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Abstract

In this study optimal restricted three stage designs are examined and
compared with optimal restricted two stage, fixed sample and sequential
designs. Then the results are discussed.
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1. Introduction

In general data are analyzed after groups of observations are entered into a group
sequential study. Group sequential designs are generally more practical and they provide
much of the saving possible from sequential designs.

In most randomized clinical trials with sequential patient entry, a fixed sample size
design is unjustified on ethical grounds and sequential designs are often impractical.
Therefore group sequential designs are widely used in clinical trials. Group sequential
designs are reviewed in detail by Jennison&Turnbull [8].

A two-stage design is the simplest form of group sequential design. Owen [9] described
two-stage tests for one-sided hypothesis about a normal mean with known variance.
Hald [7] derived optimal designs for this same problem using minimax and Bayes weighted
average optimality criteria. Calton&McPherson [1] considered hypothesis tests for normal
and binomial responses and presented optimal two-stage designs, which did not allow
acceptance of the null hypothesis at the first stage. Dewith [5] extended the work of
Calton&McPherson [1] for binomial responses by developing optimal designs that allowed
acceptance or rejection at the first stage none of these designs used the fixed sample
critical value at the final stage. Case et. al. [2] developed the optimal restricted two-
stage design (OR2) that have the restriction of using the fixed sample critical value at
the final stage.
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Case et. al. [3] have suggested the optimal restricted three-stage design (OR3). This
design, an extension of the OR2 design but the sample sizes are the same at each stage.

This study is organized as follows: In section 2, the OR2 design is described. The
OR3 design and the efficiency of the OR3 design relative to other designs are examined
in section 3 and section 4, respectively.

2. Optimal restricted two-stage designs

In this section, we examined OR2 design for response variable has an normal distribu-
tion with mean (θ) and known variance (σ2) . For testing H0 : θ = θ0 against H1 : θ > θ0,
the OR2 design is defined as follows;

Stage I: Accrue n1 observations and calculate the test statistic,

(1) Z1 =
θ̂ − θ0
σθ̂

,

where θ̂ is calculated from data on the first n1 observations. If Z1 < C1; Accept
H0, if Z1 > C2; Reject H0, otherwise; continue to the second stage.

Stage II: Accrue an additional n2 observations. Let n = n1 + n2 and calculate,

(2) Z =
θ̂ − θ0
σθ̂

,

where θ̂ is calculated from data on all n observations. If Z < C3; Accept H0,
otherwise reject H0.

Here, Z1 and Z have a standard normal distribution and their joint distribution is bi-
variate normal with zero means, unit variance, and correlation (n1/n)

1/2.

The maximum sample size for the two-stage design is n and is realized whenever a
second stage is necessary. The expected sample size (ESS) of the two-stage design is
given by Equation (3) below:

(3) ESS2(θ) = n
[

1− (1− p)Ps(θ)
]

,

where Ps(θ) denote the probability that the trial will be stopped at the first stage, and
p is the ratio of the number of observations at the first stage to the number of total
observations at the second stage, that is p = n1/n. The value θ can be computed for θ0
and θ1.

There are five unknown parameters in the two-stage design, namely: n1, n2, C1, C2

and C3. The critical value at the second stage, C3, will be set equal to that of the fixed
sample test

(4) C3 = φ−1(1− α),

where φ(x) denotes the standard normal distribution function. The other four parameters
of interest are chosen to satisfy the two equations:

α = 1− φ(C2) +B(C1, C2;C3,∞; p),(5)

1− β = 1− φ(C2 − u
√
p) +B(C1 − u

√
p, C2 − u

√
p;C3 − u,∞; p),(6)

where,

B(a, b, c, d, p) =
1

2π
√
1− p

∫ b

a

∫ d

c

exp
[

−(1/2)(1− p)(y2 − 2
√
pyz + z2)

]

dy dz,

and u =
√
n(θ1 − θ0)/σ.
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Now, the probability of rejectingH0 at the first stage plus the probability of continuing
the trial and rejectingH0 at the second stage is equal to α, when assumingH0 is true. The
desired power of the trial 1− β is the same probability under the alternative hypothesis.
Equations (5) and (6) are solved iteratively by numerical integration of the bivariate
normal distribution using a double precision function [2, 3].

The optimal parameter values which are necessary for the OR2 design, are obtained
using the program written by Case et. al. [2, 10].

With five parameters and only three constraints given by equations (4), (5) and (6),
minimax or Bayes optimality criteria are used to determine the parameter values [2]. In
this study, we have examined the Bayes criteria.

Bayes Criterion: Minimize a weighted average of the ESS under H0 and H1, that is:

(7) Minimize ESSw(θ) = (1− w)ESS(θ0) + wESS(θ1)

Using a weight of w = 0 for this criterion gives the most efficient designs if the null
hypothesis is true while a weight of w = 1 gives the most efficient designs if the specified
alternative is true [2, 3].

The optimal design parameters (C1, C2, C3, n1, n2), the probabilities Ps(θ), and the
maximum and expected sample sizes have been calculated for several values of α and
1−β. Sometimes the choice of p is determined by factors unrelated to an optimal design.
For some studies it might be practical to choose equal samples p = 0.50, at each stage.

The optimal design parameters, Ps(θ), n and ESS(θ) obtained using the Bayes criteria
in p = 0.50 are given in Table 1 for α = 0.01, 0.05, 1 − β = 0.80, 0.90. In the tables, nf

denotes the fixed sample size.

Table 1. Optimal restricted two-stage one-sided designs for bayes criterion
with α = 0.01, 0.05; 1− β = 0.80, 0.90 (p = 0.50).

w α 1− β p C1 C2 C3 naf na ESS(θ0)
a ESS(θ1)

a

0 0.01 0.80 0.50 1.052 2.833 2.326 10.036 10.849 6.212 8.641

0.90 0.50 1.014 2.856 2.326 13.017 14.085 8.123 10.778

0.05 0.80 0.50 0.638 2.150 1.645 6.183 6.907 4.303 5.194

0.90 0.50 0.595 2.178 1.645 8.564 9.558 6.029 6.886

1 0.01 0.80 0.50 1.310 2.690 2.326 10.036 11.612 6.343 8.561

0.90 0.50 1.253 2.720 2.326 13.017 15.009 8.266 10.687

0.05 0.80 0.50 0.768 2.066 1.645 6.183 7.203 4.328 5.175

0.90 0.50 0.700 2.109 1.645 8.564 9.874 6.046 6.864

a Multiply each value by (σ/δ)2

3. Optimal restricted three-stage designs

In this section the OR3 design will be examined. General construction of the design
is as in the OR2 design given in section 2. However there are six unknown parameters
and the stage number is three in this design. Also, the sample sizes must be equal for
each stage of the design [3].
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The OR3 design for normal mean testing is given as follows:

Stage I: Accrue n1 observations and calculate test statistic,

(8) Z1 =
θ̂ − θ0
σθ̂

,

where θ̂ is calculated from data on the first n1 observation. If Z1 < C1; Accept
H0, if Z1 > C2; Reject H0, otherwise; continue to the second stage.

Stage 2: Accrue an additional n2 observations. Let n = n1 + n2 and calculate,

(9) Z2 =
θ̂ − θ0
σθ̂

,

where θ̂ is calculated from data on n observations. If Z2 < C3; Accept H0, If
Z2 > C4; Reject H0, otherwise; continue to the third stage.

Stage 3: Accrue an additional n3 observations. Let n = n1 + n2 + n3 and calculate,

(10) Z3 =
θ̂ − θ0
σθ̂

,

where θ̂ is calculated from data on all n observations. If Z3 < C5; Accept H0,
otherwise, reject H0.

There are eight unknown parameters in the OR3 design, namely n1, n2, n3, C1, C2, C3,
C4 and C5. The critical value at the final stage C5, is equal to that of the fixed sample
test. However this design is used in the case of equal sample sizes at each stage, so
reducing the number of unknown parameters to six.

The joint distribution of Z1, Z2 and Z3 is trivariate normal with zero mean vector
and correlation matrix (Σ) given by

Σ =





1 ρ12 ρ13

1 ρ23

sym 1



 ,

where ρ12 =
[

n1/(n1 + n2)
]1/2

, ρ13 =
[

n1/(n1 + n2 + n3)
]1/2

and ρ23 =
[

n1 + n2/(n1 +

n2 + n3)
]1/2

.

However, as the sample size is equal for each stage, the correlation matrix will be as
follows,

Σ =





1
√

1/2
√

1/3

1
√

2/3
sym 1





The maximum sample size for the three stage design is n = n1+n2+n3, and is calculated
whenever all the stages are necessary. The expected sample size of the three-stage design
is given by equation (11) below:

(11) ESS3(θ) = n1 + (1− P1(θ))n2 + (1− P2(θ))n3,

where Pi(θ) denotes the probability that the trial will be stopped at the ith stage.

The six unknown parameters for a three-stage test are chosen to satisfy the two equa-
tions:

α = 1− φ(C2) +B(C1, C2;C4,∞; ρ12) + T (C1, C2;C3, C4;C5,∞; Σ),(12)

1− β = 1− φ(C2 − uρ13) +B(C1 − uρ13, C2 − uρ13;C4 − uρ23,∞; ρ12)

+ T (C1 − uρ13, C2 − uρ13;C3 − uρ23, C4 − uρ23;C5 − uρ12,∞; Σ),
(13)
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where B(a, b; c, d; ρ) and u were as given in section 2, and

T (a, b; c, d; e, f,Σ) =
1√
2πΣ

∫ b

a

∫ d

c

∫ f

e

exp
[

−(1/2)(X
′

Σ−1X)
]

dx,

Equation 12, which is the probability of rejecting H0 at the first stage plus the proba-
bility of continuing the trial and rejecting H0 at the second stage plus the probability
of continuing the trial and rejecting H0 at the third stage is equal to α under the H0

hypothesis. Equation 13 is the same probability under the H1 hypothesis [2, 3].

Equations 12 and 13 are solved iteratively by numerical integration of the multivariate
normal distribution using the subroutines of Donnely [6] and Schervish [11].

With six parameters and only two constraints, the parameter values are chosen to
minimize ESS(θ) for H0 or H1 (Bayes criteria). Therefore the algorithm used to obtain
the parameter values for the OR3 design is almost identical in the OR2 design [3].

Table 2. Optimal design parameters for the OR3 one-sided designs for
α = 0.01, 0.05; 1− β = 0.80, 0.90.

w α 1− β C1 C2 C3 C4 C5 naf na ESS(θ0)
a ESS(θ1)

a

0 0.01 0.80 0.738 3.819 1.318 2.598 2.326 10.036 11.642 5.018 8.430

0.90 0.649 3.747 1.335 2.632 2.326 13.017 15.100 6.639 10.544

0.05 0.80 0.342 2.539 0.877 1.945 1.645 6.183 7.543 3.710 4.946

0.90 0.234 2.470 0.879 2.015 1.645 8.564 10.362 5.310 6.423

1 0.01 0.80 0.816 2.796 1.724 2.661 2.326 10.036 12.646 5.219 8.029

0.90 0.535 2.719 1.907 2.696 2.326 13.017 16.662 7.290 9.763

0.05 0.80 0.312 2.150 1.184 2.023 1.645 6.183 7.976 3.833 4.823

0.90 0.012 2.095 1.313 2.067 1.645 13.017 11.048 5.738 6.252

a Multiply each value by (σ/δ)2

The design parameters (C1, C2, C3, C4 and C5), and the maximum and expected sample
sizes obtained using the Bayes criteria are given in Table 2 for α = 0.01, 0.05, 1 − β =
0.80, 0.90.

An Example

Suppose that an investigator is interested in conducting a clinical trial with the OR3

design for comparing a test drug (T) with a placebo (P). Based on information obtained
from a pilot study, data from the test drug and the placebo seem to have a common
variance, i.e., σ2 = σ2

1 = σ2
2 = 4 with µT = µP = 1, [4].

Suppose we wish to design this trial, using a 5% significance level for a one-sided test
of the hypothesis with 90% power to distinguish between the test drug and the placebo.
We assume that the measurements are normally distributed.

The required fixed sample size is

nf =
(8.564)(2)(4)

12
' 69.
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The maximum sample sizes needed for the OR3 design optimized under H0, and opti-
mized under H1 are given by

n0max = (10.362)8 = 82.89 ' 83 and n1max = (11.048)8 = 88.38 ' 88.

Hence, it is necessary to have

n0 = 83/3 ' 27 and n1 = 88/3 ' 29

patients per group for each analysis.

4. Comparison with other designs and results

In this section, the OR3 design will be compared with the fixed sample, sequential
and OR2 designs.

The efficiency of the OR3 design relative to the fixed sample design is presented in
Table 3 given α = 0.01, 0.05 and 1 − β = 0.80, 0.90. Here, the efficiencies are computed
as

R1 =
ESS(θ1)

nf
∗ 100 and R0 =

ESS(θ0)

nf
∗ 100.

Therefore, the savings can be defined as

Si =
nf − ESS(θi)

nf
, i = 0, 1.

Table 3. Efficiency of the OR3 Design compared to the Fixed Sample Size
Design.

w=0 w=1

α 1− β R0 R1 R0 R1

0.01 0.80 50.0 84.0 52.0 80.0

0.90 51.0 81.0 56.0 75.0

0.05 0.80 60.0 80.0 62.0 78.0

0.90 62.0 75.0 67.0 73.0

It is seen that the OR3 design provides better savings than the fixed sample design for
both situations (w = 0 and w = 1). However, when H1 is true, the OR3 design gives
much smaller savings.

The expected sample size under the H0 and H1 hypothesis for the sequential design
of Wald are given approximately by,

ESSsprt(θ0)∆
2 = −2

[

αln
(1− β

α

)

+ (1− α) ln
( β

1− α

)]

,

ESSsprt(θ1)∆
2 = 2

[

βln
( β

1− α

)

+ (1− β) ln
(1− β

α

)]

,

where ∆ =
θ1 − θ0

σ
, [12, 10].

A comparison of these expected sample sizes and the three-stage expected sample sizes
is shown in Table 4. Here, relative efficiency is defined as

S =
nf − ESS3(θi)

nf − ESSSPRT

(θi) ∗ 100, i = 0, 1
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Table 4. Efficiency of the OR3 Design compared to the Sequential Design.

w=0 w=1

α 1− β S0 S1 S0 S1

0.01 0.80 71.8 46.1 69.2 56.0

0.90 73.8 45.0 67.0 59.6

0.05 0.80 70.3 52.8 67.8 58.3

0.90 71.7 55.3 62.6 61.2

From Table 4 it is clear that the OR3 design provides better savings than the sequential
design for both situations (w = 0 and w = 1). While the OR2 design provides a %50
saving compared with the sequential design, the OR3 design provides as much as 70% of
the possible savings under H0 [10].

Finally, Table 5 gives the efficiency of the OR3 design relative to the OR2 design for
several α and 1−β values. The OR2 design with equal sample sizes at each stage is used
for this comparison because this restriction is used in obtaining the three-stage results.

Table 5. Efficiency of the OR3 Design compared to the OR2 Design.

w=0 w=1

α 1− β R0 R1 R0 R1

0.01 0.80 80.8 97.6 82.3 93.8

0.90 81.7 97.8 88.2 91.4

0.05 0.80 86.2 95.2 88.6 93.2

0.90 88.1 93.3 95.0 91.1

Here, efficiency is defined as

R =
ESS3(θi)

ESS2(θi)
∗ 100, i = 0, 1.

It can be seen that little is gained by the addition of a third stage for w = 0 and w = 1
when H1 is true. The greatest benefits usually occur when H0 is true.

Consequently, if we compare the OR3 design with other designs, we can say the OR3

design is preferable in terms of sample size and performance.
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