CYCLES OF INDEFINITE QUADRATIC FORMS AND CYCLES OF IDEALS

Ahmet Tekcan*

Received 08:03:2006 : Accepted 30:05:2006

Abstract

Let δ denotes a real quadratic irrational integer with trace $t = \delta + \overline{\delta}$ and norm $n = \delta.\overline{\delta}$. Given a real quadratic irrational $\gamma \in \mathbb{Q}(\delta)$, there are rational integers P and Q such that $\gamma = \frac{P+\delta}{Q}$ with $Q|(\delta + P)(\overline{\delta} + P)$. Hence for each $\gamma = \frac{P+\delta}{Q}$, there is a corresponding ideal $I_{\gamma} = [Q, P + \delta]$, and an indefinite quadratic form $F_{\gamma}(x, y) = Q(x - \delta y)(x - \overline{\delta}y)$ of discriminant $t^2 - 4n$. In this paper, we consider the cycles of I_{γ} and cycles of F_{γ} for some specific values of $\delta = \sqrt{D}$, where $D \neq 1$ is a positive non-square integer.

Keywords: Quadratic forms, Ideals, Cycles of forms, Cycles of ideals. 2000 AMS Classification: Primary : 11 E 15, Secondary 11 A 55, 11 J 70.

1. Introduction.

Binary quadratic forms play an important role in the theory of numbers and have been studied by many authors. A real binary quadratic form (or just a form) F is a polynomial in two variables x, y of the type

(1.1)
$$F = F(x, y) = ax^2 + bxy + cy^2$$
,

with real coefficients a, b, c. We denote F briefly by F = (a, b, c). The discriminant of F is defined by the formula $b^2 - 4ac$ and is denoted by Δ . A quadratic form F of discriminant Δ is called indefinite if $\Delta > 0$.

Gauss (1777-1855) defined the group action of the extended modular group $\overline{\Gamma}$ on the set of forms as follows:

(1.2)
$$gF(x,y) = (ar^{2} + brs + cs^{2})x^{2} + (2art + bru + bts + 2csu)xy + (at^{2} + btu + cu^{2})y^{2}$$

for $g = \begin{pmatrix} r & s \\ t & u \end{pmatrix} \in \overline{\Gamma}$ and F = (a, b, c).

^{*}Uludag University, Faculty of Science, Department of Mathematics, Görükle 16059, Bursa, Turkey. E-mail: tekcan@uludag.edu.tr

Two forms F and G are called equivalent iff there exists a $g \in \overline{\Gamma}$ such that gF = G. If det g = 1, then F and G are called properly equivalent. If det g = -1, then F and G are called improperly equivalent. A quadratic form F is said to be ambiguous if it is improperly equivalent to itself. An indefinite quadratic form F = (a, b, c) of discriminant Δ is said to be reduced if

(1.3) $\left|\sqrt{\Delta} - 2|a|\right| < b < \sqrt{\Delta}.$

1.1. Theorem. [1, Sec:6.10, p.106] Let F = (a, b, c) be an indefinite quadratic form of discriminant Δ . Then the cycle of F is $F_0 \sim F_1 \sim F_2 \sim \cdots \sim F_{l-1}$ of length l, where $F_0 = F = (a_0, b_0, c_0)$,

(1.4)
$$s_i = |s(F_i)| = \left[\frac{b_i + \sqrt{\Delta}}{2|c_i|}\right]$$

and

(1.5)
$$F_{i+1} = (a_{i+1}, b_{i+1}, c_{i+1}) \\ = (|c_i|, -b_i + 2s_i|c_i|, -(a_i + b_i s_i + c_i s_i^2))$$

for $1 \leq i \leq l-2$.

Mollin [4, Sec:1.1, p.4] considers the arithmetic of ideals in his book. Let $D \neq 1$ be a square free integer and let $\Delta = \frac{4D}{r^2}$, where r = 2 if $D \equiv 1 \pmod{4}$, and r = 1, otherwise. If we set $\mathbb{K} = \mathbb{Q}(\sqrt{D})$, then \mathbb{K} is called a quadratic number field of discriminant Δ , and O_{Δ} is the ring of integers of the quadratic field \mathbb{K} of discriminant Δ .

Let $[\alpha, \beta]$ denote the $\mathbb{Z}-$ module $\alpha\mathbb{Z} \oplus \beta\mathbb{Z}$. Then every integer $w_{\Delta} \in O_{\Delta}$ can be uniquely expressed as $w_{\Delta} = x\alpha + y\beta$, where $x, y \in \mathbb{Z}$, and $\alpha, \beta \in O_{\Delta}$. We call α, β an integral basis for \mathbb{K} . The discriminant of \mathbb{K} is D if $D \equiv 1 \pmod{4}$, and is 4D otherwise. If $I = [a, b + cw_{\Delta}]$, then I is a non-zero ideal of O_{Δ} if and only if

(1.6) $c|b, c|a, ac|N(b+cw_{\Delta}).$

Furthermore, for a given ideal I the integers a and c are unique and a is the least positive rational integer in I which we will denote as L(I). The norm of an ideal I is defined as N(I) = |ac|. If I is an ideal of O_{Δ} with L(I) = N(I), i.e. c = 1, then I is called primitive, which means that I has no rational integer factors other than ± 1 . Every primitive ideal can be uniquely given by $I = [a, b + w_{\Delta}]$.

Mollin, Poorten and Cheng (see [3] and [5]) consider the ideals and their cycles extensively. The cycle of a primitive ideal $I = [a, b + w_{\Delta}]$ is defined as follows: Let $\langle m_0, \overline{m_1 m_2 \cdots m_{l-1}} \rangle$ be the continued fraction expansion of $\frac{b+w_{\Delta}}{a}$ with period length l = l(I), where

(1.7)
$$m_i = \left[\frac{P_i + \sqrt{D}}{Q_i}\right], P_{i+1} = m_i Q_i - P_i \text{ and } Q_{i+1} = \frac{D - P_{i+1}^2}{Q_i}$$

for $i \geq 0$. From the continued fraction factoring algorithm we get all reduced ideals equivalent to a given reduced ideal $I = [a, b+w_{\Delta}]$, i.e. in the continued fraction expansion of $\frac{b+w_{\Delta}}{a}$ we have $I = I_0 = [Q_0, P_0 + \sqrt{D}] \sim I_1 = [Q_1, P_1 + \sqrt{D}] \sim \cdots \sim I_{l-1} = [Q_{l-1}, P_{l-1} + \sqrt{D}]$. Finally, $I_l = I_0 = I$ for a complete cycle of reduced ideals of length l(I) = l. (see also [2] and [6]).

Let δ denotes a real quadratic irrational integer with trace $t = \delta + \overline{\delta}$ and norm $n = \delta \overline{\delta}$. Evidently, given a real quadratic irrational $\gamma \in \mathbb{Q}(\delta)$, there are rational integers P and Q such that $\gamma = \frac{P+\delta}{Q}$ with $Q|(\delta + P)(\overline{\delta} + P)$. Hence, for each $\gamma = \frac{P+\delta}{Q}$ there is a corresponding \mathbb{Z} -module $I_{\gamma} = [Q, P + \delta]$. In fact this module is an ideal by (1.6).

There is a connection between quadratic irrationals and quadratic forms. For any quadratic irrational $\gamma = \frac{P+\delta}{Q}$, we can generate a quadratic form

$$F_{\gamma}(x,y) = Q(x - \delta y)(x - \overline{\delta} y)$$
$$= Qx^{2} - (t + 2P)xy + \left(\frac{n + Pt + P^{2}}{Q}\right)y^{2}$$

of discriminant $\Delta = t^2 - 4n$ which corresponds to γ . Hence one associates with γ a quadratic form defined as above. If one takes $\delta = \sqrt{D}$, then t = 0, n = -D and hence

(1.8)
$$F_{\gamma} = \left(Q, -2P, \frac{P^2 - D}{Q}\right)$$

of discriminant $\Delta = 4D$.

2. Cycles of Indefinite Quadratic Forms and Cycles of Ideals.

Let $D \neq 1$ be a positive non-square integer, $\delta = \sqrt{D}$, and let Q = k, P = -kfor a positive integer k. Then $\gamma = \frac{-k \pm \sqrt{D}}{k}$ is a quadratic irrational, and hence $I_{\gamma} = [k, -k + \sqrt{D}]$ is an ideal and $F_{\gamma} = \left(k, 2k, \frac{k^2 - D}{k}\right)$ is an indefinite quadratic form. We consider the cycles of I_{γ} and F_{γ} in four cases: $D = 4k^2 - k$, $D = k^2 + 2k$, $D = 3k^2$ and $D = 2k^2$. First we give the following theorem.

2.1. Theorem. $F_{\gamma} = \left(k, 2k, \frac{k^2 - D}{k}\right)$ is reduced if and only if $k^2 < D < 4k^2$.

Proof. Let F_{γ} be reduced. Then by definition, we get

$$\sqrt{\Delta} - 2|a| \left| < b < \sqrt{\Delta} \iff \left| \sqrt{4D} - 2k \right| < 2k < \sqrt{4D} \iff \sqrt{D} - k < k < \sqrt{D}$$

Hence it is clear that $k^2 < D$ and $D < (2k)^2$. Therefore $k^2 < D < 4k^2$.

Conversely, let $k^2 < D < 4k^2$. Then

$$\begin{split} k^2 &< D < 4k^2 \\ \implies \sqrt{k^2} < \sqrt{D} < \sqrt{4k^2} \\ \implies k < \sqrt{D} < 2k \\ \implies 0 < \left|\sqrt{D} - k\right| < k < \sqrt{D} \\ \implies 2 \left|\sqrt{D} - k\right| < 2k < 2\sqrt{D} \\ \implies \left|\sqrt{4D} - 2k\right| < 2k < \sqrt{4D} \\ \implies \left|\sqrt{\Delta} - 2|a|\right| < b < \sqrt{\Delta}. \end{split}$$

This is the definition of reduced forms. Therefore, F_{γ} is reduced.

2.2. Theorem. If $D = 4k^2 - k$ then:

(1) The continued fraction expansion of γ is $< 0, \overline{1, 4k - 2, 1, 2} >$, and the cycle of I_{γ} is

$$\begin{split} I_{\gamma}^{0} &= [k, -k + \sqrt{4k^{2} - k}] \sim I_{\gamma}^{1} = [3k - 1, k + \sqrt{4k^{2} - k}] \\ &\sim I_{\gamma}^{2} = [1, 2k - 1 + \sqrt{4k^{2} - k}] \sim I_{\gamma}^{3} = [3k - 1, 2k - 1 + \sqrt{4k^{2} - k}] \\ &\sim I_{\gamma}^{4} = [k, k + \sqrt{4k^{2} - k}]; \end{split}$$

A. Tekcan

(2) F_{γ} is ambiguous, and the cycle of F_{γ} is

$$F_{\gamma}^{0} = (k, 2k, 1 - 3k)$$

$$\sim F_{\gamma}^{1} = (3k - 1, 4k - 2, -1)$$

$$\sim F_{\gamma}^{2} = (1, 4k - 2, 1 - 3k)$$

$$\sim F_{\gamma}^{3} = (3k - 1, 2k, -k).$$

Proof. (1) For the quadratic irrational $\gamma = \frac{-k + \sqrt{4k^2 - k}}{k}$ we have $m_0 = 0$ from (1.7). Hence

$$P_1 = m_0 Q_0 - P_0 = 0 \cdot k - (-k) = k,$$

$$Q_1 = \frac{D - P_1^2}{Q_0} = \frac{4k^2 - k - k^2}{k} = 3k - 1, \ m_1 = 1.$$

For i = 1 we have

$$P_2 = m_1 Q_1 - P_1 = 1 \cdot (3k - 1) - k = 2k - 1,$$

$$Q_2 = \frac{D - P_2^2}{Q_1} = \frac{4k^2 - k - (2k - 1)^2}{3k - 1} = \frac{3k - 1}{3k - 1} = 1, \ m_2 = 4k - 2.$$

For i = 2 we have

$$P_3 = m_2 Q_2 - P_2 = (4k - 2) \cdot 1 - (2k - 1) = 2k - 1,$$

$$Q_3 = \frac{D - P_3^2}{Q_2} = \frac{4k^2 - k - (2k - 1)^2}{1} = 3k - 1, m_3 = 1$$

For i = 3 we have

$$P_4 = m_3 Q_3 - P_3 = 1 \cdot (3k - 1) - (2k - 1) = k,$$

$$Q_4 = \frac{D - P_4^2}{Q_3} = \frac{4k^2 - k - k^2}{3k - 1} = k, \ m_4 = 2.$$

For i = 4 we have

$$P_5 = m_4 Q_4 - P_4 = 2 \cdot k - k = k = P_1,$$

$$Q_5 = \frac{D - P_5^2}{Q_4} = \frac{4k^2 - k - k^2}{k} = 3k - 1 = Q_1, \ m_5 = 1 = m_1$$

Therefore, the continued fraction expansion of γ is $< 0, \overline{1, 4k - 2, 1, 2} >$, and hence the cycle of I_{γ} is $I_{\gamma}^{0} = [k, -k + \sqrt{4k^{2} - k}] \sim I_{\gamma}^{1} = [3k - 1, k + \sqrt{4k^{2} - k}] \sim I_{\gamma}^{2} = [1, 2k - 1 + \sqrt{4k^{2} - k}] \sim I_{\gamma}^{3} = [3k - 1, 2k - 1 + \sqrt{4k^{2} - k}] \sim I_{\gamma}^{4} = [k, k + \sqrt{4k^{2} - k}].$

(2) Let $g = \begin{pmatrix} r & s \\ t & u \end{pmatrix} \in \overline{\Gamma}$ and $F_{\gamma} = (k, 2k, 1 - 3k)$. Then by (1.2), the system of equations

$$kr^{2} + 2krs + (1 - 3k)s^{2} = k$$

2krt + 2kru + 2kts + 2(1 - 3k)su = 2k
$$kt^{2} + 2ktu + (1 - 3k)u^{2} = 1 - 3k$$

has a solution for $g = \begin{pmatrix} 4k - 1 & 4k \\ 2 - 4k & 1 - 4k \end{pmatrix} \in \overline{\Gamma}$. Hence F_{γ} is improperly equivalent to itself since det g = -1. Therefore F_{γ} is ambiguous.

For the quadratic form $F_{\gamma} = (k, 2k, 1 - 3k)$ of discriminant $\Delta = 4(4k^2 - k)$ we get from (1.4), $s_0 = 1$ and from (1.5)

$$F_{\gamma}^{1} = (a_{1}, b_{1}, c_{1}) = (|c_{0}|, -b_{0} + 2s_{0}|c_{0}|, -a_{0} - b_{0}s_{0} - c_{0}s_{0}^{2})$$

= $(3k - 1, -2k + 2(3k - 1), -k - 2k.1 - (1 - 3k) \cdot 1)$
= $(3k - 1, 4k - 2, -1).$

For i = 1 we have $s_1 = 4k - 2$, and

$$F_{\gamma}^{2} = (a_{2}, b_{2}, c_{2}) = (|c_{1}|, -b_{1} + 2s_{1}|c_{1}|, -a_{1} - b_{1}s_{1} - c_{1}s_{1}^{2})$$

= $(1, 2 - 4k + 2(4k - 2).1, 1 - 3k - (4k - 2)(4k - 2) + (4k - 2)^{2})$
= $(1, 4k - 2, 1 - 3k).$

For i = 2 we have $s_2 = 1$, and

$$F_{\gamma}^{3} = (a_{3}, b_{3}, c_{3}) = (|c_{2}|, -b_{2} + 2s_{2}|c_{2}|, -a_{2} - b_{2}s_{2} - c_{2}s_{2}^{2})$$

= $(3k - 1, 2 - 4k + 2(3k - 1), -1 - (4k - 2) - (1 - 3k))$
= $(3k - 1, 2k, -k)$.

For i = 3 we have $s_3 = 2$, and

$$F_{\gamma}^{4} = (a_{4}, b_{4}, c_{4}) = (|c_{3}|, -b_{3} + 2s_{3}|c_{3}|, -a_{3} - b_{3}s_{3} - c_{3}s_{3}^{2})$$

= $(k, -2k + 2 \cdot 2 \cdot k, 1 - 3k - 2k \cdot 2 + k \cdot 4)$
= $(k, 2k, 1 - 3k)$
= F_{γ}^{0} .

Therefore the cycle of F_{γ} is completed and is $F_{\gamma}^{0} = (k, 2k, 1 - 3k) \sim F_{\gamma}^{1} = (3k - 1, 4k - 2, -1) \sim F_{\gamma}^{2} = (1, 4k - 2, 1 - 3k) \sim F_{\gamma}^{3} = (3k - 1, 2k, -k).$

2.3. Theorem. If $D = k^2 + 2k$ then:

(1) The continued fraction expansion of γ is $\langle 0, \overline{k, 2} \rangle$, and the cycle of I_{γ} is

$$I_{\gamma}^{0} = [k, -k + \sqrt{k^{2} + 2k}]$$

~ $I_{\gamma}^{1} = [2, k + \sqrt{k^{2} + 2k}]$
~ $I_{\gamma}^{2} = [k, k + \sqrt{k^{2} + 2k}];$

(2) F_{γ} is ambiguous, and the cycle of F_{γ} is

$$F_{\gamma}^{0} = (k, 2k, -2)$$

~ $F_{\gamma}^{1} = (2, 2k, -k).$

Proof. (1) For the quadratic irrational $\gamma = \frac{-k + \sqrt{k^2 + 2k}}{k}$ we have from (1.7), $m_0 = 0$. Hence

$$P_{1} = m_{0}Q_{0} - P_{0} = 0.k - (-k) = k,$$

$$Q_{1} = \frac{D - P_{1}^{2}}{Q_{0}} = \frac{k^{2} + 2k - k^{2}}{k} = 2, \ m_{1} = k.$$

For i = 2 we have

$$P_2 = m_1 Q_1 - P_1 = k \cdot 2 - k = k,$$

$$Q_2 = \frac{D - P_2^2}{Q_1} = \frac{k^2 + 2k - k^2}{2} = k, \ m_2 = 2.$$

A. Tekcan

For i = 3 we have

$$P_3 = m_2 Q_2 - P_2 = 2 \cdot k - k = k = P_1,$$

$$Q_3 = \frac{D - P_3^2}{Q_2} = \frac{k^2 + 2k - k^2}{k} = 2 = Q_1, \ m_3 = k = m_1$$

Therefore, the continued fraction expansion of γ is $\langle 0, \overline{k, 2} \rangle$, and hence the cycle of I_{γ} is $I_{\gamma}^0 = [k, -k + \sqrt{k^2 + 2k}] \sim I_{\gamma}^1 = [2, k + \sqrt{k^2 + 2k}] \sim I_{\gamma}^2 = [k, k + \sqrt{k^2 + 2k}].$

(2) Let
$$g = \begin{pmatrix} r & s \\ t & u \end{pmatrix} \in \overline{\Gamma}$$
 and $F_{\gamma} = (k, 2k, -2)$. Then by (1.2), the system of equations
 $kr^2 + 2krs - 2s^2 = k$
 $2krt + 2kru + 2kts - 4su = 2k$
 $kt^2 + 2ktu - 2u^2 = -2$

has a solution for $g = \begin{pmatrix} 2k+1 & 2k^2+2k \\ -2 & -1-2k \end{pmatrix} \in \overline{\Gamma}$. Hence F_{γ} is improperly equivalent to itself since det g = -1. Therefore F_{γ} is ambiguous.

For the quadratic form $F_{\gamma}=(k,2k,-2)$ of discriminant $\Delta=4(k^2+2k)$ we get from (1.4), $s_0=k$ and from (1.5)

$$F_{\gamma}^{1} = (a_{1}, b_{1}, c_{1}) = (|c_{0}|, -b_{0} + 2s_{0}|c_{0}|, -a_{0} - b_{0}s_{0} - c_{0}s_{0}^{2})$$

= $(2, -2k + 2 \cdot k \cdot 2, -k - 2k \cdot k + 2k^{2})$
= $(2, 2k, -k)$.

For i = 1 we have $s_1 = 2$, and

$$F_{\gamma}^{2} = (a_{2}, b_{2}, c_{2}) = (|c_{1}|, -b_{1} + 2s_{1}|c_{1}|, -a_{1} - b_{1}s_{1} - c_{1}s_{1}^{2})$$

= $(k, -2k + 2 \cdot 2 \cdot k, -2 - 2k \cdot 2 + k \cdot 4)$
= $(k, 2k, -2)$
= F_{γ}^{0} .

Therefore the cycle of F_{γ} is completed and is $F_{\gamma}^0 = (k, 2k, -2) \sim F_{\gamma}^1 = (2, 2k, -k).$

2.4. Theorem. If $D = 3k^2$ then:

(1) The continued fraction expansion of γ is $\langle 0, \overline{1,2} \rangle$, and the cycle of I_{γ} is

$$I_{\gamma}^{0} = [k, -k + \sqrt{3k^{2}}]$$

~ $I_{\gamma}^{1} = [2k, k + \sqrt{3k^{2}}]$
~ $I_{\gamma}^{2} = [k, k + \sqrt{3k^{2}}];$

(2) F_{γ} is ambiguous, and the cycle of F_{γ} is

$$F_{\gamma}^{0} = (k, 2k, -2k)$$

~ $F_{\gamma}^{1} = (2k, 2k, -k).$

Proof. (1) For the quadratic irrational $\gamma = \frac{-k + \sqrt{3k^2}}{k}$ we have $m_0 = 0$ from (1.7). Hence

$$P_1 = m_0 Q_0 - P_0 = 0 \cdot k - (-k) = k,$$

$$Q_1 = \frac{D - P_1^2}{Q_0} = \frac{3k^2 - k^2}{k} = 2k, \ m_1 = 1.$$

For i = 1 we have

$$P_2 = m_1 Q_1 - P_1 = 1 \cdot 2k - k = k,$$

$$Q_2 = \frac{D - P_2^2}{Q_1} = \frac{3k^2 - k^2}{2k} = k, \ m_2 = 2.$$

For i = 2 we have

$$P_3 = m_2 Q_2 - P_2 = 2 \cdot k - k = k = P_1,$$

$$Q_3 = \frac{D - P_3^2}{Q_2} = \frac{3k^2 - k^2}{k} = 2k = Q_1, \ m_3 = 1 = m_1.$$

Therefore, the continued fraction expansion of γ is $<0, \overline{1,2}>$, and hence the cycle of I_{γ} is $I_{\gamma}^0 = [k, -k + \sqrt{3k^2}] \sim I_{\gamma}^1 = [2k, k + \sqrt{3k^2}] \sim I_{\gamma}^2 = [k, k + \sqrt{3k^2}].$

(2) Let
$$g = \begin{pmatrix} r & s \\ t & u \end{pmatrix} \in \overline{\Gamma}$$
 and $F_{\gamma} = (k, 2k, -2k)$. Then by (1.2), the system of equations
 $kr^2 + 2krs - 2ks^2 = k$
 $2krt + 2kru + 2kts - 4ksu = 2k$
 $kt^2 + 2ktu - 2ku^2 = -2k$

has a solution for $g = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix} \in \overline{\Gamma}$. Hence F_{γ} is improperly equivalent to itself since det g = -1. Therefore F_{γ} is ambiguous.

For the quadratic form $F_{\gamma} = (k, 2k, -2k)$ of discriminant $\Delta = 12k^2$ we get from (1.4), $s_0 = 1$ and from (1.5)

$$F_{\gamma}^{1} = (a_{1}, b_{1}, c_{1}) = (|c_{0}|, -b_{0} + 2s_{0}|c_{0}|, -a_{0} - b_{0}s_{0} - c_{0}s_{0}^{2})$$

= $(2k, -2k + 2 \cdot 2k, -k - 2k \cdot 1 + 2k)$
= $(2k, 2k, -k)$.

For i = 1 we have $s_1 = 2$, and

$$F_{\gamma}^{2} = (a_{2}, b_{2}, c_{2}) = (|c_{1}|, -b_{1} + 2s_{1}|c_{1}|, -a_{1} - b_{1}s_{1} - c_{1}s_{1}^{2})$$

= $(k, -2k + 2 \cdot 2 \cdot k, -2k - 2k \cdot 2 + k \cdot 4)$
= $(k, 2k, -2k)$
= F_{γ}^{0} .

Therefore the cycle of F_{γ} is completed and is $F_{\gamma}^0 = (k, 2k, -2k) \sim F_{\gamma}^1 = (2k, 2k, -k)$. \Box

2.5. Theorem. If $D = 2k^2$ then:

(1) The continued fraction expansion of γ is $<0,\overline{2}>,$ and the cycle of I_{γ} is

$$I_{\gamma}^{0} = [k, -k + \sqrt{2k^{2}}]$$

~ $I_{\gamma}^{1} = [k, k + \sqrt{2k^{2}}];$

(2) F_{γ} is ambiguous, and the cycle of F_{γ} is $F_{\gamma}^{0} = (k, 2k, -k)$.

Proof. (1) For the quadratic irrational $\gamma = \frac{-k + \sqrt{2k^2}}{k}$ we have $m_0 = 0$ from (1.7). Hence

$$P_1 = m_0 Q_0 - P_0 = 0 \cdot k - (-k) = k,$$

$$Q_1 = \frac{D - P_1^2}{Q_0} = \frac{2k^2 - k^2}{k} = k, \ m_1 = 2.$$

A. Tekcan

For i = 1 we have

$$P_{2} = m_{1}Q_{1} - P_{1} = 2 \cdot k - k = k = P_{1},$$
$$Q_{2} = \frac{D - P_{2}^{2}}{Q_{1}} = \frac{2k^{2} - k^{2}}{k} = k = Q_{1}, \ m_{2} = 2 = m_{1}$$

Therefore, the continued fraction expansion of γ is $< 0, \overline{2} >$, and hence the cycle of I_{γ} is $I_{\gamma}^{0} = [k, -k + \sqrt{2k^{2}}] \sim I_{\gamma}^{1} = [k, k + \sqrt{2k^{2}}].$

(2) Let
$$g = \begin{pmatrix} r & s \\ t & u \end{pmatrix} \in \overline{\Gamma}$$
 and $F_{\gamma} = (k, 2k, -k)$. Then by (1.2), the system of equations
 $kr^2 + 2krs - ks^2 = k$
 $2krt + 2kru + 2kts - 2ksu = 2k$
 $kt^2 + 2ktu - ku^2 = -k$

has a solution for $g = \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix} \in \overline{\Gamma}$. Hence F_{γ} is improperly equivalent to itself since $\det g = -1$. Therefore F_{γ} is ambiguous.

For the quadratic form $F_{\gamma} = (k, 2k, -k)$ of discriminant $\Delta = 8k^2$ we get from (1.4), $s_0 = 2$ and from (1.5)

$$F_{\gamma}^{1} = (a_{1}, b_{1}, c_{1}) = (|c_{0}|, -b_{0} + 2s_{0}|c_{0}|, -a_{0} - b_{0}s_{0} - c_{0}s_{0}^{2})$$

= $(k, -2k + 2 \cdot 2k, -k - 2k \cdot 2 + 4k)$
= $(k, 2k, -k)$
= F_{γ}^{0} .

Therefore the cycle of F_{γ} is completed and is $F_{\gamma}^{0} = (k, 2k, -k)$.

References

- [1] Buchmann, J. Algorithms for Binary Quadratic Forms (Darmstadt, 2000).
- [2] Jacobson, M. J. Computational Techniques in Quadratic Fields (PhD thesis, University of Manitoba, 1995).
- [3] Mollin, R. A. and Poorten, A. J. A Note on Symmetry and Ambiguity. Bull. Austral. Math. Soc. 51, 215–233, 1995.
- [4] Mollin, R. A. Quadratics (CRS Press, Boca Raton, New York, London, Tokyo, 1996).
- [5] Mollin, R. A. and Cheng, K. Palindromy and Ambiguous Ideals Revisited, Journal of Number Theory 74, 98–110, 1999.
- [6] Mollin, R.A. Jocabi symbols, ambiguous ideals, and continued fractions, Acta Arith. 85, 331–349, 1998.