to o and w which are denoted by da and dw (which are complex in general)
can be obtained from the solution of the following linear equations

1 1
U= —1) + 602 (g = —1) + 602 (= —1) =0,
0o | 5000 4 5, 00
Oa * a2 “oadw

Note that the variables are complex-valued, therefore they can be written in the matrix
form

(11)  JA = —RHS,

where, J is a full 4 x 4 square matrix of coefficients, RHS is a 4 x 1 known vector and
A = [ba, 6w]T.
In computing the neutral branch points one has to consider the following equations

1 1 1
U1+6aaL+6w8L +5R8L =0,
(12) roJe ow OR |, _
Ow 0w 0w Pw



Convective and Absolute Instabilities 123

Here, we fix the azimuthal wave-number 3 as real and the increment dw is now also real.
After one solution of the matrix equation (9) the quantity U'(n = —1) is now known.
The corresponding group velocity can be calculated by two different approaches itemized
as follows

(i) Solve the matrix equation at successive ag, ag — da and ap + da. Then, store
the corresponding frequencies as wo, w—1 and wy. This set of eigenvalues is then

. . Ow w1—w_1 . .
used to approximate the2 group velocity 52 as —5z—= and the second derivative
. —2 _ . o
of the group velocity g—“; as LO;M. To compute successive derivatives
[e3

of the group velocity and the derivatives of the eigenfunctions required in the
equations (10) and (12), we can simply use the same procedure.
(ii) From the Taylor expansion we can approximate the group velocity as
1
dw 8%
(13) 0 :—&(U:—l)-

w
However, one can estimate the derivatives of the eigenfunctions with respect to
a and w by differentiating (9) to give

oU oL
L—=——U,
LU ory,

ow  Ow

Having solved the matrix equation (11), the corrections A are added to the previous eigen-
values to give a better approximation and reduce the discrepancies on the wall boundary
condition. Then, an iterative scheme is employed until the magnitude of U'(n = —1)
and g—z are simultaneously less than some small prescribed value.

5. Linear stability results

5.1. Basic velocity profiles. In the solution procedure, the equations (4) were reduced
to a system of first order differential equations and then solved by a fourth-order Runge-
Kutta scheme combined with a shooting procedure. The far-field boundary condition
Zmaz = 20 was found to be satisfactory and the corresponding normal velocity ho was
then calculated up to 6 digits as 0.884423 from this method. The computed velocity
distribution for the basic flow on the rotating-disk is shown in Figure 1 (a). This similar-
ity solution has been used by the researchers cited herein, see for instance [23] and [15].
A combination of the radial and azimuthal velocities leads to a profile which is inflec-
tional and which contributes to the occurrence of crossflow instability in the rotating-disk
flow. A few examples of these profiles are shown schematically in Figure 1 (b) at several
Reynolds number locations, for both stationary (w = 0) and a non-stationary (w = 7.9)
case.

From the literature, two types of instability waves are known to exist in the rotating-
disk boundary layer flow that cause either convective or absolute instabilities. The first
one is the inviscid-type or the upper branch and the other one is the viscous-type or
the lower branch. We will investigate these two distinct branches in more detail in the
following sections.

5.2. Neutral waves.
5.2.1. Stationary and travelling waves. Neutral curves play a key role in the determi-

nation of the bounds of the stability. For comparison purposes, the neutral curves for
both stationary and non-stationary waves in the (R, «) and (R,¢) planes are shown in
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Figures 1 (c-d) for a negative and several positive non-dimensional frequencies. The wave-
angle ¢ of a disturbance is defined as ¢ = arctan[o%]. These curves are very similar to the
ones calculated previously by [26] and also [1]. In line with the findings of the latter, it
is noticed that a minimum occurs on the lower branch for certain fixed frequencies. The
existence of such second minima was also observed in the experiments of [12] and [13].

For the negative frequency w = —5.0 in Figure 1 (c), there are no longer two minima.
Compared to zero-frequency disturbances, instability starts much earlier at a smaller
critical Reynolds number. The corresponding critical Reynolds number for a negative
frequency of w = —5.0 is R = 284.910 and the associated eigenvalues are o = 0.36310,

= 0.10710 and € = 16.46°, respectively. At w = 4.0 the critical Reynolds number
and the eigenvalues in Figure 1(c) are R = 297.630, a = 0.40302, 3 = 0.05601 and
€ = 7.96° for the upper branch and R = 172.820, « = 0.15210, 8 = 0.01202 and
€ = 4.48° for the lower branch, respectively. The same values for w = 10.0 are R =
329.371, a = 0.43001, 8 = 0.03203 and ¢ = 4.20° for the upper branch and R = 68.709,
a = 0.33601, 8 = —0.12903 and ¢ = —20.98° for the lower branch, respectively. And
finally, the lowest critical Reynolds number for the lower branch occurs at frequency
w = T7.9. The corresponding eigenvalues are R = 64.443, a = 0.27597, 8 = —0.10669 and
e = —20.87°, respectively. When the frequency increases beyond 7.9 the lower critical
Reynolds number starts increasing too. The aforementioned critical values are almost
indistinguishable from those obtained by [1].

The wave-angle stability curves are depicted in Figure 1(d). On the upper branch the
non-zero frequency waves approach the zero-frequency neutral curve at large Reynolds
numbers. Increasing frequency causes loops on the upper branch. However, these do not
correspond to a bifurcation. The resulting intersections of the curves is an artifact of
projecting the curves onto the plane. We can conclude that there exist a critical angle
below which all the waves are linearly damped. This critical angle is, according to our
calculations, —35.34° at a frequency 7.9. The same angle at frequency 10 is —35.04°. This
angle is given in [1] as —50.4°. From a consideration of the Rayleigh equation, for positive
frequencies we have found that basic velocity profiles cease to have a point of inflexion
for values of e < —36.9°, and therefore there are no unstable eigenvalues for angles less
than this critical value. This value is consistent with our numerical computations cited
above for large Reynolds numbers. The wave-angle continuously increases on the lower
branch for increasing Reynolds numbers. It is known that the direction of zero wall mean
shear stress corresponds to a critical angle of about 39.64°, see [17]. At R = 10° the
corresponding wave-angle was found to be 39.216°.

5.3. Spatial and temporal waves. In this section we examine the spatial/temporal
instability characteristics of Von Karmén’s basic velocity profile as shown in Figure 1. The
spatial amplification rate (—a;) contours are drawn for certain frequencies. Figure 2 (a-
c¢) show these contours in the (R, ), (R,3) and (R, ¢) planes for the stationary waves,
and Figures 2 (d-f) show the results for frequencies w = 4. In good agreement with the
results of [1], all these contours show a linear variation as the growth rate increases in
magnitude. Beyond some critical amplification rate the second minimum disappears for
a fixed frequency. From the stationary stability diagram Figure 2 (c) it can be seen that
the most unstable wave-angle varies slowly with Reynolds number on the upper branch.

We have also plotted the growth rate curves at some selected Reynolds numbers.
Figure 3 shows the spatial growth rate (—a;) curves at R = 1000 as a function of wave-
angle. On the lower branch the growing waves originate almost from the same place at
a wave-angle of about 11.45°, on the other hand, the upper branch amplifying waves
originate at a larger wave-angle as R increases. Travelling waves with a frequency of 10
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are shown in Figure 3 (b). This graph suggests that travelling waves are less amplified
than the stationary ones. It should be remarked that as will be shown later the flow is
already absolutely unstable at R = 1000 and a true spatial growth rate for time-periodic
disturbances is unlikely to occur physically. Figures 3 (a-b) are thus shown only for
mathematical interest and comparison purposes. In Figures 3 (c-d), spatial calculations
are shown to determine the frequency of the most unstable wave of family 1 (see below)
modes at R = 500. It can be seen from Figure 3 (c) that unlike the stationary waves the
travelling waves are the most unstable. Moreover, the most unstable region is dominated
by the negative frequency region with the phase velocity ﬁ directed inwards.

Next, the evolution of different families of eigenfunctions is considered. The spatial
families of the stationary eigen-solutions originating at R = 400 are shown in Figures 4 (a-
f). As shown, the family 1 branches have neutral points on the upper and lower branches
of the neutral curve. Unlike the family 2, which includes only downstream propagating
damped waves, family 1 involves both damped and amplified downstream propagating
waves in a specific range of wave-numbers. The third family which seems to be only on
the lower a plane has no neutral points at all and is characterized by large values of —a;,
corresponding to upstream propagating damped waves.

The behavior of the stationary eigenfamilies has also been captured in the work of [1].
A similar trend of non-stationary disturbances at w = 7.9 is shown in Figures 4 (d-f),
at a Reynolds number of 400. The main difference is that family 2 in this case also has
a neutral branch point at R = 400. This is a result of lower branch instability for the
positive frequencies. It should also be mentioned that we have investigated the real part
of the group velocity given by g_Z' We found that for the most part, for family 3 up to
B = 0.04, the real part remains negative, and the real part of the group velocity angle is
less than —90°. This indicates an inward energy transfer towards the center of the disk.
Consequently, the waves in this direction are strongly damped. However, for 3 less than
0.04 the group velocity vector is directed outward and so the waves are amplified in this
direction.

Figures 3-4 point to another mechanism for instability. In particular, branch switching
in spatial stability calculations can be effectively used as an indication of qualitative
change in the nature of the instability from convective to absolute or vice versa. We shall
investigate this feature of the rotating-disk flow further in a later section.

5.4. Contour lines and cross-flow vortices. In this part, we display contour plots
and vector fields with cross-flow vortices for the frequencies w = 0 and w = 7.9 in
Figures 5 and 6. The contours contain the velocity components

(15) aF + G + Re[(af + Bg)e[(iaTnLﬁRefut)]]’

H ; —w
(16) 5 + Re[(h)eltor ool
for various Reynolds numbers. In each figure the portions (a) and (c) refer to (15) and
portions (b) and (d) refer to (16). “Cat’s eye” patterns, which are a characteristic feature
of the cross-flow instability, are clearly seen in these contour diagrams.

Vector plots are shown in Figures 6 (a-b) for the stationary cross-flow vortices and
Figures 6 (c-d) for the travelling waves. There are essentially two sets of vortices present.
The first set of vortices are nearest to the wall as suggested by Stuart in GSW. Further-
more, they have formed only on the upper branches. The second set of vortex structures
are more visible on the upper branches of the neutral curves. Malik [26] also displayed
zero-frequency cross-flow vortices, but from his computations the near wall vortices were
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not captured. As one travels from the upper branch to the lower one, the location of the
vortex center also travels towards the wall.

5.5. Asymptotic analysis of the upper branch non-stationary modes. Hall [17]
computed the evolution of the upper branch modes considering only the zero-frequency
waves. In this section our intention is to extend his theory to include the cases where non-
zero frequency waves also exist. Following the work of [17] we define a small parameter
e = R™Y/5. On the upper branch we assume that the disturbances take the form

(U, V, W, P) = (u(2), 0(2), w(z), p(2))e 200 et
and we also expand the wave-numbers and frequency as
(o, B,w) = (a0, Bo,wo) + €(au, fr,wi) + -+

As in the study [17], we restrict our attention to neutral disturbances at a local position
r. In the following the regions where such waves develop are considered, and asymptotic
solutions are sought in each region. The analysis below also follows closely the work of
Cole [7].

5.5.1. Inviscid region ¢ = ze~> (z = O(R™'/?)). The existence of this inviscid zone of
depth O(€®) was shown by GSW. In this region u, v, w and p are expanded in the form

(u,U,w,p) = (u07v07w07p0)(4) + 6('“/1,’!]1,'[1]1,]91)(() +

Substituting these into Equations (1), and equating the terms of order of O(e™?), the
leading-order approximation leads to the inviscid Rayleigh equation, see [17]. Defining the

effective velocity profile Up = aorF + oG and leading-order wave-number v = ad + f—;,
the solution is restricted to satisfy Up & Up to vanish at a non zero ¢ = (, so that the
singularity in the Rayleigh equation is avoided. The eigenvalue problem was solved by
[17], and it was found that the unknowns o, Bo, Yo and  satisfy

(A7) 70 =116, 27— 496, ao=11293, 2 02651, = 1.46.
T

Bo
Proceeding to the next-order in the inviscid zone, the second-order equations come from
0(672) terms and eliminating w1, v1 and p; we obtain the non-homogeneous Rayleigh
equation for w; in the form
_ _ _ UU rr!!
(18) Ug [wlll — 'ygwl] — Uféwl = 2Upd&wo + ﬁo’l‘é |:F” — FU—B:| wo + wo UB wo,
B B

where & = apar + 5251 and € = g—é — aoB15%. Due to the second term on the right-

hand side of (18), a Frobenius expansion reveals that a logarithmic singularity appears

belonging to w1 at ¢ = (. This singularity manifests itself in the form

(19) wf ~ R wg(@), >
¢—¢

where k. is given in Appendix A. The singularity (19) can be removed by introducing
a critical layer at ¢ = ¢, and then the solution of (18) that satisfies wi(co) — 0 is as
given in [17], except that an extra integral appears due to the non-zero frequency term
in equation (18).

Taking into consideration the viscous critical layer theory, if the path of the integration
is deformed into the complex plane near ¢ = ¢ (i.e, continuation below the critical layer),
the following holds:

wi ~ ke(¢ =€) [In(¢ =€) — isgn(Up|c—¢)m] wo(C), ¢ <.
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This and (19) give the well-known linear phase jump in the inviscid zone
. o B
(20)  wilsl =isgn(Up(C))mhewo(Q).

5.5.2. Viscous sublayer £ = ze~* (z = O(R™?/?)). From the leading-order equations in
the inviscid zone we find that

¢—0, i(aouo+ %vo) — —wg(0).

Therefore, to satisfy the zero-velocity requirement at the wall, a viscous sublayer is
required. Balancing the convection and diffusion terms in the disturbance equations (1),
it is found that the thickness of this layer should be O(e*). The basic velocity profiles
are expanded as in [17]. The various quantities also expand as follows:

(vaaw7p) = (ﬁ07 607 070)(6) + 6(&1,61,71)0,]30)(6-) + 62(17‘2’62771)17131)(5) + e
Substituting these into the Navier-Stokes Equations (1), and after some manipulations
as in [17], we find the wall layer shift for large & to be

o ~ wh(0 )[s+ (50)]

Aok
with & = /\%, Ao = tlaorFo + BoGo] and k = f§ 7)dr. On matching with the
inviscid zone described earlier, we find that wi must satlsfy
Ai(%)

(21) w1 — wp(0)

Mok ¢—0.

We see from (18) that w; satisfies equations identical to wo apart from a non-homogeneous
part on the right-hand side. Therefore a certain solvability condition is required to ensure
that a solution exists. To proceed further this solvability condition can be obtained by
multiplying (18) with wo and integrating from wall to infinity so that

@) = g0 ) iR @l @k

2 _ Up and the use of

where, ¢ denotes the finite part of the integral, L = ddZ_22 - — 7
equations (17), (18), (20) and (21) is made. Furthermore, using equations (18) and (22)
we obtain the eigen-relation
2 AL(o)
Aok
where I1, I, I3, a and b are given in Appendix A.

(23) 2601 + €[z + a] 4 wo[I3 + b] = w((0)

Now using the Reynolds number Re based on the boundary layer thickness and the
2
local azimuthal velocity of the disk, Re = rRY?, the effective wave-number (a2 + f—z)%
and the wave-angle € in powers of Re are given by
2
7= (o —kﬁ—)2 *’Yo-i— Re 54
(24)

1

(tane)™ =207 | ¢Re"F 4.

Bo
Note that if wy = 0 the explicit expressions for the effective wave-number and the wave-
angle outlined in [17] are recovered from the eigen-relation (23). The extra term I3 is due
to our consideration of non-zero frequency waves. In this case, for any non-zero wo, the
equation (23) should be solved numerically, to determine the wave-number correction &
and the wave-angle correction € in (24).

Based on these asymptotic findings, comparisons with the numerical calculations are
shown in Figure 7 for w = —5, 0 and 10. In this figure the long curves show numerical
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results and shorter lines asymptotic ones. Notice that to make comparisons with the
numerics, wo should be re-scaled by Re. It is seen that there is satisfactory agreement
between the asymptotic predictions and the numerical results. In order to increase the
agreement domain of numerical and asymptotic analysis for smaller Reynolds numbers,
more terms of the expansions in (24) need to be calculated, but this is beyond the scope
of the present study. Moreover, it is also possible to consider wo as complex to further
investigate temporally growing waves. Furthermore, using the asymptotic relation of the
iw( (0)2wo

Airy function as |wo| — oo, the right-hand side of (23) can be replaced by N

which then gives explicit expressions for the wave-number and wave-angle correctlons.

6. The absolute/convective instability of the rotating-disk flow

In this section we shall give a description of absolute/convective instabilities and
further investigate under what circumstances the three dimensional boundary layer flow
becomes absolutely/convectively unstable. In doing so, we shall use the ideas of [6] and
[4]. The specific example we consider is the three dimensional rotating-disk boundary
layer flow.

The complex dispersion relation which can be obtained through the application of
classical linear stability theory to a three dimensional parallel flow can be represented in
the form

(25) D(a,w; 38,R) =0.

Note that in three dimensional flows the relation (25) defines the local instability char-
acteristics due to the fact that parallel flow assumptions or local mean velocities have
been employed.

From now on we assume that the zero normal velocity condition on the wall is replaced
by a line forcing given in the form

(26) 3(r —rp)a(t —tp)e”,

where §(r — ry) and 0(¢t — t5) are the Dirac delta functions at a non-dimensional radius
r¢, and at a specific time ¢ (=0 formally), respectively. Based on the dispersion relation
(25) we can now form the impulse response or Green’s function G(r,0,t; 3, R) to the
point forcing (26) associated with the operator D(—i%7 0, i%; 3, R) as a double integral

'L(cxr wt)

(27) G(r,0,t;8,R) = 472 Zﬁm// Dlow AR )dwda.

The impulse response G above is defined as the instability wave field generated by a
Dirac delta function in space and time, as posed by (26). A function G in equation (27)
appears and is dependent on the normal coordinate, which essentially is the eigensolution
of the governing equations (6). Although the singularities caused by G (generally the
branch cuts causing the continuous singularities) are important in the inversion integrals
n (27), we assume that the main contribution to the response (27) comes from the zeros
of D, which are the discrete eigenvalues obtained from (25). These eigenvalues provide
a mapping between the o and w planes defined by the F' and L contours, respectively.

A rigorous mathematical criterion given by [4] and [6] can be applied to the dispersion
relation (25) to determine the nature of the instability. To do that, it is necessary to
perform a spatio-temporal stability analysis. The first task is to compute analytically or
numerically the singularities wo lying in the complex w plane. Then the pairs of eigen-
values which contribute to a zero group velocity, i.e, 22(ao) = 0, at the corresponding
complex wave-number a = «g are identified. Note that this wave-number is associated
with the ray 7 = 0. Next, the amplification rate (also called the absolute growth rate)
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at this point is given by w; = I'm(wo), which characterizes the temporal evolution of the
disturbances. Finally, the criterion for the absolute or convective instability for any given
flow, as outlined by [6] and [4], simply takes the form

Im(wp) >0 = Absolute instability,
(28) Im(wp) < 0 = Convective instability.
Later, Briggs and Bers showed that the absolute/convective instability criterion given
above is not precise enough. What should be further taken into account is that the
two spatial branches associated with the second-order algebraic branch point wo must lie
entirely in the upper and lower half « planes, when the frequency contour L is located
above all the singularities of the dispersion relation (25). The method of continuation
is then used to deflect the original L contour, shown in Figure 9 (a), to the L’ contour
shown in Figure 9 (c). The ultimate purpose of this action is to lower the contour just
below the real w-axis (to avoid absolute growth, of course). As the contour L in the w
plane is lowered to L', the corresponding o branches in the o plane will start moving
upwards/downwards. Therefore in order not to violate causality, the F' contour in the
a plane shown in Figure 9 (b) should also be deformed off the real a-axis into F’'. Of
course, the simultaneous deformation of the contours L and F into L” and F” (see
Figures 9 (e-f)) must terminate when L” touches w(«) and F”' becomes pinched between
the two spatial branches. When « spatial branches pinch in the a plane they constitute a
saddle point a5 and the mapping of F” pinches the w curves in the w plane constituting
a pinching frequency wy. Pinching occurs precisely at the point (as, wp), where the group
velocity 5% (avs,wp) is zero. Correspondingly a cusp appears at w, in the locus of w(a),
a feature that can be used to detect the branch point, as demonstrated by [22]. In fact
the « inversion in (27) can be made by enclosing the F’' contour with semi-circles and
employing the residue theorem, assuming only the first-order poles (higher-order residues
would be obtained by a limiting process of coalescing first-order poles). A subsequent
integration in the w plane leads to the following time-asymptotic response

ei[as (r—ry)+BRO—wp R(t—ty)]
(20) G~

., 8D 92D 11/2
[27it 53 a7 ey,
We should also bear in mind that there might be cases where the two spatial branches
in the « plane of a branch point w, may be located, for high enough Im(w), in the same
half « plane. Such pairs (as,wp) do not satisfy the so called pinching criterion, and as
will be discussed later, they cause only an algebraic growth, not an absolute growth rate.

7. Absolute instability results

Our procedure for computing branch points was first verified by reproducing the results
of [19] for the mixing layer problem, see Figure 8. The results shown here were obtained
by solving the inviscid Rayleigh equation for the normal mode given by Equation (7), as
well as the viscous sixth-order system of equations of order given by Equations (6). In
this section we present these results separately and later show that the high-Reynold’s
number viscous modes match onto the inviscid Rayleigh modes.

7.1. Inviscid results. We computed the absolute instability range of the inviscid Ray-
leigh equation as shown in Figure 10 (a), which is the same as the one displayed in [23].
In the ( interval shown in the figure, the complex a, complex w and the wave-angle &
parameters which constitute the absolutely unstable regime of the inviscid-flow over a
rotating-disk boundary layer are identified. In compliance with the findings of [23], it is
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seen from the figure that for long wavelengths, near the vicinity of the origin, the flow is
neutrally absolutely unstable.

The range of absolute instability which is given by the positive sign of w; ceases near
the azimuthal wave-number § = 0.265. Here, the corresponding eigenvalues are w, =
-0.070, @ = 0.34 - i 0.058 and € = 38.12°, respectively. These points are the upper limits
of the region of absolute instability.

Brigg’s criterion as described earlier requires a branch point singularity between two
or more spatial branches of the dispersion relation, of which, at least two must lie in
the distinct halves of the complex « plane when w; is sufficiently large and positive. To
demonstrate this feature, we have plotted the two spatial branches in Figure 11 for which
the branches merge in the distinct half-a planes, for sufficiently large positive values of
Im(w) = constant, when w traces a horizontal line in the w plane. Figure 11 (b) shows the
progression of the two spatial branches in the « plane at 8 = 0.1. The corresponding w;’s
to each figure are 0.045, 0.021, 0.012 (pinching point) and 0.011, respectively. As Im(w) is
lowered down towards 0.012 from the large values of Im(w), there occurs a pinching-point
in the w plane at w = wp, = —0.023 4-¢0.012, and a corresponding saddle-point in the o
plane at a = as = 0.24 — 70.0680 as shown in the third part of the figure. Since the sign
of w; is positive, this point gives an absolute growth rate in the flow. The last portion of
the graph shows branch interchanging after pinching has taken place.

7.2. Viscous results. The viscous absolute instability boundaries were calculated in
[23] and [15]. The pinching phenomenon is shown in Figure 11 (a) for R = 524 and
B = 0.1. At large positive values of w;, the branches shown lie in distinct halves of the «
plane. At the pinching point, w; is 0.15, and so this point exhibits absolute instability.
The branches drawn in the figure are for w; = 5.34, 2.15, 0.15, and 0, respectively. The
corresponding wave-number « is 0.20 — ¢0.112, and the wave-angle ¢ = 26.6°. Note that
the qualitative behavior of the spatial branches is very similar to that for the inviscid
case in Figure 11 (b).

Figure 11 (b) shows the parameter regions of neutral absolute instability in the (R, 3),
(R, wy), (R, ar), (R, a;) and (R, ¢) planes. Inside the curves the imaginary part of
the frequency w is positive and thus the particular flow there is absolutely unstable.
Outside, the flow becomes convectively unstable. The critical Reynolds number for the
flow to undergo absolute instability was found to be R = 507.40, and the corresponding
eigenvalues are 8 = 0.135, a = (0.217, —0.122), w = —17.72 and € = 31.84°, respectively.
Note that Lingwood (1995) calculated the critical Reynolds number of absolute instability
as 510 and later corrected this value in [24] to 507.30, which is very close to the value
obtained here. We believe that the discrepancy between these two results is due to
the different numerical methods employed. Experiments reveal that transition occurs
at approximately R = 513. Below this critical value, w; can be reduced to zero in the
calculation of the integral given in (27), before the occurrence of pinching, indicating
that the flow is only convectively unstable. As Healey [18] recently demonstrated from
his asymptotic theory of the upper branch neutral modes, the pinch-point displayed in
Figure 11 (b) does not asymptote towards the inviscid neutral curve of Figure 10 (a).
Healey [18] concludes that the branch points of Figure 10 (a) rather have a viscous long-
wave origin.

To make a comparison with the inviscid absolutely unstable region of Figure 10 (a) and
its viscous origin, we have obtained the solutions at a sufficiently large Reynolds number,
namely R = 15000. The viscous equations in this case result in an absolutely unstable
region as shown in Figure 12 (a). The upper limit in both cases is almost identical,
yielding a value of azimuthal wave-number 3 = 0.265. In Figure 12 (b) the behavior of
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the eigenfunction of the normal velocity component (h) is shown again at R = 15000.
The significance of the results displayed in Figure 12 is due to its demonstration that the
inviscid branch points have a viscous correspondence.

8. Direct spatial resonance results

The Benney [3] resonance mechanism with modal coalescence can also be observed for
three dimensional disturbances. In fact, the existence of several modes in the rotating-
disk flow, of which at least two have opposite wave energies (family 1 and family 2)
signifies modal coalescence. As mentioned in the introduction, when two coalescing modes
originate from waves propagating in the same direction as in the case of a convectively
unstable flow, then the corresponding branch point is not a pinch-point, but only a
double-pole of the dispersion relation. According to linear theory, such disturbances
normally will decay ultimately. However, the short-term algebraic growth associated with
such a double-pole may be decisive and the corresponding potentially large amplitudes
may initiate nonlinearity and so carry the whole system into the nonlinear stages. This
may be particularly important provided that the coalescing modes are linearly neutral.
Consequently, the corresponding local response to the damping rates given as O( a%) can
be so large that it may initiate the nonlinear stages before the exponentially growing
modes, which is implied by the recent numerical simulation results of [10, 11]). Such
resonance cases between coalescing modes occurring in the same a plane has been studied
by [21]. He investigated the direct resonance in a plane Poiseuille flow and in a Blasius
boundary layer flow, which are typical examples of convectively unstable flows.

Figure 13 (b) shows such neutral branch point curves, as a function of Reynolds num-
ber. It can be seen in the fourth figure that in the vicinity of a Reynolds number of 445
there occurs direct resonance, in fact it starts at this Reynolds number, where a; be-
comes almost zero. In order to support this, in Figure 13 (a) we plot two spatial branches
both emerging in the upper half « plane. Here, the particular set of parameters are § =
0.0387, a = (0.184, 0.0) and w = (3.25,0), respectively. This point is clearly a bifurcation
point with a real w from which several branches emerge. An indication of the achievable
amplitude amplification at this resonance point can be evaluated as the inverse of a;,
for which «; is practically zero. Therefore it is suggested that, unlike plane Poiseuille
flow or Blasius boundary layer flow, direct resonance could be physically relevant in the
rotating-disk boundary layer flow. At this Reynolds number of 445 the flow is still in
the laminar region. It should also be mentioned that we did not encounter any other
branch point apart from the above point which seems to be the only point leading to
direct spatial resonance.

9. Conclusions

The linear stability features of the rotating-disk boundary layer flow have been re-
examined. The stability parameters of the stationary as well as non-stationary waves
have been computed and stability diagrams have been produced using a Spectral method
based on a Chebyshev collocation approximation as well as a fourth-order Runge-Kutta
integration technique. The results obtained within this study are totally in line with the
previously found results cited in the references herein. The findings are briefly summa-
rized below.

9.1. Convective instability. It has been found that for positive frequencies there ex-
ists two minimum points on the neutral stability curves. One of these is related to the
inviscid-type instability occurring on the upper branch and the other one is located on
the lower branch associated with the viscous-type instability. For increasing positive
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frequencies, the lower-branch curve is more discernible. The lowest critical Reynolds
number on this branch was found to be 64.443 and it occurs at the frequency w = 7.9.
The lowest critical Reynolds number on the upper-branch however, occurs at a negative
frequency.

The upper-branch neutral stability of three dimensional disturbances imposed on the
Von Kérmén’s boundary layer profile has been investigated asymptotically in particular
for the non-stationary cross-flow disturbances. It has been found that at very large
Reynolds numbers, the upper branch for all waves tends asymptotically to a finite value.
The asymptotic analysis of [17] has been extended to include the non-zero frequency
waves for the upper branch instability modes. Travelling waves with negative frequencies
as well as positive frequencies approach one branch of the zero-frequency neutral curve
corresponding to an angle of about 10.6°. The growth rate for a wave with negative
wave-angle has been found to be small compared with that for the waves with positive
wave-angle.

9.2. Absolute instability. We have also investigated the absolute stability character-
istics of the three dimensional boundary-layer flow due to a rotating-disk. The singular-
ities in the dispersion relation have been studied and several results have been obtained.
First, the coalescing modes of spatial and temporal instability waves originate from waves
propagating in opposite directions. This type of branch point singularity is known to be
related to the absolute instability in a specific range of the parameter space. Therefore,
we can conclude that, above a certain critical Reynolds number, which has been found
to be 507.40 in this study, the flow over the rotating-disk becomes absolutely unstable,
causing the disturbances at a fixed radial point in space to grow to large amplitudes in
time. Otherwise, below the critical point the flow is convectively unstable, showing that
growing disturbances travel downstream and eventually leave the flow undisturbed.

The second main result from this work is that, the coalescing modes which originate in
the same a wave-number plane form a second-order singularity. This kind of singularity
has been found to occur in the laminar regime of the flow at about R = 445. The
existence of such singularities which lead to the direct spatial resonance of the modes
may cause a locally algebraic growth and consequently the initiation of nonlinearity.

Finally the work presented here may be extended in many ways. For example, one
could compare the neutral stability and growth rates for both the stationary and non-
stationary cross-flow vortices with the asymptotic theory of [14] in the case of high
Reynolds numbers (R >> 1). As we have mentioned before, the analysis presented here
is a local analysis in which the non-parallel effects were omitted. How non-parallelism
will affect the absolute instability regime determined from this investigation requires
further work and moreover requires the numerical treatment of the full linearized stability
equations outlined in this report. Therefore, a more global analysis which makes use of
non-parallel effects should also be considered.
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Figure 1. Von-Karman’s Velocity Distribution in the Rotating-disk Flow

(a) Von-Karman’s self-similarity solutions corresponding to the basic field of the
rotating-disk flow; cross-flow velocity (F), azimuthal velocity (G) and normal velocity
to the disk (H),

(b) Shapes of the combined velocity (aF + 3G) for selected Reynolds numbers. Left:
Stationary (w = 0) cross-flow velocity profiles starting from the upper branch; (..) R =
15000 and (—) R = 286.045, to the lower branch; (--) R = 453.755 and (- —) R = 15000.
Right: Non-stationary profiles of w = 7.9 for the same conditions,

(c) Neutral stability curves in the (R, o) plane, and

(d) In the (R,¢) plane; (..) w=—-5,(-)w=0, (——)w=4, (—)w="79and (——)
w = 10.
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Figure 2. Stability Curves
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and w = 4 Waves

in the (R,a), (R,3) and (R,¢) Planes for w =0

(a~c): Stability curves for w = 0 waves,
(d-f): Stability curves for w = 4 waves.
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Figure 3. Growth Rate Curves for Zero-frequency and Frequency-10 Waves

(a-b) Distribution of the spatial amplification rate of zero-frequency, family 1 normal
modes as a function of wave-angle at a Reynolds number of 1000 for zero and frequency
10 modes, respectively,

(c-d) Maximum spatial amplification rate —a;, radial wave-number «,, azimuthal
wave-number (§ and wave-angle € are shown against frequency at a Reynolds number of
500.
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Figure 4. Spatial Branches of Zero-Frequency Waves at R = 400, 1000 and

15000

Emerging branches of three families of stationary waves at R = 400 for:
(a~c) Zero frequency waves,

(d-f) 7.9 frequency waves.
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Figure 5. Isosurfaces for w = 0 Waves

(a-b) Contour-lines for w = 0 at the critical eigenvalues R = 286.045, o = 0.38407,
B = 0.07745, and

(c-d) Contour-lines for w = 7.9 at the critical eigenvalues R = 316.601, o = 0.42108,
B = 0.03933.
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Figure 6. Stationary Cross-flow Vortices in the Rotating Boundary Layer
Flow

(a-b) Stationary cross-flow vortex structure is at the critical eigenvalues (a) R
286.045, o = 0.38407, 8 = 0.07745; (b) R = 453.755, and

(c-d) Travelling cross-flow vortex structure (w = 7.9) is at the critical eigenvalues (c)
R = 316.601, o = 0.42108, 8 = 0.03933, (d) R = 64.443, a = 0.27597, 3 = —0.10669.
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Figure 7. Upper Branch Modes from Asymptotic Approach

A comparison of the numerical and asymptotic calculations of the stationary — and
non-stationary -- (w = —5) and — — w = 10 waves, in the (R, \) and (R, ) planes. In the
figures the long curves show numerical results and the shorter lines asymptotic ones.
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Figure 8. Absolute Instability Range in the Mixing Layer

Absolutely and convectively unstable range and branch points in the mixing layer
problem are demonstrated.
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Figure 9. A Sketch of the Instability Branches and the Impulse Response

Sketches of the typical temporal (a), (c), (e) and spatial (b), (d), (f) branches are
demonstrated. The physical impulse response is shown corresponding to

(g) convectively unstable flow, and

(h) absolutely unstable flow.
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Figure 10. Absolute Instability Range and Pinching Phenomenon in the
Inviscid Rotating-disk Flow.

(a) Plot showing the locus of the branch-points (w, @) against 5. Variation of wave-
angle ¢ is also given. Data is taken from the solution of the inviscid Rayleigh equation
(7) and clarifies the range where the rotating-disk flow becomes inviscidly absolutely
unstable,

(b) Demonstrating the progression of the two spatial branches in the o plane at 8 = 0.1
as w traces a horizontal line, in the inviscid rotating-disk flow. Figures are respectively for
w; = 0.045, w; = 0.021, w; = 0.012 (pinching point), w; = 0.011. Pinching takes place in
the third portion and clearly demonstrates a true pinching in the sense that Briggs-Bers
criterion is satisfied. The direction of the arrows indicates increasing frequency.
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Figure 11. Pinching Phenomenon and Neutral Absolute Instability Curves
in the Viscous Rotating-disk Flow

(a) Pinching phenomena in the viscous rotating-disk boundary layer flow. Branch
point at 8 = 0.1, « = (0.20,—-0.112), w = (16.69,0.15) and R = 524 (third portion).
Graphs are for w; = 5.34, 2.15, 0.15, 0, respectively. Pinching requirements are satisfied.
The direction of the arrows indicates increasing frequency,

(b) Neutral absolute instability curves defining the region of absolute instability in
the viscous rotating-disk boundary-layer flow are shown in the (R, ), (R,wr), (R, o),
(R, ;) and (R, €) planes, respectively. For all the curves, inside the loop signifies absolute
instability, while outside we have convective stability/instability.
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Figure 12. Absolute Instability Range and Eigenfunction h at R = 15000

(a) Locus of the branch points (w, &) are given as 3 varies. Variation in € is also given.
Data is taken from the solution of the full sixth-order viscous equations (6) for R = 15000
and reveals the range where the rotating-disk flow becomes viscously absolutely unstable,

(b) Eigenfunctions of the normal velocity component (h) are shown in the viscous
rotating-disk boundary flow layer at R = 15000.

10 - >//\®.\
540 | o,
-1250 I I I I I ]
0 0.05 0.1 0.15 02 025 03 1.0
B
04 -

01

02 I I I I I ]
0 0.05 0.1 0.15 0.2 0.25 0.3
B
40
z
W
10 I I I I I ]
0 0.05 0.1 0.15 0.2 0.25 0.3
B



144 M. Turkyilmazoglu

Figure 13. Pinching Phenomena and Neutral Branch Points in the Viscous
Rotating-disk Flow

(a) The progression of the two spatial branches at R = 445 and S = 0.0387, in
the a plane is given in the viscous rotating-disk boundary layer flow. Graphs are for
w; = 5,2,0.25,0 and -0.02, respectively. Branch point is at o = (0.184,0), w = (3.25,0)
(fourth portion). A direct spatial resonance occurs between the two spatial branches since
the corresponding o and w are neutral. The direction of the arrows indicates increasing
frequency,

(b) Neutral branch points of two merging branches from the same « plane are shown.
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Appendix A

The quantities arising from the upper branch asymptotic analysis in §1.5.5. are:
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