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Abstract

In this paper the authors introduce and characterize r-open, r-semiopen
sets (resp. r-closed, r-semiclosed sets) and open, semiopen and semi-
continuous maps (resp. closed, semiclosed maps) in L-fuzzy closure
spaces.
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1. Introduction

Chang introduced fuzzy topological spaces in [1]. In a Chang fuzzy topological space,
each fuzzy set is either open or not. Later Chang’s idea was developed by Goguen [§]
who replaced the lattice [0, 1] by a more general lattice L.

An essentially more general notion of fuzzy topology, in which each fuzzy set has a cer-
tain degree of openness, was introduced by Sostak [13], and independently by Ramadan
[12], Chattopadhyay, Hazra and Sammanta (3, 2].

Mashhour [7] introduced fuzzy closure spaces in the sense of Chang. On the other
hand, L-closure operators corresponding to L-topological spaces (originally called L-fuzzy
topological spaces by Chang [1] and Goguen [8]) in the case of a general lattice L were
first considered by Ghanim and Hasan in [6]. Klein [11] used fuzzy closure operators to
describe L-topological spaces, Sostak [15] applied L-fuzzy closure operators to describe
L-fuzzy topologies in the sense of [14], and Chattopadhyay and Sammanta [4] in the
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case of L = [0,1]. Kim [9, 10], defined subspaces and products of fuzzy closure spaces
and L-fuzzy closure spaces, respectively.

In this paper we introduce open and closed maps (resp. semiopen, semiclosed and
semicontinuous maps), and give some characterization theorems.

2. Preliminaries

Throughout this paper let X be a non-empty set and (L, <,V,A,”) a complete, com-
pletely distributive lattice with an order reversing involution ’. The smallest and largest
elements in L will be denoted by 0 and 1, respectively. Let Lo = L\ {0}.

If a <borb<afor each a,b € L then L is called a chain. A lattice L is called order
dense if for each a,b € L such that a < b, there exists ¢ € L such that a < ¢ < b.

Note that (L*,<,V,A,’) is a complete, completely distributive lattice with an order
reversing involution ’ if L is, the operations are defined point-wise and 0, 1 denotes the
smallest and largest elements of LX. The elements of L™ are called L-fuzzy sets. All
undefined notations are standard notations of L-fuzzy set theory.

2.1. Definition. [3, 2, 12] Let T : L* — L be a mapping. Then 7 is said to be an
L-fuzzy topology on X if it satisfies the following conditions:

(1) 7(0) =T(@1) =1.

(2) T(uAv) > T() ATW).

(3) 7(\/1‘61“ wi) > /\ier T (i)
The pair (X, 7) is called an L-fuzzy topological space.

If T1,T2 are L-fuzzy topologies on X, we say T1 is finer than T2 (T2 is coarser than

T1) if To(A) < T1(N) for each X € L~.

2.2. Definition. [3, 2, 12] Let ¥ : L* — L be a mapping. Then F is said to be an
L-fuzzy cotopology on X if it satisfies the following conditions:

(1) 3(0)=5Q1) =1.

(2) ?()\1 V )\2) > ?()\1) A rf()\g)

3) F(Aier M) = Njer F(N0).

The pair (X, ) is called an L-fuzzy cotopological space.

2.3. Proposition. [3, 2, 12] Let T be an L-fuzzy topology on X and T’ : LX — L the
mapping defined by

TN =T\,
Then (X,T") is an L-fuzzy cotopological space.

2.4. Definition. [3, 2, 12] Let (X, 71), (Y, T2) be L-fuzzy topological spaces. Then the
map f: (X,T1) — (Y, T2) is called LF-continuous iff

Ta(v) < T1(f ' (v)) for every v € LY.

2.5. Lemma. [5] If f: X — Y we have the following properties for the direct and inverse
images of L-fuzzy sets. Here p, i € L™ and v,v; € LY.
(1) v> f(f'(v)), with equality if f is surjective.
(2) u< FUSF (W), with equality if f is injective.
3) f- ( V=)
4) T Vierv ): Vier fﬁl( i)
(5) f~ 1(/\7,€F = /\7,61_' fr ( i)
(6) f(Vier i) = Vier f(pi).
(1) f(Nier ) < Njer f(1s), with equality if f is injective.
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3. L-fuzzy closure spaces

3.1. Definition. [4] An operator C': L% x Lo — L* is called an L-fuzzy closure operator
if it satisfies the following conditions:

(1) ¢(0,r) =0.

(2) A< C(\ ) for each A€ L.

3) C(AV u,r)=C(\ 7))V C(u,r) for every r € Lo.

(4) C(Ar) < Cp,r) i A < pu

(B5) CAr) < CAr*)ifr <™.
The pair (X, C) is then called an L-fuzzy closure space. 1t is called topological if it also
satisfies the condition

C(C(\7),r)=C\ 1) ¥YAe L™, r€ L.
Let Cy and C2 be L-fuzzy closure operators on X. Then C is called finer than Cy (Ca
is coarser than Cy) if C1(A\,7) < C2(A,r) for all X € LX, r € Lo.

3.2. Proposition. [4] Let (X,F) be an L-fuzzy cotopological space. Define the map
Cy: LX x Lo — L¥ by

Cy(\ 1) :/\{ue i | >N Fu) Zr}.
Then (X,Cy) is a topological L-fuzzy closure space and if r = \/ {s € L | C5(),s) = A}
then Cy(\, 1) = .
3.3. Proposition. [4] Let (X,C) be L-fuzzy closure space. Define a map Tc: L™ — L
by

Fe\) =\ {reLo|C\r) =)}
Then:

(1) (X,Fc) is an L-fuzzy cotopological space.
(2) We have C = Cyg, iff the L-fuzzy closure space (X,C) satisfies the following
conditions:
a It is topological.
b Ifr=\V{se€L|C(\s)=A} then C(\,r)=A.

3.4. Theorem. [4] Let (X,F) be an L-fuzzy cotopological space. If (X,Cy) is the cor-
responding L-fuzzy closure space, then Fc, is an L-fuzzy cotopology on X such that
Feo, =7

4. r-open and r-closed sets in L-fuzzy closure spaces

4.1. Definition. Let (X,C) be an L-fuzzy closure space. An L-fuzzy set A € L™ is said
to be r-closed if C(A\,r) = X\ and r-open if X’ is r-closed.

4.2. Proposition. We have the following:

(1) (a) A finite union of r-closed sets is r-closed.
(b) An arbitrary intersection of r-closed sets is r-closed.
(2) (a) A finite intersection of r-open sets is r-open.

(b) An arbitrary union of r-open sets is r-open.
Proof. (1) (a) Let {u; | i € T'} be a finite set of r-closed sets, then

c(\ mir) =\ Clui,r) = \/ pa-

i€l el el
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(1) (b) Let {u; | i € T'} be an arbitrary set of r-closed sets. Since A, pri < pi we have
C(Ajer ti>m) < C(pi,r) = p; for each i € T'. Hence, C(A,;cp i) < Ajep #i, which is
sufficient to prove that A ser Mi is r-closed.

(2) This follows from (1) by applying the involution ’. O
4.3. Definition. Let (X,C) be an L-fuzzy closure space. The map Jo: L¥ x Lo — L*
defined by:

Je(\r) = (CN,r)), Xe LY, r€ Lo

is called the L-fuzzy interior operator associated with C. For A € L¥, Jo(\,r) will be
called the C-interior of A.
4.4. Proposition. Let (X, C) be an L-fuzzy closure space. Then the C-interior operator
Jo has the following properties:

(1) Je(1,r) = 1.

(2) Je(\,r) < X for every A € LX.

(3) IcAAp, ) =Ic(N\7) Adc(u,7) for every X\, u € L™ 1 € Lo.

(4) Jo(A\r) <Jo(p,r) if A < p.

(5) Je(A,s) <Te(A,r) ifr <s.
Proof. Straightforward. a

One may easily verify the following statements:
(a) For p € L™, pis r-open iff Io(u,r) = p.
(b) p is r-closed iff ' is r-open.

4.5. Definition. A map J: LX x Lo — L% is said to be an interior operator if it satisfies
the conditions (1)—(5).

4.6. Proposition. Let J be an interior operator and define Cy: L x Lo — L* by
Cy(p,r) = (I, 7))’

for every p € LX. Then Cy is an L-fuzzy closure operator and Je, =17.

Proof. We first verify conditions (1)—(5).
(D). C5(0,r) = () = (A7) = (1) =
(2). Co(p,r) = (W, 7) ") < p's then p < (I(u', 7))’ 1 < Co (7).
(3). GV ) =3((AV ), 1) =I(N A, r)
AN, ) NI, r)) = IN ) VI )
=Cs(\,7r) VvV Ci(p, ).

)’ since J(u

(4). If X < p then ' < X, so I(u',r) < J(N,r). Taking the complement and using
the definition of Cy this leads to

Ci(\,r) < Cy(p, 7).

(5). If r < r* then J(X,r*) < J(XN,r). By taking the complement this leads to
(TN, r)) < (TN, 7)), hence Cy(\,r) < Cy(A, 7).

To prove that Jo, = J, we note that:

jCJ (/.1,, T) = (CJ (,U/,T))l = (j(/jﬁr)/)/ = j(/.l/, T)
for each p € I, r € Io. O
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4.7. Definition. Let (X, C1), (Y, C2) be L-fuzzy closure spaces. A function f: (X,C1) —
(Y, C2) is called an open map (resp. a closed map) if f(\) is an r-open set (resp. an r-
closed set) for each r-open (resp. r-closed) set A € L™.

4.8. Definition. [10] Let (X, C1), (Y, C2) be L-fuzzy closure spaces. Then f: (X,C1) —
(Y, C2) is called a continuous map if
F(Ci(A 7)) < Ca(f(N),), YA € LY, 1 € Lo.

4.9. Definition. Let (X, C1), (Y, C2) be L-fuzzy closure spaces. A function f: (X,C1) —
(Y, Cy) is called a homeomorphism iff f is bijective and f, f~! are continuous maps.
4.10. Theorem. Let (X,C1), (Y,C2) be topological L-fuzzy closure spaces. Then the
following statements are equivalent for the map f: (X,C1) — (Y, Cb).

(1) f is an open map.

2) fIc, (A1) < Joy (F(N),7) for each X € LX, r € Lo.

@)

(3) Jor (F (1)) < £ (Ien (1)) for cach i€ LY, 7 € Lo.

(4) For any pn € LY and any r-closed X € L™ with f~'(u) < A, there exists an
r-closed set p € LY with p < p such that f~*(p) < \.

Proof. (1) = (2). Since (X, C1) is topological it is easy to see that Jo, (Jo; (A, 7),r) =
Jey (A1), whence J¢, (A, r) is r-open. Since f is an open map, f(J¢, (A, 7)) is r-open in
(Y, C>) and so

fOcr (A1) =Jes (FOer (A7), 7).
On the other hand, J¢, (A, 7) < Aso f(Ig, (A, 7)) < f(N), and hence
Jou (fTer (A ), ) < Jey (F(A), 7).

From the above inequalities we obtain f(Jo, (A, 7)) < Joy (F(N),7) for each A € L™, r €
L.

(2) = (3). For all p € LY, r € Lo, put A = f~'(u). From (2) we have
fUcy (f_l(:u)v 7)) <Jcy (f(f_l(,u)),r) <Jey(p,1)
by Lemma 2.5 (1). By Lemma 2.5 (2) this gives
Jey (fil(u)/r) < fﬁl(jcb (:u/v ’f’))
(3) = (4). Let X be r-closed such that f~*(u) < A, whence N < f~'(y/). Since
Joy (N, r) = X then
N = Je, ()\/7 r) <Jc, (f_l(ﬂ/)a"')'
From (3),
N < Je, (f_l(,u/)/") < f_l(jC2(N/,r))~
This implies that
A> (f 0 (W) = 7 (e (W', r)) = f7H(Calp, 7).
Since (Y,Cs) is topological, p = Ca(u,7) € LY is r-closed and satisfies u < p and
F7H ) <

(4) = (1). Let v be an 7-open set, put u = f(v)’ and A = v/ so that X is r-closed.
Then:

FH W =110w)) = Uw) < v =
From (4 ) there exists an r-closed set p Wlth u < psuch that f~!(p) < A = /. Hence,
v < (f7p)) = f~Hp"). Thus f(v) < f(f~(p")) < p'. On the other hand, since p < p,
f@)=(n) >p'. Hence f(v) = p’. That is, f(v) is r-open. O
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4.11. Theorem. Let (X,C1) and (Y, C2) be topological L-fuzzy closure spaces. Then the
following statements are equivalent for the map f: (X,C1) — (Y, Cb).

(1) f is a closed map.

(2) f(Ci(\ 7)) > Ca(f(N),7), YAE LY, r€ L.

(3) Ci(f M (w),r) = 71 (Calp, 1)), Yu e LY, r € Lo

(4) For any p € LY and any r-open A\ € L™, with f~*(u) < ), there exists an
r-open p € LY with u < p such that f~'(p) < \.

Proof. Similar to the proof of Theorem 4.10. O

4.12. Theorem. Let (X,C1), (Y,C2) be topological L-fuzzy closure spaces. Then the
following statements are true for a bijective map f: (X,C1) — (Y, C2).

(1) f is a closed map iff f~(Ca(p, 7)) < C1(f (), r) for each p € LY, r € Lo.
(2) f is a closed map iff f is open.

Proof. (1) = . Let f be a closed map. From Theorem 4.11 (2), for each A € L™, r € Lo,
f(C1(A, 7)) = Ca(f(A), 7).
For all u € LY, r € Lo, put A = f~'(u). Since f is onto, f(f'(u)) = u. Thus

FC( 7 ),m)) = Co(F (T (), 7) = Caaom)
This implies that
CL(f ™ (w)r) = £ FCF ™ ),m)) = £ (Calps )
. Put pu = f()\). Since f is injective,
FTHC(fN),m) S Cu(f 71 (FN), 1) = Ca(A, ).
Since f is onto, Ca(f(A),r) < f(Ci(A, 7).
(2). This follows easily from:
F7H(Ce(p, ) < Co(f 7 (),)
= [ (O (W',1)) < Qor (F (W), m))
= [ (') 2 9o (F7 (W), m)-

O
From the above theorems we obtain the following result.

4.13. Theorem. Let f: (X,C1) — (Y,C2) be a bijective map between the topological L-
fuzzy closure spaces (X,C1) and (Y,C2). Then the following statements are equivalent:

(1) f is a homeomorphism.

(2) f is a continuous map and an open map.

(3) f is a continuous map and a closed map.

(4) f(Ioy (N 7)) =Tey (F(N),7), for each A € L™, r € Lo.

(5) f(Ci(A\, 7)) = C2(f(N),7), for each A € L™, r € Ly.

(6) Je (f (1)) = I~ (g (u,1)), for each p € LY, r € Lo.
(7) Ci(f~H(w),r) = fFH(Ca(u,7)), for each p € LY, r € Lo.

4.14. Theorem. Let (X,T1),(Y,T2) be L-fuzzy topological spaces, and denote the cor-
responding L-fuzzy closure spaces by (X,C1), (Y,C2) respectively. Then a function
f+(X,T1) — (Y, T2) is LF-continuous iff f: (X,C1) — (Y,C,) is a continuous map.
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Proof. Let f be LF-continuous. Then for all A € LX, r € L
Co(F(N),r) = Oy (f(N), 1) = Nl e LY, > f(N), Ta(u) 2 7).

(See Propositions 2.3 and 3.2). But from p > f(A) we will have f~!(u) > A, while from
the definition of LF-continuity, » < T2(¢') < T1(f (1)) = T1(f~*()’). Thus we can
write:

Ca(f(N),r) = N{ne L [u>f(N), r < To()}
> AN{rr ‘1< )= A Ti(f N (w)) >}

> FAN{FN (W) =X T (w)) > r})
Ef(Cl(/\ﬂ“))

Then f(Ci(A, 7)) < Ca2(f(A),r), i.e f is a continuous map.

Conversely, let f be a continuous map. It will be sufficient to prove that T5(u) <

T1(f~ (1)) Y € LY (see Proposition 2.3). Take p € LY. By Theorem 3.4 we have T =
T¢,, so by Proposition 3.3 we must prove that \/{r € Lo | Ca(u,7) = p} < T5(f ' (1)).
This is true if Co(p,7) = p = r < T4H(f ' (1), so suppose there exists some r¢ € Lo
satisfying Ca2(u,70) = p and ro £ T5(f 1 (p))-

Since f is a continuous map and using Lemma 2.5 we have f(C1(f~'(u),70)) <
Ca(p,m0) = p. This leads to:

Cr(f ™ (ym0)) < FHF(Co(f ™ (m),m0))) < F7H (W),

that is,

Cr(f~H (w)ro) < M (W)

Hence C1(f (1), r0) = f~ () since f~ () < C1(f~ (1), 70). Again by Theorem 3.4
and Proposition 3.3 we have T1(f~'(1)) = T6, (f (1)) = V{r € Lo | C1:(f *(w),7) =
f~H(w)} > ro, which is contradiction. O

4.15. Theorem. Let (X,C1),(Y,C2) be L-fuzzy closure spaces. If f: (X,C1) — (Y, C2)
is a continuous map then f: (X,T1) — (X,T2) is LF-continuous, but the converse is
false in general. Here, T1, T2 are defined by the equalities T1(X) = T, (X') and Te,(A) =
To,(X).

Proof. The proof of continuity = LF-continuity in Theorem 4.14 relies on the equali-
ties T}, = ‘J"Ck, k = 1,2. Here these equalities hold by definition, so essentially the same
proof holds here too.

To show that the converse is false in general, consider the following example.

4.16. Example. Let X = {z,y,z}. We denote by x, the characteristic function of a
subset A of X. Let L = [0,1] = I, so that Iy = (0, 1].
We define Cy,Cs : I x Iy — I as follows:
0 ifA=0,rel
Cl()\,’l‘)z X{z} ifA=25, s€lp, 0<r<

1 otherwise,

1
2
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and

0 ifA:Q,T'GIo

if \=xs, s€lp, 0<r<2i
Calry =  Xoy A= 0 s€ o, 0<r <]
X{z} 1f)\:zs,selo,r§§
1 otherwise,
where x5, zs denote fuzzy points. Then the identity map idx: (X,C1) — (X, C2) is not

a continuous map because for any s € Iy,
1=Cu(zs, 3) £ C2(2s, 1) = X{a}-
On the other hand, from the definition of T¢,, Tc, : R

1 ifA=0Qorl
Ter (A) =Tey(N) % if A= X{z,y}>
0, otherwise.

Hence idx : (X,T¢,) — (X,T¢,) is LF-continuous.

This shows that for the above fuzzy I-closure spaces, id x is an LF'-continuous mapping
which is not continuous. O

4.17. Theorem. Let (X,C4), (Y, C2) be L-fuzzy closure spaces and f: (X,C1) — (Y, C2)
a map. Then the following statements are equivalent:

(1) f is a continuous map
(2) CL(fH(w),r) < F7H(C: 2(v 1), VvelL”, re Lo.
(3) f 0y (v, 7)) <Jey (FH(v),r), Vv € LY, r € Lo.

Proof. (1) = (2). Let v € LY and set pu = f Yw) in f(Ci(p, 7)) < Co(f(1), 7). Since
Co(ff7H(v),7) < Ca(v,7), we get f(Ci(f~'(v),7)) < Ca(vyr). Thus Ci(f7'(v),7) <
Y C(v, 7)), Vv e L

(2) = (1). Take u € L*. Using (2) this leads to C1(f~ ( (W), ) < F7HC(f (1), 7).
Hence, C1(p,) < f~1(Ca(f (1), 7)), and so f (Ci(n,7)) < Ca(f (M)ﬂ“) So, f is continu-
ous.

(2) = (3). Since C1(f~(¥),r) < f~H(C2(V,7)), then applying the involution
to both sides gives (f~1(C2(v',7))) < (Ci(f~1(v)),r))". However, (f~*(Ca(v,1))) =
FHC2(V,7)"), so we have

F T 0es(v,r) <Je (F7H (), 7).
(3) = (2). Trivial from the definition of J¢. O

If C: LX x Ly — L% is a L-fuzzy closure operator on X, then for each r € Lo,
Cy: L* — L¥ defined by C.(\) = C()\,7) is a Chang L-fuzzy closure operator on X [4].

5. r-semiopen and r-semiclosed sets in L-fuzzy closure spaces

5.1. Definition. Let (X,C) be L-fuzzy closure space. For A € L™ and r € Lo:
(1) X is called an r-semiopen set if there exists an r-open set v € L such that
v< A< C(y,r).
(2) X is called an r-semiclosed set if there exists an r-closed set v € L~ such that
Je(v,r) < A< w.
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5.2. Remark. (1) If X is r-semiopen then A < C(Jc (A, ), 7). Conversely, if this inequal-
ity is satisfied and (X, C) is topological then X is r-semiopen.
(2) If A is r-semiclosed then Io(C(\, 7), ) < A. Conversely, if this inequality is satisfied
and (X, C) is topological then A is r-semiclosed.

5.3. Definition. Let (X,C) be an L-fuzzy closure space. The r-semiclosure SC(u,r),
r e Lo, p € LY, is defined by

SC(u,r) = /\ {pe LX | p<p, pis r-semiclosed }
and the r-semi-interior SJc is defined by
SIc(p,r) = \/ {pe L™ | u>p, pis r-semiopen}.
From the above definitions we clearly have SI¢(u,7) < p < SC(u,r), while if (X, C)
is topological,
Jo(p,r) < Se(p,r) < p < SC(p,r) < Clp,r).
5.4. Remark. Since an arbitrary union of r-open sets is r-open by Proposition 4.2,

it is easy to show that an arbitrary union of r-semiopen sets is r-semiopen. Hence, in
particular, the r-semi-interior of y € LX is r-semiopen.

In just the same way, an arbitrary intersection of r-semiclosed sets is r-semiclosed,
and the r-semiclosure of p € L¥ is r-semiclosed.
5.5. Definition. Let f: (X,C1) — (Y,C2) be a map from an L-fuzzy closure space
(X, C1) to another L-fuzzy closure space (Y, C2), and r € Lo. Then f is called:

(1) A semicontinuous map if f~'(v) is an r-semiopen set for each r-open set v € LY,
or equivalently, if f~'(v) is an r-semiclosed set for each r-closed set v € LY |

(2) A semiopen map if f(u) is an r-semiopen set for each r-open set p € L™,

(3) A semiclosed map if f(u) is an r-semiclosed set for each r-closed set p € LX.

5.6. Theorem. Let (X,C1), (Y,C2) be topological L-fuzzy closure spaces. Then the
following are equivalent for a map f: (X,C1) — (Y, Ca).

(1) f is a semicontinuous map.
(2) Jo, (CL(f~ (W), 7),7) < fH(Ca(v, 7)) for each v € LY, 7 € Lo.
(3) F(cy (Clp),1)) < Ca(f (), 1) for cach e LY, 1 € Lo.

Proof. : (1) = (2). Let f be a semicontinuous map, v € LY. Then Ca(v,r) is -
closed since (X, Cs) is topological, so since f is a semicontinuous map, f~'(C2(v,r)) is
r-semiclosed. Thus

F7H(Ca(v,m) = Iy (Cr(f T (Ca(vy 7)), ), ) > Dy (Co(f T (v), 1), 7).
(2) = (3). Let p € L. Then f(u) € LY. By (2),
FTHCf(),m) 2 Tea (Cr(f T F(1),7) = Ty (Ca(py ), ).

Hence
Ca(f(u),r) = FFH(Ca(f(1),7)) = fTcy (Calp, ), 7).
(3) = (1). Let v be an r-closed set. Since f~'(v) € L™ we have by (3),
FOc, (Cr(f7 (W), 7),r) < Calff 7 (0),1) < Calw7) = v
So
Jey (Ol(fil(l/)vr)ar) < filf(jcl (Cl(fil(y)ar)’r)) < fﬁl(y)‘
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Since (X, C1) is topological, f~!(v) is an r-semiclosed set by Remark 5.2 (2), and hence
f is a semicontinuous map. |

5.7. Remark. Clearly, every continuous (resp. open, closed) map is a semicontinuous
(resp. semiopen, semiclosed) map.

5.8. Theorem. Let (X,C1), (Y,C2) be topological L-fuzzy closure spaces. Then the
following statements are equivalent for the map f: (X,C1) — (Y, Cb).

(1) f is a semicontinuous map.

(2) £(SC1(,1)) < Ca(f (). ) for cach i € L¥, 1 € Lo.

(3) SCl( tw),r) < fH(Ca(v,7)) for each v € LY, r € Lo.
(4) f'9¢cy(v,7)) < 8Ic, (f 1 (v),r) for each v € LY.

Proof. Left to the reader. |

5.9. Theorem. For L-fuzzy closure spaces (X,C1), (Y,C2) with (Y,C2) topological, let
[ (X,C1) — (Y,Ca2) be a bijection. Then f is a semicontinuous map iff I, (f(p),r) <
f(SIc, (, 7)) for each p € L™ and r € Lo.

Proof. Let f be a semicontinuous map and pu € L~ . By hypothesis ¢, (f (1), 7) is r-open,
so f~'(Jc, (f(p),7)) is r-semiopen. Since f is one to one, we have

F7 e (f(u),m)) < SIey (fF 7 (1)) = STey (s 7).
Since f is onto,

Jeo (f(u),r) = [ (Oea (F (1), ) < f(STecy (7))
Conversely, let v be an r-open set. Then J¢, (v,7) = v. Since f is onto,

F(STey (f7 (0),1) 2 Ty (FF 71 (@), 1) = Ty (i) = v.
Since f is one to one, we have

FH@) < (ST (71 0),m) = SToy (f 7 (w),m) < £ ().
Thus f~'(v) = SJIc, (f~'(v),r), and hence f~'(v) is r-semiopen. Therefore f is a
semicontinuous map. ]
5.10. Theorem. Let (X,C4), (Y,C2) be L-fuzzy closure spaces with (X, C1) topological.
Then the following statements are equivalent for a map f: (X,C1) — (Y, C2).

(1) f is a semiopen map.
(2) £y (1)) < SIey (£(1),7) for each p € L, 7 € Lo,
(3) oy (fH(w),7) < f7H(STcy (v, 7)) for each v € LY, r € Lo.

Proof. (1) = (2). Take u € L*. By hypothesis J¢, (11,7) is an r-open set. Hence, since
f is a semiopen map, f(J¢, (i, 7)) is an r-semiopen set. Thus

fOcy(psm)) = SIc, (fTey (ps7))s ) < STey (f(1), 7).
(2) = (3). Let v € LY. Then f~'(v) € L*. By (2),
f(jcl (f_l(l/)vr)) < Sjcz (ff_l(l/),r) < SjC’z (Vv T)'

Thus we have
Jey (fil(y)/r) < filf(jcl (fil(y)vr)) < fﬁl(sjcz(% r)).
(3) = (1). Let p be an r-open set. Then J¢, (u,7) = p. Since f(u) € LY we have
by (3),
w=1Jc,(pr) <Je (filf(/l)vr) < fﬁl(SjC’z (f(w), 7))
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Hence we have

F(1) < 57189, (f(),1) < STey (f(1),7) < F(h)-
Thus f(p) = SIe, (f(u),7), and so f(u) is an r-semiopen by Remark 5.4. Therefore, f
is a semiopen map. O
5.11. Theorem. Let (X,C4), (Y,C2) be L-fuzzy closure spaces with (X, C1) topological.
Then the following statements are equivalent for a map f: (X,C1) — (Y, C2).
(1) f is a semiclosed map.

(2) SCo(f(p),7) < f(Ci(p,7)) for each p € L, v € Lo.

Proof. (1) => (2). Let u € L*. By hypothesis, C1(u,r) is an r-closed set. Since f is a
semiclosed map, f(C1(p,7)) is an r-semiclosed set. Thus we have

SCQ(f(:U‘)vr) < SC?(f(Cl(/“LvT))7 71) = f(Cl(/L, 71))
(2) = (1). Let p be an r-closed set. Then Ci(u,7) = p. By (2),

SCy(f(p);r) < f(Crlp, 7)) = f(p) < SC2(f (1), ).
Thus f(p) = SCa(f(u),r), and hence f(u) is r-semiclosed by Remark 5.4. Therefore, f
is a semiclosed map. O

5.12. Theorem. For L-fuzzy closure spaces (X,C1), (Y,C2) with (X,C1) topological,
let f: (X,C1) — (Y, Cs) be a bijection. Then f is a semiclosed map iff f~*(SCa(v,r)) <
Ci(f'(v),r) for eachv € LY r € Lo.

Proof. Let f be a semiclosed map and v € LY. Then f~*(v) € L. Since f is onto, we
have

SCa(v,r) = SCo(ff ' (v),r) < F(C2(f T (v), 7))
by Theorem 5.10. Since f is one to one, we have
FTHSCo(vr)) < FTH(CU( T ), m) = CL(F T (), 7).
Conversely, let p be r-closed, Then C1(u,r) = p. Since f is onto, we have
SCo(f(p),r) = fFH(SCa(f(w),7) < fu) < SC2(f (1), 7).

Thus f(u) = SC2(f(u),r), and hence f(u) is r- semiclosed. Therefore f is a semiclosed
map. O

5.13. Theorem. Let (X,C4), (Y,C2), (Z,C3) be L-fuzzy closure spaces. Let f: (X,C1) —
(Y,C2) and g: (Y,C2) — (Z,C3) be open maps. Then the composition gof: X — Z is
an open map.

Proof. Straightforward. |

5.14. Theorem. Let (X,C4), (Y,C2), (Z,C3) be L-fuzzy closure spaces. Let f: (X,C1) —
(Y,C2) and g: (Y,C2) — (Z,C3) be closed maps. Then the composition gof: X — Z is
a closed map.

Proof. Straightforward. a
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