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Abstract

In the present paper we will establish some properties of the class of
a - Quasi - Uniformly convex, p-valent functions of type [ in the open
unit disk, which we denote by QUCV%’;\I, for A\>—-1;0<8<p, a>0
and p € N, by making use of the Ruscheweyh Derivatives.
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1. Introduction and Definitions

Let A, denote the class of functions of the form
(1) fE) =2+ an", pEN,
n=2

which are analytic in the open unit disk A = {z € C: |z| < 1}, normalized by conditions
f(0) =0, fP(0) = p!. Also, let B denote the subclass of A, that are p-valent in A. We
also denote by UCVP, C*? and QP the subclasses of functions in A, that are respectively
uniformly convex p-valent, Quasi-convex p-valent and a-Quasi-convex p-valent in A. For
p = 1 we obtain the classes UCV and C* which were introduced and studied in [1], [2]
respectively.

To prove our results, we need the following definitions.
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1.1. Definition. Let f(2) = 22 + > antp2""?, p € N. Then the Ruscheweyh Deriva-

n=1
tives of f(z) are defined by
1 - - n
D f(z) = ﬁ{z(zk L)V =S(Ap)2 + ) S n)antpz" TP, A > —1,
’ n=1
where S(\,p) = (A—i_f\?_ 1).

1.2. Definition. The class UQCV’E’)‘ of uniformly Quasi-conver p-valent functions of
type (B consists of function f of the form (1) for which there exists a function g € UCV?
of the form

() g =+ Y b

such that

[(z =) (D*f(2)))
3 Re
o w{lg
where z # 1 € A. When n = 0, the class of functions satisfying (3) is called the class of

Quasi-uniformly convex p-valent function of type (3, which we denote b, QUCVP’A, see
y p yp ¥y A
[6]. For p=1, A =0 and 8 = 0 we get the class UQCYV introduced in [6].

}>ﬁ7 0<B<p,

1.3. Definition. The class CUCVI’;,’A of close-to-uniformly conver p-valent functions of
order (3 consists of functions f of the form (1) for which there exists a uniformly convex
p-valent function g € UCV? of the form (2) such that

(DAf(Z))'}
Re< ———=L >0, z€ A, 0< B <p.
{ (D*g(2))

For A =0, p =1 and 8 = 0 we get the class CUCV, which was introduced by K. S.
Padmanabhan in [5].

We note that here
UCV? C UQCVH* € QUCVE? € CUCVS? C K C B,
where K is the class of close-to-convex functions of order 3, and we have D f € QUCVg’A
if and only if z(D*f)’ € CUCVg’A. This is proved in [6] for A=0, S =0and p=1.
1.4. Definition. Let f(z) = 2P + > anz", be analytic in A. Then f(z) is said to a—
n=2

Quasi - uniformly convex p-valent ofitype B in A if and only if, there exists a uniformly
convex, p-valent function g(z) = 27 + Y bpz™ in A such that
n=2

DR EDME)T
Re{(l YD)y T (DY)

This class of functions is denoted by QUCVZ‘,/;.

}>ﬁ7 0<a<l,0<pB<p

We note here that QUCV%’% = CUCV’B"’\7 the class of close-to-uniformly convex

functions; and QUCVZ”;‘ = QUCVZ’)‘, the class of Quasi-uniformly functions. Thus,
QUCVZ‘; unifies the classes CUCV%A and QUCV’;,)‘ in the same way as Q% connects K
and C*P.
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2. Main Results

2.1. Theorem. Let

(4) DYd(z) = (1 — a)D*t(2) + az(D*(z)), A> -1, >0, p €N,
and |z| < 1. Then t(z) € QUCVE:Z if and only if d(2) € CUCVg’)‘.

Proof. Let D d(z) = (1 — a)D (2) + az(D*t(2))’ and suppose t(z) € QUCVZ’:;. Then
there exists a function ¢ (z) € UCV? such that

(DR D)
(5) Re{“ YD)y T (D)) }>ﬁ'

Now by (4) we have

(Drd(2))" _ (1-a) (Dt(2))" | [(D*t(2)]

(D)) D) (D)

so by (5) we have Re{%} > (3, proving that d(z) is in CUCV%’A.

Conversely assume d(z) € CUCVZ’A. Then there exists a function 1(z) € UCV? such
that

©) Re{m}>ﬂ.

(D p(2))

From (4) we have

(Drd(2))" _ (1-a) (D (2))’ n alz(DMt(2))]

(D p(2)) (D p(2)) (D p(2))
Then

L (DME)Y D)

ref =) Gy + oy | 7 O

which implies ¢(z) € QUCV%’;. This completes the proof. O

2.2. Corollary. Forp =1, A =0 and 3 = 0 we get the result due to C. Selvaraj [8]
involving CUCV and QUCV,,.

2.3. Theorem. A function f of the form (1) is in QUCV?’; if and only if there exists
a function S(z) € CUCV’B”)‘ such that

! / t/O2prAgydt, 0<a<1,A>—1.

1y
OZZ(Q) ! 0

(7) D*f(z) =
Proof. From the representation (7) we have

8) azUNIDA () = / 137902 DA g (1) d.
0

After differentiating both sides of (8) we obtain
(1 - )@ 72D f(2) + az'@ 7 (DM f(2)) = 23 72D (2),
or equivalently,
(1- @)D f(2) + az(D*f(2))' = D*S(2).
So we obtain (4), and hence by Theorem 2.1 the proof is complete. O
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The same result was obtained for p =1, A =0 and 8 =0 by C. Selvaraj [8].

Goodman [1] showed that the classical Alexander result f € K <= zf’ € S* does
not hold between the classes UCV? and UST? (uniformly starlike functions). Rgnning
[7] introduced the class Sp(7) consisting of functions zf’, f € UCV?. To prove the next
theorem we require the definition of the class Sp(7y).

2.4. Definition. Let f(z) = 2? + 3. axz® € A,. Then f € Sp(y) if and only if
k=2

21'(2) ‘ {zf’(Z)
—p| < Re
f(z) f(z)
He also defined the class UCVP () of functions f for which zf’ € Sp(7). In this paper
we obtain this class by letting v = 0, that is Sp(0) = Sp.

7’7},Z€A,71§7<1.

2.5. Theorem. Let D*S(z) € Sk,

(9) D (z) = %/ tA/O2DAS(4)dt, o >0, A > —1, peN,
az 0

and let 1/a be a positive integer. Then D d(z) € S*(3p).

Proof. By using logarithmic differentiation, from (9) we have

(D*d(z))’ B pz(l/a)_QD’\S(z) ~ (1 _a)z(l/a)—Q
DXd(z) — p [5 t(/)=2DAS(t)dt az(1/a)—1
. Z(l/a)*ZDAS(Z) _ (é _ 1)271 foz t(l/a)72D)\5(t)dt
a Jo t0/)=2D S (t)dt '
So
2(DXd(2))  2YTIDAS(2) + (1—1/a) [ 22D S(2)dz
A - Z (1/a)—2 DA
ap P / Iy (072D S (B)dt
_ 2K () + (1 —=1/a)u(z)
w(z) ’

where u(z) = [ t(/)=2DAS(t)dt. Now we have
PRCACECEN AN

w(2)
w'(2)
B 2[(1/a — 2)z/ D73 DAS(2) + 2/ 972D S (2))]
= fe { Z/a-2 DAS(2) +2-1/a
A l
e[ 2D
D*S(z)
-
2p
as D S(z) € Se. Hence, Re { [zu’(z)+slzzl)/a)u(z>]/} > 1p. By a Lemma of Libera [3],
! 1—-1 1
P EUCEELIETE) B W
n(z) 2
Therefore, by (10) we have Re {%} > 1p 2 € A. Then D*d(z) € S*(1p) (classes

of starlike function of order %p) and the proof is complete. a
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2.6. Corollary. For A =0 and p =1 we get the result due to C. Selvaraj [8] .

2.7. Theorem. If n(z) € CUCVE’A and Fx(z) = L[zD*n(z2)]’, then Fx(2) is close-to-
convez of order B for |z| < 1/2.

Proof. Because n(z) € CUCV%’A there exists a function h(z) € UCV? such that

Dn(z)'
Re{(D'\h(z))’ > 06,z € A,
and since h(z) € UCV? we have D*h(z) € UCVP which implies z(D*h(2))’ € Sp. There-

A ’ A ’ ’
fore we have Re {%} > f3, so Re{%} > [ where Hy(2) = 2(D*h(2)) €
Sp. If GA(z) = 2[zHx(z)]', from Livingston [4] we have Gx(z) € S*, 2| < 1.

To prove F) is close-to-convex of order 3, it is sufficient to show that Re { ZGF;((ZZ)) } >0
for |z| < % Now proceeding as in Theorem 3 of [5], we get F) is close-to-convex of order

B for |z] < % This completes the proof. O

2.8. Corollary. For p=1,A=0 and 8 =0 we get the result due to C. Selvaraj [8].

2.9. Theorem. Let ju(z) € QUCVYY and let Fx(2) = 1[2D*u(2)]',2 € A. Then Fj is

,a
close-to-convez of order 3 for |z| < 3.

Proof. Since u(z) € QUCVIE’;, by Theorem 2.1 we have

(1) DY) = (1 - @)D (=) + az(D u(2)), =€ A

such that ¢(z) € CUCVg’A. Suppose Hi(z) = 1[zD*¢(2)]'. By Theorem 2.7, Hx(z) is
close-to-convex of order 3 for |z| < 1. From (11) we have

(D¢(2)) = (1 = a)(D*u(2))" + a(D*u(2)) + az[Du(2))".
Therefore
D] = LID*() + (D (=)'

(12) 1 A A A
= 51— (=D () + azl=(D (=) + 2D u(2)')

To prove F) is close-to-convex, we have to prove G(z) = (1 — a)Fi(2) + az(Fi(2)) is

close-to-convex of order 3 for |z| < 3 and for a > 0 (by Theorem 2.1), where F)(z) =
12D u(z)), z € A, so we have

G(z) = (1= a) g [2D (=) +azg [D*u(z) + 2(D u(2))

1 ! 11
L~ @)D )Y + az(D () + oz (D ()]
1
= 5[2'DA¢>(Z)]' (by (12)).
So G(z) is close-to-convex of order 3 in |z| < 1 and consequently F(z) is close-to-convex
of order 3 in |z| < 3, and the proof is complete. O

In the final theorem we obtain a necessary condition for a function belonging to
QUCVEY.
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2.10. Theorem. Let f(z) =2+ > anz™. If f(2) € QUCV?’; then

n=2

(13) > né(\n)[Bby—an(1+a(n—1))] < ps(A,p)[(1-B)+a(p—1)], peN, 0< B <p

where g(z) = 2P + Y bpz™ is in UCVP.
n=2

Proof. Let f(z) € QUCVPa”;. By Definition 1.4 we have

(Drg(2)) [D*g(2))
(D} f(2)) + az(D* f(2))"
(D9(2) P
So we have
pd(\, p)2P T (14 alp — 1)) + § né(\,n)an (14 a(n —1))z"*
n=2 > ﬁ

PS(AP)2P1 + 3 nd(A, m)byzn !
n=2

= p3(zp)l=" 1+ alp— 1)+ ) nd(An)an(l+a(n —1)[2"

n=2
— Bpd(\,p)|z|Pt = B i nd(\, n)bn|z|" " > 0.
n=2
Now letting z — 1~ we obtain
i né(A,n)[Bbn — an(1+a(n —1))] <pé(A, p)[(1 = B) +alp —1)].
Hence thv:sroof is complete. O
References

[1] Goodman,A.W. On uniformly convez functions, Annals Polonici Mathematici XVI (1), 8
22, 1991.

[2] Khalida, I. On Quasi-convez functions, Car. J. Math. 3, 1-8, 1984.

[3] Libera, R.J. Some classes of regular functions, Proc. Amer. Math. Soc. 16, 755-758, 1965.

[4] Livingston, A.E. On the radius of univalence of certain analytic functions, Proc. Amer.
Math. Soc. 16, 352-357, 1965.

[5] Padmanabhan, K.S. On certain sub-classes of Bezilevic functions, Indian J. Math. 9 (3),
1-16, 1997.

[6] Rajagopal, R. and Selvaraj, C. On a class of uniformly quasi-convezr functions, Bull. Cal.
Math. Soc. 95 (1), 2003.

[7] Renning, F. On starlike functions associated with parabolic regions, Ann. Univ. Marie Curie,
Sklo, Sect. A 45, 117-122, 1991.

[8] Selvaraj, C. On Alpha - Quasi - Uniformly convex functions, J. of Indian Acad. Math.
25 (1), 169-185, 2003.



