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Abstract

Let N be a 2−torsion free prime near-ring with center Z, (f, d) and
(g, h) two generalized derivations on N . In this case: (i) If f([x, y]) =
0 or f([x, y]) = ±[x, y] or f2(x) ∈ Z for all x, y ∈ N , then N is a
commutative ring. (ii) If a ∈ N and [f(x), a] = 0 for all x ∈ N , then
d(a) ∈ Z. (iii) If (fg, dh) acts as a generalized derivation on N , then
f = 0 or g = 0.
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1. Introduction

Throughout this paper N will denote a zero symmetric left near-ring with multiplica-
tive centre Z. Recall that a near-ring N is prime if xNy = 0 implies x = 0 or y = 0. An
additive mapping d : N → N is said to be a derivation on N if d(xy) = xd(y)+d(x)y for
all x, y ∈ N or equivalently, as noted in [3], that d(xy) = d(x)y + xd(y) for all x, y ∈ N .
Further an element x ∈ N for which d(x) = 0 is called a constant. For x, y ∈ N the
symbol [x, y] will denote the commutator xy − yx, while the symbol (x, y) will denote
the additive-group commutator x + y − x− y.

Over the last two decades, a lot of work has been done on commutativity of prime
rings with derivation. It is natural to look for comparable results on near-rings and this
has been done [1,3,4] (where further references can be found). Recently, in [5], Bresar
defined the following notation:

An additive mapping f : R → R is called a generalized derivation if there exits a
derivation d of R such that

f(xy) = f(x)y + xd(y) for all x, y ∈ R.

The concept of generalized derivation cover also the concept of a derivation. In the
present paper we extend some well-known results concerning derivations of prime rings
to generalized derivations of prime near-rings.
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2. Preliminaries

We will make use of the following lemmas.

2.1. Lemma. [4, Lemma 1] Let d be an arbitrary derivation on a near-ring N . Then N
satisfies the following partial distributive law:

(ad(b) + d(a)b)c = ad(b)c + d(a)bc

and

(d(a)b + ad(b))c = d(a)bc + ad(b)c

for all a, b, c ∈ N .

2.2. Lemma. [4, Lemma 3] Let N be a 3-prime near-ring.

(i) If z ∈ Z/{0}, then z is not a zero divisor in N .

(ii) If Z/{0} contains an element z for which z + z ∈ Z, then (N,+) is abelian.
(iii) Let d be a nonzero derivation on N . Then xd(N) = {0} implies x = 0, and

d(N)x = {0} implies x = 0.
(iv) If N is 2-torsion free and d is a derivation on N such that d2 = 0, then d = 0.

2.3. Definition. [7, Definition 1] Let N be a near-ring and d a derivation of N . An
additive mapping f : N → N is said to be a right generalized derivation of N associated

with d if

(2.1) f(xy) = f(x)y + xd(y) for all x, y ∈ R.

and f is said to be a left generalized derivation of N associated with d if

(2.2) f(xy) = d(x)y + xf(y) for all x, y ∈ R.

Finally, f is said to be a generalized derivation of N associated with d if it is both a left
and right generalized derivation of N associated with d.

2.4. Lemma. [7, Lemma 2]

(i) Let f be a right generalized derivation of a near ring N associated with d. Then
f(xy) = xd(y) + f(x)y for all x, y ∈ N .

(ii) Let f be a left generalized derivation of near ring N associated with d. Then

f(xy) = xf(y) + d(x)y for all x, y ∈ N .

2.5. Lemma. [7, Lemma 3]

(i) Let f be a right generalized derivation of the near ring N associated with d. Then
(f(x)y + xd(y))z = f(x)yz + xd(y)z for all x, y ∈ N .

(ii) Let f be a left generalized derivation of the near ring N with associated d. Then
(d(x)y + xf(y))z = d(x)yz + xf(y)z for all x, y ∈ N .

2.6. Lemma. [7, Lemma 4] Let N be a prime near-ring, f a nonzero generalized deriva-

tion of N associated with the nonzero derivation d, and a ∈ N .

(i) If af(N) = 0, then a = 0.
(ii) If f(N)a = 0, then a = 0.

2.7. Lemma. [7, Theorem 5] Let f be a generalized derivation of N associated with the

nonzero derivation d. If N is a 2-torsion free near-ring and f 2 = 0, then f = 0.

2.8. Lemma. [7, Theorem 6] Let N be a prime near-ring with a nonzero generalized

derivation f associated with d. If f(N) ⊂ Z, then (N,+) is abelian. Moreover, if N is

2-torsion free, then N is commutative ring.
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3. Results

We denote a generalized derivation f : N → N determined by a derivation d of N by
(f, d). We assume that d is a nonzero derivation of N unless stated otherwise.

The following two theorems are motivated by [2, Theorem 3] and [6, Theorem 1],
respectively.

3.1. Theorem. Let (f, d) be a generalized derivation of N . If f([x, y]) = 0 for all

x, y ∈ N , then N is commutative ring.

Proof. Assume that f([x, y]) = 0 for all x, y ∈ N . Substitute xy instead of y, obtaining

f([x, xy]) = f(x[x, y]) = d(x)[x, y] + xf([x, y]) = 0.

Since the second term is zero, it is clear that

(3.1) d(x)xy = d(x)yx for all x, y ∈ N.

Replacing y by yz in (3.1) and using this equation, we get

d(x)N [x, z] = 0 for all x, z ∈ N.

Hence either x ∈ Z or d(x) = 0. Let K = {x ∈ N | x ∈ Z} and L = {x ∈ N | d(x) = 0}.
Then K and L are two additive subgroups of (N,+) = K ∪L. However, a group cannot
be the union of proper subgroups, hence either N = K or N = L. Since d 6= 0, we are
forced to conclude that N is commutative ring. ¤

3.2. Theorem. Let (f, d) be a generalized derivation of N . If f([x, y]) = ±[x, y] for all
x, y ∈ N , then N is a commutative ring.

Proof. Assume that f([x, y]) = ±[x, y] for all x, y ∈ N . Replacing y by xy in the
hypothesis, we have

f([x, xy]) = ±(x2y − xyx) = ±x[x, y].

On the other hand,

f([x, xy]) = f(x[x, y]) = d(x)[x, y] + xf([x, y]) = d(x)[x, y] + x(±[x, y]).

It follows from the two expressions for f([x, xy]) that

d(x)xy = d(x)yx for all x, y ∈ N.

Using the same argument as in the proof of Theorem 3.1, we get that N is a commutative
ring. ¤

3.3. Theorem. Let (f, d) be a nonzero generalized derivation of N . If f acts as a

homomorphism on N , then f is the identity map.

Proof. Assume that f acts as a homomorphism on N . Then one obtains

(3.2) f(xy) = f(x)f(y) = d(x)y + xf(y) for all x, y ∈ N.

Replacing y by yz in (3.2), we arrive at

f(x)f(yz) = d(x)yz + xf(yz).

Since (f, d) be a generalized derivation and f acts as a homomorphism on N , we deduce
that

f(xy)f(z) = d(x)yz + xd(y)z + xyf(z).

By Lemma 2.5 (ii), we get

d(x)yf(z) + xf(y)f(z) = d(x)yz + xd(y)z + xyf(z),
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and so

d(x)yf(z) + xf(yz) = d(x)yz + xd(y)z + xyf(z).

That is,

d(x)yf(z) + xd(y)z + xyf(z) = d(x)yz + xd(y)z + xyf(z).

Hence, we deduce that

d(x)y(f(z)− z) = 0 for all x, y, z ∈ N.

Because N is prime and d 6= 0, we have f(z) = z for all z ∈ N . Thus, f is the identity
map. ¤

3.4. Theorem. Let (f, d) be a nonzero generalized derivation of N . If f acts as an

anti-homomorphism on N , then f is the identity map.

Proof. By the hypothesis, we have

(3.3) f(xy) = f(y)f(x) = d(x)y + xf(y) for all x, y ∈ N.

Replacing y by xy in the last equation, we obtain

f(xy)f(x) = d(x)xy + xf(xy).

Since (f, d) is a generalized derivation and f acts as an anti-homomorphism on N , we
get

(d(x)y + xf(y))f(x) = d(x)xy + xf(y)f(x).

By Lemma 2.5 (ii), we conclude that

d(x)yf(x) + xf(y)f(x) = d(x)xy + xf(y)f(x),

and so

d(x)yf(x) = d(x)xy for all x, y ∈ N.

Replacing y by yz and using this equation, we have

d(x)N [f(x), z] = 0 for all x, z ∈ N.

Hence we obtain the following alternatives: d(x) = 0 or f(x) ∈ Z, for all x ∈ N . By
a standard argument, one of these must hold for all x ∈ N . Since d 6= 0, the second
possibility gives that N is commutative ring by Lemma 2.8, and so we deduce that f is
the identity map by Theorem 3.3. ¤

3.5. Theorem. Let (f, d) be a generalized derivation of N such that d(Z) 6= 0, and
a ∈ N . If [f(x), a] = 0 for all x ∈ N , then a ∈ Z.

Proof. Since d(Z) 6= 0, there exists c ∈ Z such that d(c) 6= 0. Furthermore, as d is
a derivation, it is clear that d(c) ∈ Z. Replacing x by cx in the hypothesis and using
Lemma 2.5 (ii), we have

f(cx)a = af(cx)

d(c)xa + cf(x)a = ad(c)x + acf(x).

Since c ∈ Z and d(c) ∈ Z, we get

d(c)N [y, a] = 0 for all y ∈ N.

By the primeness of N and 0 6= d(c) ∈ Z, we obtain that a ∈ Z. ¤

3.6. Theorem. Let (f, d) be a generalized derivation of N , and a ∈ N . If [f(x), a] = 0
for all x ∈ N , then d(a) ∈ Z.
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Proof. If a = 0, then there is nothing to prove. Hence, we assume that a 6= 0.

Replacing x by ax in the hypothesis, we have

f(ax)a = af(ax)

d(a)xa + af(x)a = ad(a)x + aaf(x).

Using f(x)a = af(x), we have

d(a)xa = ad(a)x for all x ∈ N.

Taking xy instead of x in the last equation and using this, we conclude that

d(a)N [a, y] = 0 for all y ∈ N.

Since N is a prime near-ring, we have either d(a) = 0 or a ∈ Z. If 0 6= a ∈ Z, then
(N,+) is abelian by Lemma 2.2 (ii). Thus

f(xa) = f(ax)

f(x)a + xd(a) = d(a)x + af(x),

and so

[d(a), x] = 0 for all x ∈ N.

That is, d(a) ∈ Z. Hence in either case we have d(a) ∈ Z. This completes the proof. ¤

3.7. Theorem. Let ( f, d) be a generalized derivation of N . If N is a 2-torsion free

near-ring and f2(N) ⊂ Z, then N is a commutative ring.

Proof. Suppose that f2(N) ⊂ Z. Then we get

f2(xy) = f2(x)y + 2f(x)d(y) + xd2(y) ∈ Z for all x, y ∈ N.

In particular, f2(x)c + 2f(x)d(c) + xd2(c) ∈ Z for all x ∈ N, c ∈ Z. Since the first
summand is an element of Z, we have

(3.4) 2f(x)d(c) + xd2(c) ∈ Z for all x ∈ N, c ∈ Z.

Taking f(x) instead of x in (3.4), we obtain that

2f2(x)d(c) + f(x)d2(c) ∈ Z for all x ∈ N, c ∈ Z.

Since d(c) ∈ Z, f2(x) ∈ Z, and so f2(x)d(c) ∈ Z for all x ∈ N, c ∈ Z, we conclude

f(x)d2(c) ∈ Z for all x ∈ N, c ∈ Z.

Since N is prime, we get d2(Z) = 0 or f(N) ⊆ Z. If f(N) ⊆ Z then N is a commutative
ring by Lemma 2.8. Hence, we assume d2(Z) = 0. By (3.4), we get

2f(x)d(c) ∈ Z for all x ∈ N, c ∈ Z.

Since N is a 2-torsion free near-ring and d(c) ∈ Z, we obtain that either f(N) ⊂ Z or
d(Z) = 0. If f(N) ⊂ Z, then we are already done. So, we may assume that d(Z) = 0.
Then

f(cx) = f(xc)

f(c)x + cd(x) = f(x)c + xd(c),

and so

(3.5) f(c)x + cd(x) = f(x)c for all x ∈ N, c ∈ Z.

Now replacing x by f(x) in (3.5), and using the fact that f 2(N) ⊂ Z, we get

f(c)f(x) + cd(f(x)) = f2(x)c for all x ∈ N, c ∈ Z.
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That is,

(3.6) f(c)f(x) + cd(f(x)) ∈ Z for all x ∈ N, c ∈ Z.

Again taking f(x) instead of x in this equation, one can obtain

f(c)f2(x) + cd(f2(x)) ∈ Z for all x ∈ N, c ∈ Z.

The second term is equal to zero because of d(Z) = 0. Hence we have

f(c)f2(x) ∈ Z for all x ∈ N, c ∈ Z.

Since f2(N) ⊂ Z by the hypothesis, we get either f 2(N) = 0 or f(Z) ⊂ Z. If f2(N) = 0,
then the theorem holds by Lemma 2.7. If f(Z) ⊂ Z, then f(xf(c)) = f(f(c)x) for all
x ∈ N, c ∈ Z, and so

d(x)f(c) = f(c)f(x) for all x ∈ N, c ∈ Z.

Using f(c) ∈ Z, we now have

f(c)(d(x)− f(x)) = 0 for all x ∈ N, c ∈ Z.

Since f(Z) ⊂ Z, we have either f(Z) = 0 or d = f . If d = f , then f is a derivation of N
and so N is commutative ring by Lemma 2.7.

Now assume that f(Z) = 0. Returning to the equation (3.5), we have

c(d(x)− f(x)) = 0 for all x ∈ N, c ∈ Z.

Since c ∈ Z we have either d = f or Z = 0. Clearly d = f implies the theorem
hoşds. If Z = 0, then f2(N) = 0 by the hypothesis, and so N is a commutative ring by
Lemma 2.2 (iv). Hence, the proof is completed. ¤

3.8. Corollary. Let N be a 2-torsion free near-ring, ( f, d) a nonzero generalized deriva-
tion of N . If [f(N), f(N)] = 0, then N is a commutative ring.

3.9. Lemma. Let (f, d) and (g, h) be two generalized derivations of N . If h is a nonzero

derivation on N and f(x)h(y) = −g(x)d(y) for all x, y ∈ N , then (N,+) is abelian.

Proof. Suppose that

f(x)h(y) + g(x)d(y) = 0 for all x, y ∈ N.

We substitute y + z for y, thereby obtaining

f(x)h(y) + f(x)h(z) + g(x)d(y) + g(x)d(z) = 0.

Using the hypothesis, we get

f(x)h(y, z) = 0 for all x, y, z ∈ N.

It follows by Lemma 2.6 (ii) that h(y, z) = 0 for all y, z ∈ N . For any w ∈ N , we have

h(wy, wz) = h(w(y, z)) = h(w)(y, z) + wh(y, z) = 0,

and so

h(w)(y, z) = 0 for all w, y, z ∈ N.

An appeal to Lemma 2.2 (iii) yields that (N,+) is abelian. ¤

3.10. Theorem. Let (f, d) and (g, h) be two generalized derivations of N . If N is

2-torsion free and f(x)h(y) = −g(x)d(y) for all x, y ∈ N , then f = 0 or g = 0.
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Proof. If h = 0 or d = 0, then the proof of the theorem is obvious. So, we may assume
that h 6= 0 and d 6= 0. Therefore we know that (N,+) is abelian by Lemma 3.9.

Now suppose that

f(x)h(y) + g(x)d(y) = 0 for all x, y ∈ N.

Replacing x by uv in this equation and using the hypothesis, we get

f(uv)h(y) + g(uv)d(y) = uf(v)h(y) + d(u)vh(y) + ug(v)d(y) + h(u)vd(y) = 0,

and so

(3.7) d(u)vh(y) = −h(u)vd(y) for all u, v, y ∈ N.

Taking yt instead of y in the above relation, we obtain

d(u)vh(y)t + d(u)vyh(t) = −h(u)vd(y)t− h(u)vyd(t).

That is,

(3.8) d(u)vyh(t) = −h(u)vyd(t) for all u, v, y, t ∈ N.

Replacing y by h(y) in (3.8) and using this relation, we have

h(u)N(d(y)h(t)− h(y)d(t)) = 0 for all u, y, t ∈ N.

Since N is a prime near-ring and h 6= 0, we obtain that

(3.9) d(y)h(t) = h(y)d(t) for all y, t ∈ N.

Now again taking uv instead of x in the initial hypothesis, we get

f(u)vh(y) + ud(v)h(y) + g(u)vd(y) + uh(v)d(y) = 0.

Using (3.9) yields that

f(u)vh(y) + 2uh(v)d(y) + g(u)vd(y) = 0 for all u, v, y ∈ N.

Taking h(v) instead of v in this equation, we arrive at

f(u)h(v)h(y) + 2uh2(v)d(y) + g(u)h(v)d(y) = 0.

By the hypothesis and (3.9), we have

0 = −g(u)d(v)h(y) + 2uh2(v)d(y) + g(u)h(v)d(y)

= −g(u)h(v)d(y) + 2uh2(v)d(y) + g(u)h(v)d(y),

and so

2uh2(v)d(y) = 0 for all u, v, y ∈ N.

Since N is a 2-torsion free prime near-ring, we obtain that h2(N)d(N) = 0. An appeal
to Lemmas 2.2 (iii) and (iv) gives that h = 0. This contradicts by our assumption. Thus
the proof is completed. ¤

3.11. Theorem. Let (f, d) and (g, h) be two generalized derivations of N . If (fg, dh)
acts as a generalized derivation on N , then f = 0 or g = 0.

Proof. By calculating fg(xy) in two different ways, we see that

g(x)d(y) + f(x)h(y) = 0 for all x, y ∈ N.

The proof is completed by using Theorem 3.10. ¤
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References

[1] Bell, H. E. On derivations in near-rings II, Kluwer Academic Publ. Math. Appl. Dordr. 426,
191–197, 1997.

[2] Bell, H. E. and Daif, M. N. On derivations and commutativity in prime rings, Acta Math.
Hungar 66 (4), 337–343, 1995.

[3] Bell, H. E. and Mason, G. On derivations in near-rings and rings, Math. J. Okayama Univ.
34, 135–144, 1992.

[4] Bell, H. E. and Mason G. On derivations in near-rings (in: Near-rings and Near-fields,

North-Holland Mathematical Studies 137, 1987), 31–35.

[5] Bresar M. On the distance of composition of two derivations to the generalized derivations,

Glasgow Math. J. 33, 89–93, 1991.

[6] Daif, M. N. and Bell, H. E. Remarks on derivations on semiprime rings, Internat J. Math.

and Math. Sci. 15 (1), 205–206, 1992.
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