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Abstract

The notion of difunction between textures has proved to be of consid-
erable interest and importance. In this paper the authors consider real
difunctions, that is difunctions from a given texture (S, S) to the real
texture (R,R), and seek representations of such difunctions in terms of
ordinary point functions. It is shown that in general real difunctions
cannot be represented in terms of real-valued point functions on S, but
that they can be represented by real-valued point functions on the core
S[ of S. Equivalently, it is shown that instead of restricting to the core
of S, the real texture (R,R) may be replaced by the extended real tex-
ture (R+,R+) and representations obtained in terms of point functions
from S to R+.
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1. Introduction

There is now a considerable literature on the theory of ditopological texture spaces,
and an adequate introduction to this theory and the motivation for its study may be
obtained from [2, 3, 4, 5, 6, 7].

For a texture (S, S), most properties are conveniently defined in terms of the p-sets
Ps =

⋂
{A ∈ S | s ∈ A} and the q-sets, Qs =

∨
{A ∈ S | s /∈ A}. However, as noted in [1]

we may associate with (S, S) the C-space (core-space) [9, 10, 11, 13, 14] (S, Sc), and then
the frequently occurring relationship Ps′ 6⊆ Qs, s, s

′ ∈ S, is equivalent to s ωS s
′, where

ωS is the interior relation for (S, S
c). In this paper we will use whichever notation seems

to be the more convenient in each particular instance.

We will be especially interested in the real texture (R,R), where R denotes the set of
real numbers and R is the texturing {(−∞, r] | r ∈ R} ∪ {(−∞, r) | r ∈ R} ∪ {R, ∅}.
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The natural ditopology on (R,R) is (τR, κR), where τR = {(−∞, r) | r ∈ R} ∪ {R, ∅} and
κR = {(−∞, r] | r ∈ R}∪{R, ∅}. Clearly for r ∈ R we have Pr = (−∞, r], Qr = (−∞, r),
so Pr 6⊆ Qr′ ⇐⇒ r′ ≤ r ⇐⇒ r′ ωR r.

The notion of difunction [5, Definition 2.22] is of particular importance, and one of
the main categories of textures considered to date is the category dfTex of textures
and difunctions. Likewise, dfDitop denotes the category of ditopological texture spaces
and bicontinuous difunctions. dfDitop is known to be topological over dfTex [6, The-
orem 3.6]. However, we will not be considering categorical aspects of our work in this
paper.

Our main object of study in this paper will be the family DF(S) of real difunctions
on a texture (S, S), that is the family of difunctions (f, F ) : (S, S)→ (R,R). This family
was first studied in [8], where it was shown that the operations of meet, join and sum on
R extend to corresponding operations on DF(S), the result being an additive lattice. In
the case where (S, S) has a ditopology, (τ, κ), and (R,R) is given its natural ditopology,
it is also shown in [8] that the above operations on DF(S) restrict naturally to the family
BDF(S) of bicontinuous real difuctions on (S, S, τ, κ). We will interested in the way
that the representations we obtain for the elements of DF(S), and more particularly of
BDF(S), relate with the operations defined in [8].

In general difunctions are not directly related to ordinary (point) functions between
the base sets, but we recall from [5, Lemma 3.4] that if (S, S), (T,T) are textures and
ϕ : S → T a point function satisfying the compatibility condition

(a) Ps 6⊆ Qs′ =⇒ Pϕ(s) 6⊆ Qϕ(s′),

then the formulae

(1.1)
fϕ =

∨
{P (s,t) | ∃u ∈ S with Ps 6⊆ Qu and Pϕ(u) 6⊆ Qt},

Fϕ =
⋂
{Q(s,t) | ∃ v ∈ S with Pv 6⊆ Qs and Pt 6⊆ Qϕ(v)},

define a difunction (fϕ, Fϕ) from (S, S) to (T,T). Moreover, it is easy to verify that for
each B ∈ T we have f←ϕ B = ϕ←B = F←ϕ B, where

(1.2) ϕ←B =
∨
{Pu | ϕ(u) ∈ B} =

⋂
{Qv | ϕ(v) /∈ B}.

It will be noted that the compatibility condition (a) merely expresses the fact that ϕ
preserves the interior relation, so a point function satisfying this condition could be
referred to as ω-preserving, although for compatibility with [8] we will continue to say
that it satisfies condition (a) throughout this paper.

Conversely, if (S, S) is plain or (T,T) is simple, then each difunction may be repre-
sented as in (1.1) by a unique point function ϕ satisfying (a) and the additional condition

(b) Pϕ(s) 6⊆ B, B ∈ T =⇒ ∃ s′ ∈ S with Ps 6⊆ Qs′ for which Pϕ(s′) 6⊆ B

of [5, Propositions 3.6,3.7]). In the general case, however, it is known that there may be
no function ϕ : S → T satisfying (a) for which (f, F ) = (fϕ, Fϕ) (see [6, Example 2.14]).
Example 2.1 below shows that even for real difunctions (f, F ) : (S, S) → (R,R) we
may again have no such function ϕ : S → R. On the other hand we do show that we
may represent such difunctions in terms of suitable point functions ϕ : S[ → R, where
S[ = {s ∈ S | Qs 6= S} is the core of S, and the study of representations based on this
fact occupy § 2.

The representations of real difunctions based on real point functions on the core
of S have the potential disadvantage that in general the core of S need not belong
to the texturing S, and is therefore external to the texture (S, S). For this reason,
alternative characterizations based on extended-real point functions ϕ : S → R+, where
R+ = R ∪ {∞}, are considered in § 3.
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The reader is referred to [12] for terms from lattice theory not defined here.

2. Characterization of real difunctions

In the present paper we will be interested in difunctions between an arbitrary texture
(S, S) and the real texture (R,R). Since we are not assuming that (S, S) is plain, and since
(R,R) is plain but not simple, the results mentioned in the introduction do not guarantee
the existence of a point function ϕ : S → R satisfying (a) for which (f, F ) = (fϕ, Fϕ).
The following example shows that indeed such a function may not exist.

2.1. Example. Consider the texture (L,L) of [5, Examples 1.1 (3)] and define

f = {(l, r) | 0 < l < 1, r <
l

1− l
} ∪ {(1, r) | r ∈ R},

F = {(l, r) | 0 < l < 1, r ≤
l

1− l
} ∪ {(1, r) | r ∈ R}.

It is straightforward to check that f is a relation and F a corelation from (L,L) to
(R,R). To show that (f, F ) is a difunction we must verify conditions DF1 and DF2 of
[5, Definition 2.22].

Take l, l′ ∈ L with Pl 6⊆ Ql′ . Then l
′ < l and we may take u ∈ L with l′ < u < l. If

we set t =
u

1− u
it is easy to verify that f 6⊆ Q(l,t) and P (l′,t) 6⊆ F , which establishes

DF1.

For DF2 take l ∈ L and r, r′ ∈ R with f 6⊆ Q(l,r), P (l,r′) 6⊆ F . By the definition of F

the second condition gives l 6= 1, so 0 < l < 1 and r′ > l
1−l
. On the other hand the first

condition now gives r < l
1−l
, and we deduce r < r′, that is Pr′ 6⊆ Qr as required.

Suppose now that the difunction (f, F ) : (L,L) → (R,R) can be obtained from a
function ϕ : L→ R as in [5, Lemma 3.4]. Then

F = Fϕ =
⋂
{Q(l,r) | ∃u ∈ L satisfying Pu 6⊆ Ql, Pr 6⊆ Qϕ(u)},

and we obtain F ⊆ Q(l,ϕ(1)) = (L × (−∞, ϕ(1))) ∪ ((0, l] × R) for any l < 1. However
(1, ϕ(1) + 1) ∈ F \Q(l,ϕ(1)), which is a contradiction.

The difficulty in the above example occurs at a point which is not in the core S[ of the
base set S, and this suggests that we should consider instead functions ϕ : S[ → R. We
shall also need to weaken the condition (b), and in the following definition we also give
a corresponding weakening of the condition (c) of [6, Lemma 3.8] for functions satisfying
(a), as well as restating (a) in a form suitable for our current investigation.

2.2. Definition. Let (S, S) be a texture. The conditions (a), (b*) and (c*) for a point

function ϕ : S[ → R are defined as follows:
(a) s, s′ ∈ S[, s′ ωS s =⇒ ϕ(s′) ≤ ϕ(s).

(b*) s ∈ S[, r ∈ R, r < ϕ(s) =⇒ ∃ s′ ∈ S[ with s′ ωS s, r < ϕ(s′).

(c*) s ∈ S[, r ∈ R, ϕ(s) < r =⇒ ∃ s′ ∈ S[ with s ωS s
′, ϕ(s′) < r.

It will be noted that if ϕ : S → R satisfies (b), and r < ϕ(s) for s ∈ S[, then
Pϕ(s) 6⊆ Pr and so we have s

′ ∈ S with s′ ωS s, Pϕ(s′) 6⊆ Pr. This gives r < ϕ(s′), while

clearly Qs′ 6= S so s′ ∈ S[. Hence (b*) is indeed a weakening of (b), and likewise, in the
presence of (a), (c*) is a weakening of (c).

In order to present our basic characterization of real difunctions in terms of real-valued
point functions we will make essential use of the following result, which is closely related
to [5, Lemma 3.4].
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2.3. Lemma. Let ϕ : S[ → R be a point function. Then:

(1) The equalities

fϕ =
∨
{P (s,ϕ(u)) | s ∈ S, uωS s, u ∈ S

[},

Fϕ =
⋂
{Q(s,ϕ(u)) | s ∈ S, s ωS u, u ∈ S

[},

define a difunction from (S, S) to (R,R) if and only if ϕ satisfies (a).
(2) If ϕ satisfies condition (a) then f←ϕ B = F←ϕ B = ϕ←B for all B ∈ R, where

ϕ←B =
∨
{Ps | s ∈ ϕ

−1[B]} =
⋂
{Qs | s /∈ ϕ

−1[B]}.

(3) If ϕ satisfies (a) and (b∗) then (ϕ←Pr) ∩ S
[ = ϕ−1[Pr] for all r ∈ R.

Proof. (1) Let ϕ : S[ → R be a point function, and define fϕ, Fϕ as above. It is trivial
to verify that (fϕ, Fϕ) is a direlation. Moreover, if Ps 6⊆ Qs′ for s, s

′ ∈ S and we take

uωS s, s
′ ωS u, then u ∈ S

[ and setting t = ϕ(u) leads easily to fϕ 6⊆ Q(s,t), P (s′,t) 6⊆ Fϕ,

so (fϕ, Fϕ) satisfies DF1. It remains to prove that (fϕ, Fϕ) satisfies DF2 if and only if ϕ
satisfies (a).

First let (fϕ, Fϕ) satisfy DF2 and take s, s′ ∈ S[ with s′ ωS s. Let r = ϕ(s), r′ = ϕ(s′)

and take uωS s, s
′ ωS u. Then fϕ 6⊆ Q(u,r′), P (u,r) 6⊆ Fϕ, so by DF2 we have Pr 6⊆ Qr′ ,

that is ϕ(s′) = r′ ≤ r = ϕ(s). Hence ϕ satisfies (a).

Now let ϕ satisfy (a), and take s ∈ S, t, t′ ∈ R with fϕ 6⊆ Q(s,t), P (s,t′) 6⊆ Fϕ. Then

for some u, u′ ∈ S[ with uωS s, s ωS u
′ we have Pϕ(u) 6⊆ Qt and Pt′ 6⊆ Qϕ(u′). On the

other hand, by (a), Pϕ(s) 6⊆ Qϕ(u) and Pϕ(u′) 6⊆ Qϕ(s), so Pt′ 6⊆ Qt which verifies DF2.

(2) The equality of the two expressions is straightforward, and is omitted. Since
f←ϕ B = F←ϕ B it will be sufficient to show that f←ϕ B ⊆ ϕ←B ⊆ F←ϕ B. We establish the
first inclusion, leaving the dual proof of the second inclusion to the interested reader.
Suppose f←ϕ B 6⊆ ϕ←B and take s ∈ S with f←ϕ B 6⊆ Qs, Ps 6⊆ ϕ←B. By the definition of
f←ϕ B we have s′ ∈ S with s ωS s

′ and

(2.1) fϕ 6⊆ Q(s′,t) =⇒ Pt ⊆ B ∀ t ∈ R.

Since clearly s ∈ S[ we deduce from the definition of fϕ that fϕ 6⊆ Q(s′,ϕ(s)), whence

Pϕ(s) ⊆ B by implication (2.1). But now s ∈ ϕ−1[B], which gives the contradiction
Ps ⊆ ϕ←B.

(3) Let ϕ satisfy (a) and (b∗). Since we clearly have ϕ−1[Pr] ⊆ ϕ←Pr it remains to

show that (ϕ←Pr)∩S
[ ⊆ ϕ−1[Pr]. Suppose this is not so and take s ∈ (ϕ

←Pr)∩S
[ with

s /∈ ϕ−1[Pr]. Then ϕ(s) > r, so by condition (b∗) there exists u ∈ S[ with Ps 6⊆ Qu and
ϕ(u) > r. On the other hand Ps ⊆ ϕ←Pr gives ϕ

←Pr 6⊆ Qu and hence ϕ(u) ∈ Pr, which
gives the contradiction ϕ(u) ≤ r. ¤

The interested reader may easily verify that the difunction defined in Example 2.1
may be represented by the function ϕ : L[ = (0, 1)→ R given by

l 7→
l

1− l
.

The following example illustrates some of the results in Lemma 2.3.

2.4. Example. Take (S, S) = (L,L) and for 0 ≤ α ≤ 1 consider the function ϑα : L
[ =

(0, 1)→ R defined by

ϑα(s) =





0 0 < s < 1
2
,

α s = 1
2
,

1 1
2
< s < 1.
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It is clear that ϑα satisfies (a) for each α. Moreover, it is straightforward to verify that
ϑα satisfies (b∗) if and only if α = 0, and it satisfies (c∗) if and only if α = 1 (see also
Example 2.10 below). Since s ∈ ϑ−1

α [Pr] ⇐⇒ ϑα(s) ≤ r we have

ϑ−1
α [Pr] =





∅ for r < 0,

(0, 1
2
) for 0 ≤ r < α,

(0, 1
2
] for α ≤ r < 1,

(0, 1) for 1 ≤ r.

On the other hand ϑ←α Pr =
∨
{Ps | s ∈ ϑ

−1
α [Pr]}, so by the above

ϑ←α Pr =





∅ for r < 0,

(0, 1
2
] for 0 ≤ r < 1,

L for 1 ≤ r.

We note that ϑ−1
α [Pr] = (ϑ

←
α Pr)∩L

[ for any α if r ≥ 1. On the other hand, if we restrict

our attention to α satisfying 0 < α ≤ 1 we have ϑ−1
α [Pr] 6= (ϑ

←
α Pr)∩L

[ for all r ∈ R with
0 ≤ r < α. This shows that condition (b∗) cannot be removed from (3). In particular ϑ1

shows that in (3) one cannot replace (b∗) by (c∗).

In just the same way we have:

ϑ−1
α [Qr] =





∅ for r ≤ 0,

(0, 1
2
) for 0 < r ≤ α,

(0, 1
2
] for α < r ≤ 1,

(0, 1) for 1 < r,

ϑ←α Qr =





∅ for r ≤ 0,

(0, 1
2
] for 0 < r ≤ 1,

L for 1 < r.

Again ϑ−1
α [Qr] = (ϑ

←
α Qr) ∩ L

[ for any α if r ≥ 1. On the other hand if we consider

0 < r ≤ α ≤ 1 we have ϑ−1
α [Qr] 6= (ϑ

←
α Qr) ∩ L

[. This shows that ϑ1 is an example of a
function satisfying (a) and (c∗) for which these sets are unequal.

If ϕ : S[ → R satisfies (a) then for s ∈ S[, uωS s we have u ∈ S[ and ϕ(u) ≤ ϕ(s) so

sup{ϕ(u) | uωS s} ∈ R. Likewise, inf{ϕ(v) | v ∈ S[, s ωS v} ∈ R and we may make the
following definition.

2.5. Definition. Let ϕ : S[ → R satisfy (a). Then the point functions ϕ∗, ϕ∗ : S[ → R
are given by

ϕ∗(s) = sup{ϕ(u) | u ∈ S
[, u ωS s}, s ∈ S

[,

ϕ∗(s) = inf{ϕ(v) | v ∈ S[, s ωS v}, s ∈ S
[.

2.6. Lemma. Let ϕ : S[ → R satisfy (a). Then

(i) ϕ∗(s) ≤ ϕ(s) ≤ ϕ∗(s) for all s ∈ S[.

(ii) For s, s′ ∈ S[ with Ps 6⊆ Qs′ we have ϕ(s
′) ≤ ϕ∗(s) and ϕ

∗(s′) ≤ ϕ(s).

Proof. Clear from the definitions. ¤

2.7. Proposition. Let ϕ : S[ → R satisfy (a). Then:

(1) ϕ∗ satisfies (a) and (b∗). In particular, ϕ satisfies (b∗) if and only if ϕ = ϕ∗.
(2) ϕ∗ satisfies (a) and (c∗). In particular, ϕ satisfies (c∗) if and only if ϕ = ϕ∗.

Proof. We prove (1), leaving the dual proof of (2) to the reader.

Firstly take s, s′ ∈ S[ with s′ ωS s and suppose that ϕ∗(s
′) > ϕ∗(s). Then we have

uωS s
′ with ϕ∗(s) < ϕ(u). However, Lemma 2.6 (ii) now gives ϕ(u) ≤ ϕ∗(s), which leads

to a contradiction. Hence ϕ∗(s
′) ≤ ϕ∗(s), so ϕ∗ satisfies (a).
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Now take s ∈ S[ and r ∈ R with r < ϕ∗(s). As above we have uωS s with r < ϕ(u).
Take s′ ∈ S satisfying s′ ωS s and uωS s

′. By Lemma 2.6 (ii) we have r < ϕ(u) ≤ ϕ∗(s
′),

whence ϕ∗ satisfies (b∗).

Finally, it remains to show that if ϕ satisfies (b∗) then ϕ = ϕ∗. By Lemma 2.6 (i) we

have ϕ∗ ≤ ϕ, so assume ϕ satisfies (b∗) but that ϕ∗(s) < ϕ(s) for some s ∈ S[. We now
have s′ ωS s with ϕ∗(s) < ϕ(s′). On the other hand, ϕ(s′) ≤ ϕ∗(s) by Lemma 2.6 (ii),
and this is a contradiction. ¤

We now prove a result which implies, in particular, that when ϕ : S[ → R satisfies
(a), the point-functions ϕ∗, ϕ and ϕ

∗ all give rise to the same difunction in the sense of
Lemma 2.3. We begin with the following definition.

2.8. Definition. Let (S, S) be a texture. We denote by A(S[) the set of point-functions

ϕ : S[ → R satisfying condition (a), and by ∼ the equivalence relation on A(S[) defined
by ϕ ∼ ψ ⇐⇒ (fϕ, Fϕ) = (fψ, Fψ).

Note that by [5, Proposition 2.27] we have ϕ ∼ ψ ⇐⇒ fϕ = fψ ⇐⇒ Fϕ = Fψ.

2.9. Theorem. For ϕ ∈ A(S[) the equivalence class ϕ̃ of ϕ under the equivalence relation

∼ is given by

ϕ̃ = [ϕ∗, ϕ
∗] = {ψ | ψ ∈ A(S[), ϕ∗ ≤ ψ ≤ ϕ∗},

where the ordering ≤ in A(S[) is defined pointwise.

Proof. Take ψ ∈ ϕ̃. We show that ϕ∗ ≤ ψ ≤ ϕ∗. Suppose the first inequality is false.
Then for some s ∈ S[ we have ψ(s) < ϕ∗(s). By the definition of ϕ∗ we have uωS s with

ψ(s) < ϕ(u), whence P (s,ϕ(u)) ⊆ fϕ = fψ. Since the texture (S × R,P(S) ⊗ R) is plain

this gives fψ 6⊆ Q(s,ϕ(u)), so we have v ωS s with P (s,ψ(v)) 6⊆ Q(s,ϕ(u)). Now ϕ(u) ≤ ψ(v),

and ψ(v) ≤ ψ(s) since ψ satisfies (a), so we obtain the contradiction ϕ(u) ≤ ψ(s). This
gives ϕ∗ ≤ ψ, and the proof of ψ ≤ ϕ∗ is dual and in omitted. Hence

(2.2) ϕ̃ ⊆ [ϕ∗, ϕ
∗].

Conversely, take ψ ∈ [ϕ∗, ϕ
∗]. We must show ψ ∼ ϕ, and as noted above it will be

sufficient to prove fϕ = fψ.

To prove that fϕ ⊆ fψ it will be sufficient to show that for s ∈ S[ and uωS s we

have P (s,ϕ(u)) ⊆ fψ. However, if we take s
′ ∈ S with s′ ωS s, uωS s

′ and note that

ϕ(u) ≤ ϕ∗(s
′) by Lemma 2.6 (ii), and ϕ∗(s

′) ≤ ψ(s′) as ϕ∗ ≤ ψ, we obtain P (s,ϕ(u)) ⊆

P (s,ψ(s′)) ⊆ fψ, as required. Hence fϕ ⊆ fψ, and the proof of fψ ⊆ fϕ is dual to this,
and is omitted. Hence

(2.3) [ϕ∗, ϕ
∗] ⊆ ϕ̃.

The result now follows from the inclusions (2.2) and (2.3). ¤

2.10. Example. Consider again the function ϑα ∈ A(L[) defined in Example 2.4.
Clearly

(ϑα)∗(s) = sup{ϑα(u) | u < s} =

{
0 for s ≤ 1

2

1 for 1
2
< s

}
= ϑ0(s)

for all s ∈ L. Hence (ϑα)∗ = ϑ0, and likewise (ϑα)
∗ = ϑ1, for 0 ≤ α ≤ 1. We now see

that the statements in Example 2.4 about which of the functions ϑα satisfy (b∗), (c∗) are
just a special case of Proposition 2.7. Moreover, by Theorem 2.9 we deduce easily that
in A(L[) we have

ϑ̃α = [ϑ0, ϑ1] = {ϑβ | 0 ≤ β ≤ 1}
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for all α, 0 ≤ α ≤ 1. In particular, the difunction corresponding to this equivalence class
is independent of α.

Our next aim is to show that every difunction (f, F ) : (S, S) → (R,R) has the form
(fϕ, Fϕ) for some ϕ ∈ A(S

[). Firstly, however, it will be convenient to give a direct
characterization of ϕ∗, ϕ

∗ in terms of (fϕ, Fϕ).

2.11. Proposition. For ϕ ∈ A(S[) and s ∈ S[ we have ϕ∗(s) = sup f
→
ϕ Ps and ϕ

∗(s) =
inf(F→ϕ Qs)

c.

Proof. Clearly r ∈ f→ϕ Ps ⇐⇒ f→ϕ Ps 6⊆ Qr ⇐⇒ fϕ 6⊆ Q(s,r) by [5, Lemma 2.6 (1)].

Hence r ∈ f→ϕ Ps ⇐⇒ ∃uωS s with r ≤ ϕ(u) ≤ ϕ∗(s), from which the equality
ϕ∗(s) = sup f

→
ϕ Ps follows immediately. The proof of the second equality is dual to this,

and is omitted. ¤

Since by Theorem 2.9 the point functions ϕ∗, ϕ
∗ also generate the difunction (fϕ, Fϕ),

the above proposition suggests the following:

2.12. Theorem. Let (f, F ) : (S, S)→ (R,R) be a difunction.

(1) For s ∈ S[ let λ(s) = sup f→Ps. Then the point function λ : S[ → R satisfies

the conditions (a) and (b∗), and the equalities (f, F ) = (fλ, Fλ) and λ = λ∗.

(2) For s ∈ S[ let ξ(s) = inf(F→Qs)
c. Then the point function ξ : S[ → R satisfies

the conditions (a) and (c∗), and the equalities (f, F ) = (fξ, Fξ) and ξ = ξ∗.

Proof. We prove (1), leaving the essentially dual proof of (2) to the interested reader.

We must first show that the set f→Ps ⊆ R is bounded above. Since s ∈ S[ we
have Qs 6= S and so we may choose s′ ∈ S with s ωS s

′. By DF1 there exists t ∈ R
satisfying f 6⊆ Q(s′,t) and P (s,t) 6⊆ F . As in the proof of Proposition 2.11 we have

r ∈ f→Ps ⇐⇒ f 6⊆ Q(s,r), and in this case DF2 gives r ωR t, that is r ≤ t, so f→Ps is
bounded above by t. Hence λ is well defined.

To establish (a) take s, s′ ∈ S[. Then

s′ ωS s =⇒ Ps′ ⊆ Ps =⇒ f→Ps′ ⊆ f→Ps =⇒ λ(s′) ≤ λ(s),

as required. For (b∗), take s ∈ S[ and r ∈ R with r < λ(s). Then there exists r′ ∈ f→Ps
with r < r′, and as noted above f 6⊆ Q(s,r′). Since f is a relation, by R2 we have s′ ∈ S

with s′ ωS s and f 6⊆ Q(s′,r′). Then s
′ ∈ S[, r′ ∈ f→Ps′ , so r < r′ ≤ λ(s′) which proves

(b∗).

Since λ = λ∗ follows from Proposition 2.7 (1), it remains to prove that (f, F ) =
(fλ, Fλ). As λ satisfies (a), we know by Lemma 2.3 (1) that (fλ, Fλ) is a difunction, so
by [5, Proposition 2.27] it will be sufficient to show that f = fλ.

Suppose that fλ 6⊆ f and take s ∈ S, r ∈ R with fλ 6⊆ Q(s,r), P (s,r) 6⊆ f . Now from

the definition of fλ we have u ∈ S, uωS s with P (s,λ(u)) 6⊆ Q(s,r), and so

(2.4) r ≤ λ(u).

Applying condition DF1 for (f, F ) to Ps 6⊆ Qu gives t ∈ R satisfying

(2.5) f 6⊆ Q(s,t) and P (u,t) 6⊆ F.

Now for ε > 0 we have r − ε < λ(u) by (2.4), so by the definition of λ there exists

rε ∈ f→Pu with r − ε < rε. As noted earlier, rε ∈ f→Pu is equivalent to f 6⊆ Q(u,rε)
,

and this together with the second result in (7) gives Pt 6⊆ Qrε by DF2 for (f, F ). Hence
rε ≤ t, and we obtain r < t + ε for all ε > 0. Hence r ≤ t and from the first result in
(2.57) we have the contradiction P (s,r) ⊆ P (s,t) ⊆ f . Hence fλ ⊆ f .
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Finally suppose f 6⊆ fλ and take s ∈ S, r ∈ R with f 6⊆ Q(s,r), P (s,r) 6⊆ fλ. Since

f is a relation we have u ∈ S with uωS s and f 6⊆ Q(u,r). But now r ∈ f→Pu, and so

r ≤ λ(u). This gives P (s,r) ⊆ P (s,λ(u)) ⊆ fλ, which is a contradiction. Hence f ⊆ fλ,
and the proof is complete. ¤

Where necessary we denote λ, ξ by λ(f,F ), ξ(f,F ), respectively. Then for ϕ ∈ A(S
[),

the above theorem implies that λ(fϕ,Fϕ) = ϕ∗, ξ(fϕ,Fϕ) = ϕ∗, whence the mapping

ϕ̃ 7→ (fϕ, Fϕ),

which is injective by definition, is also a surjective mapping from the quotient set A(S[)/∼
to the set DF(S) of real difunctions on (S, S).

In [8] a partial order is defined on BDF(S) by setting (f, F ) ≤ (g,G) if and only if
(f, F ) = (f, F )( ∧ , ∧ )(g,G), where (f, F )( ∧ , ∧ )(g,G) = (f ∧g, F ∧G) is given by

f ∧g =
∨
{P (s,r1∧r2) | ∃uωS s with f 6⊆ Q(u,r1) and g 6⊆ Q(u,r2)},

F ∧G =
⋂
{Q(s,r1∧r2) | ∃s ωS u with P (u,r1) 6⊆ F and P (u,r2) 6⊆ G}.

First we note the following result.

2.13. Lemma. The following are equivalent for difunctions (f, F ), (g,G) : (S, S) →
(R,R):

(1) (f, F ) ≤ (g,G).
(2) f ⊆ g.
(3) F ⊆ G.

Proof. The equivalence of (2) and (3) is just [5, Proposition 2.27], so we prove (1)⇐⇒ (2).

Suppose (1) holds but that f 6⊆ g. Then we have s ∈ S, t ∈ R with f 6⊆ Q(s,t)

and P (s,t) 6⊆ g. Since f = f ∧g we have f ∧g 6⊆ Q(s,t), so for some r1, r2 ∈ R with

P (s,r1∧r2) 6⊆ Q(s,t) we have u ∈ S with uωS s, f 6⊆ Q(u,r1) and g 6⊆ Q(u,r2). Now

t ≤ r1 ∧ r2 ≤ r2, so Q(u,t) ⊆ Q(u,r2) and hence g 6⊆ Q(u,t). Since g is a relation we may

apply condition R1 to give the contradiction g 6⊆ Q(s,t).

The converse is proved in a similar way, and the details are omitted. ¤

2.14. Theorem. The following are equivalent for difunctions (f, F ), (g,G) : (S, S) →
(R,R):

(1) (f, F ) ≤ (g,G).
(2) λ(f,F ) ≤ λ(g,G).

(3) ξ(f,F ) ≤ ξ(g,G).

Proof. To prove (1)⇐⇒ (2) it is sufficient, in view of Lemma 2.13, to prove that λ(f,F ) ≤
λ(g,G) ⇐⇒ f ⊆ g.

If f ⊆ g then for s ∈ S[ we have f→Ps ⊆ g→Ps by [5, Lemma 2.7 (1)], and so
λ(f,F )(s) = sup f

→Ps ≤ sup g
→Ps = λ(g,G)(s). Hence, λ(f,F ) ≤ λ(g,G).

Now let λ(f,F ) ≤ λ(g,G). Then for s, u ∈ S[, uωS s, we have P (s,λ(f,F )(u)) ⊆

P (s,λ(g,G)(u)) and so f = fλ(f,F )
⊆ fλ(g,G)

= g by Theorem 2.12 (1) and the first equality

in Lemma 2.3 (1).

(1)⇐⇒ (3) is proved likewise by establishing ξ(f,F ) ≤ ξ(g,G) ⇐⇒ F ⊆ G. The details
are left to the interested reader. ¤

By using the bijection between A(S[)/∼ and DF(S) given above we may transfer the

partial ordering on DF (S) to A(S[)/∼, and Theorem 2.14 now takes the following form:
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2.15. Corollary. For ϕ,ψ ∈ A(S[) the following are equivalent:

(1) ϕ̃ ≤ ψ̃.
(2) ϕ∗ ≤ ψ∗.
(3) ϕ∗ ≤ ψ∗.

Since DF(S) is a distributive lattice [8], the same is true of A(S[)/∼.

Clearly if ϕ,ψ ∈ A(S[) then ϕ ∧ ψ, ϕ ∨ ψ ∈ A(S[) so A(S[) is a lattice under the

pointwise ordering. Let us relate the lattice structure on A(S[)/∼ with that of A(S[) by
noting that:

ϕ̃ ∧ ψ = ϕ̃ ∧ ψ̃ and ϕ̃ ∨ ψ = ϕ̃ ∨ ψ̃.

Indeed ϕ ∧ ψ ≤ ϕ and ϕ ∧ ψ ≤ ψ give ϕ̃ ∧ ψ ≤ ϕ̃ ∧ ψ̃, so take µ ∈ A(S[) with µ̃ ≤ ϕ̃

and µ̃ ≤ ψ̃. Then µ∗ ≤ ϕ∗ ≤ ϕ, µ∗ ≤ ψ∗ ≤ ψ by Corollary 2.15 and Lemma 2.6 (i), so

µ∗ ≤ ϕ∧ψ which gives µ̃ = µ̃∗ ≤ ϕ̃ ∧ ψ by Theorem 2.9 and Corollary 2.15. This proves
the first equality, and the proof of the second is dual and is omitted.

We deduce from Theorem 2.9 and the equalities above that

ϕ̃ ∧ ψ̃ = [(ϕ ∧ ψ)∗, (ϕ ∧ ψ)
∗],

where

(ϕ ∧ ψ)∗ = (ϕ∗ ∧ ψ∗)∗ ≤ ϕ∗ ∧ ψ∗ ≤ ϕ ∧ ψ ≤ ϕ∗ ∧ ψ∗ ≤ (ϕ∗ ∧ ψ∗)∗ = (ϕ ∧ ψ)∗.

Likewise

ϕ̃ ∨ ψ̃ = [(ϕ ∨ ψ)∗, (ϕ ∨ ψ)
∗],

where

(ϕ ∨ ψ)∗ = (ϕ∗ ∨ ψ∗)∗ ≤ ϕ∗ ∨ ψ∗ ≤ ϕ ∨ ψ ≤ ϕ∗ ∨ ψ∗ ≤ (ϕ∗ ∨ ψ∗)∗ = (ϕ ∨ ψ)∗.

We now turn to the operation (+ , +) of addition on DF(S), which is compatible with
the lattice structure in the sense that meet and join distribute over addition [8]. We
recall from [8] that

f +g =
∨
{P (s,r1+r2) | ∃ s ∈ S

[, u ωS s with f 6⊆ Q(u,r1), g 6⊆ Q(u,r2)},

with a dual formula for F +G. Then:

2.16. Theorem. For the real difunction (f, F ) we have

λ(f,F )( +,+ )(g,G) ≤ λ(f,F ) + λ(g,G) ≤ ξ(f,F ) + ξ(g,G) ≤ ξ(f,F )( +,+ )(g,G).

Proof. To prove the first inequality suppose there exists s ∈ S[ with λ(f,F )(s)+λ(g,G)(s) <
λ(f,F )( +,+ )(g,G)(s). Then we have t ∈ R with λ(f,F )(s) + λ(g,G)(s) < t ∈ (f + g)→Ps,

whence (f + g)→Ps 6⊆ Qt and so f + g 6⊆ Q(s,t). Now we have r1, r2 ∈ R with

P (s,r1+r2) 6⊆ Q(s,t), and u ∈ S[ with uωS s and f 6⊆ Q(u,r1), g 6⊆ Q(u,r2). Now
f→Pu 6⊆ Qr1 , g

→Pu 6⊆ Qr2 so we obtain the contradiction

t ≤ r1 + r2 ≤ λ(f,F )(u) + λ(g,G)(u) ≤ λ(f,F )(s) + λ(g,G)(s)

since λ(f,F ), λ(g,G) satisfy (a). The middle inequality is clear, and the third inequality
dual to the above, so the proof is complete. ¤

In terms of the corresponding sum on A(S[)/∼ we note that A(S[) is closed under
pointwise addition and that from the above

ϕ̃+ ψ̃ = ϕ̃+ ψ = [(ϕ+ ψ)∗, (ϕ+ ψ)
∗],
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where

(ϕ+ ψ)∗ = (ϕ∗ + ψ∗)∗ ≤ ϕ∗ + ψ∗ ≤ ϕ+ ψ ≤ ϕ∗ + ψ∗ ≤ (ϕ∗ + ψ∗)∗ = (ϕ+ ψ)∗.

Now let (τ, κ) be a ditopology on (S, S), and (τR, κR) the usual ditopology on (R,R}. It is
shown in [8] that the subset BDF(S) = {(f, F ) ∈ DF(S) | (f, F ) bicontinuous} of DF(S)
is closed under meet, join and addition. We consider briefly the situation regarding the
representation of elements of BDF(S) described above.

We call ϕ ∈ A(S[) bicontinuous if ϕ←B ∈ τ for all B ∈ τR and ϕ
←B ∈ κ for all

B ∈ κR. By Lemma 2.3 (1), ϕ is bicontinuous if and only if (fϕ, Fϕ) is bicontinuous. We

denote by BA(S[) the set of bicontinuous elements of A(S[). For ϕ,ψ ∈ BA(S[) we have

(ϕ ∧ ψ)←B = (ϕ←B) ∪ (ψ←B), (ϕ ∨ ψ)←B = (ϕ←B) ∩ (ψ←B)

for all B ∈ R. It follows that ϕ ∧ ψ, ϕ ∨ ψ ∈ BA(S[). The first result may also be

obtained by noting that ϕ̃ ∧ ψ = ϕ̃ ∧ ψ̃ leads to (fϕ, Fϕ)( ∧ , ∧ )(fψ, Fψ) = (fϕ∧ψ, Fϕ∧ψ),
whence for B ∈ R,

(fϕ ∧fψ)
←B = f←ϕ∧ψB = (ϕ ∧ ψ)

←B = F←ϕ∧ψB = (Fϕ ∧Fψ)
←B.

The bicontinuity of ϕ∧ψ now follows from that of (fϕ, Fϕ)( ∧ , ∧ )(fψ, Fψ), and a similar
argument gives the bicontinuity of ϕ∨ψ, and also that of ϕ+ψ. These results show that
when considering the representation of elements of BDF(S) it suffices to restrict ones

attention to the point functions in BA(S[).

3. An alternative characterization

In this section we show that we may obtain an alternative characterization of real
difunctions on an arbitrary texture (S, S) by extending (R,R) rather than restricting the
domain of the functions to the core S[.

Denote by R+ the real numbers extended by adding a point at infinity ∞, where we
define r < ∞ for all r ∈ R. The family R

+ = {(−∞, r], (−∞, r) | r ∈ R} ∪ {R+, ∅}
is easily seen to a texturing of R+ for which Pr, Qr are the same as for (R,R) when
r ∈ R, and P∞ = Q∞ = R+. We note for future reference that for ρ, µ ∈ R+ we have
µωR+ ρ ⇐⇒ Pρ 6⊆ Qµ ⇐⇒ µ ∈ R and µ ≤ ρ. The texture (R+,R+) is neither plain
nor simple.

The inclusion ε : R ↪→ R+ is easily seen to satisfy the conditions (a), (b) and (c) of [6,
Lemma 3.8], so the corresponding difunction (e, E) is given by

e = fε =
∨
{P
−,+
(r,r) | r ∈ R}, E = Fε =

⋂
{Q
−,+

(r,r) | r ∈ R},

where P
−,+
(,) , Q

−,+

(,) denote the p-sets and q-sets for the texture (R × R+,P(R) ⊗ R
+).

Moreover, by [5, Lemma 3.9],

(3.1) e←B = E←B = ε−1[B] =

{
B, B 6= R+

R, B = R+

for all B ∈ R
+. We have:

3.1. Lemma. (e, E) : (R,R)→ (R+,R+) is a bijective difunction with inverse (e, E)← =
(E←, e←) : (R+,R+)→ (R,R) given by

E← =
∨
{P

+,−
(ρ,r) | ρ ∈ R+, r ∈ R, r ≤ ρ},

e← =
⋂
{Q

+,−

(ρ,r) | ρ ∈ R+, r ∈ R, ρ ≤ r}.

Here, P
+,−
(,) , Q

+,−

(,) denote the p-sets and q-sets for the texture (R+ × R,P(R+)⊗ R).
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Proof. The formulae for E← and e← follow at once from [5, Definition 2.3], while by [5,
Theorem 2.31] bijectivity is equivalent to showing that (e, E)← is a difunction. However
for ρ1, ρ2 ∈ R+ with Pρ1 6⊆ Qρ2 we have Qρ2 6= R+ and so ρ2 ∈ R, while clearly
E← 6⊆ Q

+,−

(ρ1,ρ2) and P
+,−
(ρ2,ρ2) 6⊆ e← which verifies DF1. On the other hand, take r1, r2 ∈ R

and ρ ∈ R+ satisfying E← 6⊆ Q
+,−

(ρ,r1) and P
+,−
(ρ,r2) 6⊆ e←. Then r1 ≤ ρ ≤ r2 which gives

Pr2 6⊆ Qr1 and so DF2 is valid also.

This shows that (e, E) is bijective, and hence by [5, Proposition 3.14] an isomorphism
in the category dfTex of textures and difunctions between them. Moreover, (e, E)← is
the morphism inverse to (e, E), that is (e, E)←◦(e, E) = (i, I), (e, E)◦(e, E)← = (i+, I+),
(i, I) being the identity difunction on (R,R) and (i+, I+) that on (R+,R+). ¤

3.2. Lemma. For a given texture (S, S) the mapping

(f, F ) 7→ (e, E) ◦ (f, F )

is an bijection between the set DF(S) of real difunctions on (S, S) and the set DF+(S) of
extended real difunctions on (S, S).

Proof. Since (S, S)
(f,F )

// (R,R)
(e,E)

// (R+,R+) , certainly (e, E) ◦ (f, F ) ∈ DF+(S)

when (f, F ) ∈ DF(S). The fact that this mapping is bijective is an immediate conse-
quence of Lemma 3.1. ¤

We may obtain operations on DF+(S) from operations on (R+,R+) in the same way
that the operations on DF(S) were obtained from those on (R,R). Specifically, the
mappings ϕ : (R+ × R+,R+ ⊗ R

+)→ (R+,R+) defined by

(ρ1, ρ2) 7→ min{ρ1, ρ2}, (ρ1, ρ2) 7→ max{ρ1, ρ2} and (ρ1, ρ2) 7→ ρ1 + ρ2

satisfy (a) (and indeed, (b) and (c)) and so induce operations of meet, join and sum on
(R+,R+). Indeed, for ϕ(ρ1, ρ2) = min{ρ1, ρ2} suppose that P(ρ1,ρ2) 6⊆ Q(µ1,µ2). Then
µ1, µ2 ∈ R and µk ≤ ρk for k = 1, 2. To establish (a) we must show that Pϕ(ρ1,ρ2) 6⊆
Qϕ(µ1,µ2). However, certainly ϕ(µ1, µ2) = min{µ1, µ2} ∈ R, and clearly ϕ(µ1, µ2) ≤
ϕ(ρ1, ρ2), so the result follows by the comment above.

The same proof holds for the other mappings, and (b), (c) may be established likewise.
By [8] we obtain

f ∧g =
∨
{P

+
(s,r1∧r2) | ∃uωS s with f 6⊆ Q

+

(u,r1) and g 6⊆ Q
+

(u,r2)},

F ∧G =
⋂
{Q

+

(s,r1∧r2) | ∃ s ωS u with P
+
(u,r1) 6⊆ F and P

+
(u,r2) 6⊆ G}.

Here, P
+
(,), Q

+

(,) denote the p-sets and q-sets for the texture (S × R+,P(S)⊗ R
+). Sim-

ilar formulae hold for (f, F )( ∨ , ∨ )(g,G) and (f, F )(+ , +)(g,G). As for DF(S), these
operations make DF+(S) an additive lattice.

3.3. Proposition. The bijection (f, F ) 7→ (e, E) ◦ (f, F ) from DF(S) to DF+(S) pre-
serves the lattice operations and the sum.

Proof. The proof of Lemma 2.13 may easily be adapted to show that for (f, F ), (g,G)
in DF+(S) we have (f, F ) ≤ (g,G) ⇐⇒ f ⊆ g ⇐⇒ F ⊆ G. On the other hand, for
(f, F ), (g,G) ∈ DF(S) we have e ◦ f ⊆ e ◦ g ⇐⇒ (e ◦ g)←B ⊆ (e ◦ f)←B ∀B ∈ R

+ [5,
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Lemmas 2.4, 2.7]. It is clearly sufficient to consider only B ∈ R, so

e ◦ f ⊆ e ◦ g ⇐⇒ (e ◦ g)←B ⊆ (e ◦ f)←B ∀B ∈ R

⇐⇒ g←(e←B) ⊆ f←(e←B) ∀B ∈ R

⇐⇒ g←B ⊆ f←B ∀B ∈ R

⇐⇒ f ⊆ g

by (3.1). This shows that the bijection preserves the ordering, and hence the lattice
structure.

To see that the sum is preserved we must show that e◦ (f +g) = e◦f + e◦g. Suppose

that e ◦ (f + g) 6⊆ e ◦ f + e ◦ g, and take s ∈ S, ρ ∈ R+ with e ◦ (f + g) 6⊆ Q
+

(s,ρ) and

P
+
(s,ρ) 6⊆ e ◦ f + e ◦ g. Now we have ρ′ ∈ R+ with P

+
(s,ρ′) 6⊆ Q(s,ρ) and r ∈ R with

f + g 6⊆ Q(s,r) and e 6⊆ Q
−,+

(r,ρ′). The latter gives ρ
′ ≤ r and from the former we have

r1, r2 ∈ R with P (s,r1+r2) 6⊆ Q(s,r) and u ∈ S satisfying uωS s for which f 6⊆ Q(u,r1) and

g 6⊆ Q(u,r2). We deduce that e◦f 6⊆ Q
+

(u,r1), e◦g 6⊆ Q
+

(u,r1), whence P
+
(s,r1+r2) ⊆ e◦f+e◦g,

which gives a contradiction since ρ ≤ ρ′ ≤ r1 + r2.

This establishes e ◦ (f + g) ⊆ e ◦ f + e ◦ g, and the reverse inclusion may be proved
similarly. ¤

In view of Proposition 3.3, a representation of the elements of DF+(S) involving point
functions from S to R+ will also provide a representation of the additive lattice of real
difunctions on (S, S). We may obtain such a representation by following much the same
steps as in the last section. We begin by noting that for (f, F ) ∈ DF+(S) the functions
λ+

(f,F ), ξ
+
(f,F ) : S → R+ given by

λ+
(f,F )(s) = sup f

→Ps, ξ
+
(f,F )(s) = inf(F

→Qs)
c,

are well defined and satisfy condition (a). We denote by A+(S) the set of all point
functions from S to R+ satisfying (a). For ϕ ∈ A+(S) the functions ϕ∗, ϕ

∗ may be

defined as in Definition 2.5 but without the restriction of s to S[, and taking the sup and
inf in R+. It is easy to verify that these functions are well defined and belong to A+(S).
We may also define conditions (b+), (c+) corresponding to (b∗), (c∗) as follows:

(b+) s ∈ S, ρ ∈ R+, ρ < ϕ(s) =⇒ ∃ s′ ∈ S with s′ ωS s, ρ < ϕ(s′).
(c+) s ∈ S, ρ ∈ R+, ϕ(s) < ρ =⇒ ∃ s′ ∈ S with s ωS s

′, ϕ(s′) < ρ.

3.4. Theorem. Let (f, F ) : (S, S)→ (R+,R+) be a difunction. Then,

(1) For ϕ ∈ A+(S), (f, F ) = (fϕ, Fϕ) if and only if λ+
(f,F ) ≤ ϕ ≤ ξ+(f,F ).

(2) For ϕ ∈ A+(S) with λ+
(f,F ) ≤ ϕ ≤ ξ+(f,F ) we have:

(i) ϕ = λ+
(f,F ) ⇐⇒ ϕ = ϕ∗ ⇐⇒ ϕ satisfies (b+).

(ii) ϕ = ξ+(f,F ) ⇐⇒ ϕ = ϕ∗ ⇐⇒ ϕ satisfies (c+).

Proof. It is straightforward to verify that ϕ : S → R+ satisfies (a) if and only if the
equalities

fϕ =
∨
{P

+
(s,ϕ(u)) | s, u ∈ S, uωS s}, Fϕ =

⋂
{Q

+

(s,ϕ(u)) | s, u ∈ S, s ωS u},

define a difunction (fϕ, Fϕ) : (S, S) → (R+,R+), and we omit the details which are
similar to the proof of Lemma 2.3 (1).

(1) Take ϕ ∈ A+(S). Clearly for s ∈ S, λ+
(f,F )(s) = sup

R+

{r ∈ R | f→ϕ Ps 6⊆ Qr}, while

fϕ 6⊆ Q
+

(s,r) =⇒ ∃u ∈ S with uωS s and P
+
(u,ϕ(u)) 6⊆ Q

+

(s,r). This gives r ≤ ϕ(u) ≤ ϕ(s)
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by condition (a), so λ+
(f,F )(s) ≤ ϕ(s) as required. A dual argument shows that ϕ(s) ≤

ξ+(f,F ).

(2) Take ϕ ∈ A+(S) with λ+
(f,F ) ≤ ϕ ≤ ξ+(f,F ).

(i) Let ϕ = λ+
(f,F ). Since ϕ∗ ≤ ϕ, suppose we have s ∈ S with ϕ∗(s) < ϕ(s). Since

ϕ(s) = λ+
(f,F )(s) = λ+

(fϕ,Fϕ)(s) by (1) we have r ∈ R with ϕ∗(s) < r and f→ϕ Ps 6⊆ Qr.

Now fϕ 6⊆ Q
+

(s,r), and fϕ is a relation so applying the condition R2 we have u ∈ S with

uωS s and fϕ 6⊆ Q
+

(u,r). However this gives r ≤ λ+
(fϕ,Fϕ)(u) = ϕ(u) ≤ ϕ∗(s), which is a

contradiction.

Now suppose that ϕ = ϕ∗ and take s ∈ S, ρ ∈ R+ with ρ < ϕ(s). Then ρ < ϕ∗(s) so
there exists u ∈ S with uωS s and ρ < ϕ(u), which establishes (b+).

Finally suppose that ϕ satisfies (b+). By hypothesis λ+
(f,F ) ≤ ϕ so assume there

exists s ∈ S with λ+
(f,F )(s) < ϕ(s). By (b+) there exists u ∈ S with uωS s for which

λ+
(fϕ,Fϕ)(s) = λ+

(f,F )(s) < ϕ(u). Choose u′ ∈ S with uωS u
′ and u′ ωS s. Now P

+
(s,ϕ(u′)) ⊆

fϕ, and Pϕ(u′) 6⊆ Qϕ(u) by (a), so f = fϕ 6⊆ Q
+

(s,ϕ(u)) and we obtain the contradiction

ϕ(u) ≤ λ+
(f,F )(s).

(ii) The proof is dual to (i), and is omitted. ¤

If we define an equivalence relation ∼ on A+(S) by setting ϕ ∼ ψ ⇐⇒ (fϕ, Fϕ) =
(fψ, Fψ) the above theorem states that ϕ̃ = [ϕ∗, ϕ

∗] for each ϕ ∈ A+(S). This means
that the elements of A+(S)/∼ may be represented as interval valued functions

s 7→ [ϕ∗(s), ϕ
∗(s)]

on S, equivalently (f, F ) ∈ DF+(S) is represented by s 7→ [λ+
(f,G)(s), ξ

+
(f,F )(s)]. As

mentioned above, (f, F ) ∈ DF(S) may be represented by applying the above to (e, E) ◦
(f, F ).

It will be seen that the representation in terms of extended real valued functions is
formally very similar to that using real valued functions on S[, but has the advantage of
not involving the set S[ which in general does not belong to S. A similar relation also
holds between the order and addition on R+ and that on A+(S)/∼ as does between the

order and addition on R and that on A(S[)/∼, as the interested reader may easily verify.
Finally, to consider bicontinuous difunctions we need only note that

τR+ = {(−∞, r) | r ∈ R} ∪ {∅,R+}, κR+ = {(−∞, r] | r ∈ R} ∪ {∅,R+}

is the natural ditopology on (R+,R+), and that under this ditopology (e, E) and its
inverse are bicontinuous. Hence the additive lattice isomorphism (f, F ) 7→ (e, E) ◦ (f, F )
of DF(S) with DF+(S) restricts to a isomorphism of BDF(S) with the additive lattice
BDF+(S) of bicontinuous extended real difunctions on (S, S, τ, κ). Moreover, it is easy
to verify that the elements of BDF+(S) may be represented by restricting ones attention
to the elements of BA+(S), the bicontinuous extended real point functions on (S, S, τ, κ)
satisfying (a), and hence the same is true for the elements of BDF(S).
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