
Hacettepe Journal of Mathematics and Statistics
Volume 35 (1) (2006), 63 – 70

CYCLES OF INDEFINITE QUADRATIC

FORMS AND CYCLES OF IDEALS

Ahmet Tekcan∗

Received 08 : 03 : 2006 : Accepted 30 : 05 : 2006

Abstract

Let δ denotes a real quadratic irrational integer with trace t = δ + δ

and norm n = δ.δ. Given a real quadratic irrational γ ∈ Q(δ), there are
rational integers P and Q such that γ = P+δ

Q
with Q|(δ + P )(δ + P ).

Hence for each γ = P+δ
Q
, there is a corresponding ideal Iγ = [Q,P +

δ], and an indefinite quadratic form Fγ(x, y) = Q(x − δy)(x − δy) of
discriminant t2 − 4n. In this paper, we consider the cycles of Iγ and
cycles of Fγ for some specific values of δ =

√
D, where D 6= 1 is a

positive non-square integer.
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1. Introduction.

Binary quadratic forms play an important role in the theory of numbers and have
been studied by many authors. A real binary quadratic form (or just a form) F is a
polynomial in two variables x, y of the type

(1.1) F = F (x, y) = ax
2 + bxy + cy

2
,

with real coefficients a, b, c. We denote F briefly by F = (a, b, c). The discriminant of F is
defined by the formula b2−4ac and is denoted by ∆. A quadratic form F of discriminant
∆ is called indefinite if ∆ > 0.

Gauss (1777-1855) defined the group action of the extended modular group Γ on the
set of forms as follows:

(1.2)
gF (x, y) =

(

ar
2 + brs+ cs

2
)

x
2 + (2art+ bru+ bts+ 2csu)xy

+
(

at
2 + btu+ cu

2
)

y
2

for g =

(

r s

t u

)

∈ Γ and F = (a, b, c).
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Two forms F and G are called equivalent iff there exists a g ∈ Γ such that gF = G.
If det g = 1, then F and G are called properly equivalent. If det g = −1, then F and
G are called improperly equivalent. A quadratic form F is said to be ambiguous if it is
improperly equivalent to itself. An indefinite quadratic form F = (a, b, c) of discriminant
∆ is said to be reduced if

(1.3)
∣

∣

∣

√
∆− 2|a|

∣

∣

∣
< b <

√
∆.

1.1. Theorem. [1, Sec:6.10, p.106] Let F = (a, b, c) be an indefinite quadratic form of

discriminant ∆. Then the cycle of F is F0 ∼ F1 ∼ F2 ∼ · · · ∼ Fl−1 of length l, where

F0 = F = (a0, b0, c0),

(1.4) si = |s(Fi)| =
[

bi +
√
∆

2|ci|

]

and

(1.5)
Fi+1 = (ai+1, bi+1, ci+1)

=
(

|ci|, −bi + 2si|ci|, −(ai + bisi + cis
2
i )
)

for 1 ≤ i ≤ l − 2.

Mollin [4, Sec:1.1, p.4] considers the arithmetic of ideals in his book. Let D 6= 1 be a
square free integer and let ∆ = 4D

r2
, where r = 2 if D ≡ 1(mod 4), and r = 1, otherwise.

If we set K = Q(
√
D), then K is called a quadratic number field of discriminant ∆, and

O∆ is the ring of integers of the quadratic field K of discriminant ∆.
Let [α, β] denote the Z− module αZ ⊕ βZ. Then every integer w∆ ∈ O∆ can be

uniquely expressed as w∆ = xα + yβ, where x, y ∈ Z, and α, β ∈ O∆. We call α, β an
integral basis for K. The discriminant of K is D if D ≡ 1(mod 4), and is 4D otherwise.
If I = [a, b+ cw∆], then I is a non-zero ideal of O∆ if and only if

(1.6) c|b, c|a, ac|N(b+ cw∆).

Furthermore, for a given ideal I the integers a and c are unique and a is the least positive
rational integer in I which we will denote as L(I). The norm of an ideal I is defined as
N(I) = |ac|. If I is an ideal of O∆ with L(I) = N(I), i.e. c = 1, then I is called primitive,
which means that I has no rational integer factors other than ±1. Every primitive ideal
can be uniquely given by I = [a, b+ w∆].

Mollin, Poorten and Cheng (see [3] and [5]) consider the ideals and their cycles ex-
tensively. The cycle of a primitive ideal I = [a, b + w∆] is defined as follows: Let

< m0,m1m2 · · ·ml−1 > be the continued fraction expansion of b+w∆
a

with period length
l = l(I), where

(1.7) mi =

[

Pi +
√
D

Qi

]

, Pi+1 = miQi − Pi and Qi+1 =
D − P 2i+1

Qi

for i ≥ 0. From the continued fraction factoring algorithm we get all reduced ideals
equivalent to a given reduced ideal I = [a, b+w∆], i.e. in the continued fraction expansion

of b+w∆
a

we have I = I0 = [Q0, P0 +
√
D] ∼ I1 = [Q1, P1 +

√
D] ∼ · · · ∼ Il−1 =

[Ql−1, Pl−1 +
√
D]. Finally, Il = I0 = I for a complete cycle of reduced ideals of length

l(I) = l. (see also [2] and [6]).

Let δ denotes a real quadratic irrational integer with trace t = δ+ δ and norm n = δδ.

Evidently, given a real quadratic irrational γ ∈ Q(δ), there are rational integers P and

Q such that γ = P+δ
Q

with Q|(δ + P )(δ + P ). Hence, for each γ = P+δ
Q

there is a

corresponding Z–module Iγ = [Q, P + δ]. In fact this module is an ideal by (1.6).
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There is a connection between quadratic irrationals and quadratic forms. For any
quadratic irrational γ = P+δ

Q
, we can generate a quadratic form

Fγ(x, y) = Q(x− δy)(x− δy)

= Qx
2 − (t+ 2P )xy +

(

n+ Pt+ P 2

Q

)

y
2

of discriminant ∆ = t2 − 4n which corresponds to γ. Hence one associates with γ a
quadratic form defined as above. If one takes δ =

√
D, then t = 0, n = −D and hence

(1.8) Fγ =

(

Q,−2P,
P 2 −D

Q

)

of discriminant ∆ = 4D.

2. Cycles of Indefinite Quadratic Forms and Cycles of Ideals.

Let D 6= 1 be a positive non-square integer, δ =
√
D, and let Q = k, P = −k

for a positive integer k. Then γ = −k+
√
D

k
is a quadratic irrational, and hence Iγ =

[k,−k +
√
D] is an ideal and Fγ =

(

k, 2k, k2−D
k

)

is an indefinite quadratic form. We

consider the cycles of Iγ and Fγ in four cases: D = 4k
2 − k, D = k2 + 2k, D = 3k2 and

D = 2k2. First we give the following theorem.

2.1. Theorem. Fγ =
(

k, 2k, k2−D
k

)

is reduced if and only if k2 < D < 4k2.

Proof. Let Fγ be reduced. Then by definition, we get
∣

∣

∣

√
∆− 2|a|

∣

∣

∣
< b <

√
∆ ⇐⇒

∣

∣

∣

√
4D − 2k

∣

∣

∣
< 2k <

√
4D ⇐⇒

√
D−k < k <

√
D.

Hence it is clear that k2 < D and D < (2k)2. Therefore k2 < D < 4k2.

Conversely, let k2 < D < 4k2. Then

k
2
< D < 4k2

=⇒
√
k2 <

√
D <

√
4k2

=⇒ k <
√
D < 2k

=⇒ 0 <
∣

∣

∣

√
D − k

∣

∣

∣
< k <

√
D

=⇒ 2
∣

∣

∣

√
D − k

∣

∣

∣
< 2k < 2

√
D

=⇒
∣

∣

∣

√
4D − 2k

∣

∣

∣
< 2k <

√
4D

=⇒
∣

∣

∣

√
∆− 2|a|

∣

∣

∣
< b <

√
∆.

This is the definition of reduced forms. Therefore, Fγ is reduced. ¤

2.2. Theorem. If D = 4k2 − k then:

(1) The continued fraction expansion of γ is < 0, 1, 4k − 2, 1, 2 >, and the cycle of

Iγ is

I
0
γ = [k,−k +

√

4k2 − k] ∼ I
1
γ = [3k − 1, k +

√

4k2 − k]

∼ I
2
γ = [1, 2k − 1 +

√

4k2 − k] ∼ I
3
γ = [3k − 1, 2k − 1 +

√

4k2 − k]

∼ I
4
γ = [k, k +

√

4k2 − k];
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(2) Fγ is ambiguous, and the cycle of Fγ is

F
0
γ = (k, 2k, 1− 3k)

∼ F
1
γ = (3k − 1, 4k − 2,−1)

∼ F
2
γ = (1, 4k − 2, 1− 3k)

∼ F
3
γ = (3k − 1, 2k,−k).

Proof. (1) For the quadratic irrational γ =
−k+

√
4k2−k

k
we have m0 = 0 from (1.7).

Hence

P1 = m0Q0 − P0 = 0 · k − (−k) = k,

Q1 =
D − P 21

Q0
=
4k2 − k − k2

k
= 3k − 1, m1 = 1.

For i = 1 we have

P2 = m1Q1 − P1 = 1 · (3k − 1)− k = 2k − 1,

Q2 =
D − P 22

Q1
=
4k2 − k − (2k − 1)2

3k − 1 =
3k − 1
3k − 1 = 1, m2 = 4k − 2.

For i = 2 we have

P3 = m2Q2 − P2 = (4k − 2).1− (2k − 1) = 2k − 1,

Q3 =
D − P 23

Q2
=
4k2 − k − (2k − 1)2

1
= 3k − 1,m3 = 1.

For i = 3 we have

P4 = m3Q3 − P3 = 1 · (3k − 1)− (2k − 1) = k,

Q4 =
D − P 24

Q3
=
4k2 − k − k2

3k − 1 = k, m4 = 2.

For i = 4 we have

P5 = m4Q4 − P4 = 2 · k − k = k = P1,

Q5 =
D − P 25

Q4
=
4k2 − k − k2

k
= 3k − 1 = Q1, m5 = 1 = m1.

Therefore, the continued fraction expansion of γ is < 0, 1, 4k − 2, 1, 2 >, and hence
the cycle of Iγ is I0γ = [k,−k +

√
4k2 − k] ∼ I1γ = [3k − 1, k +

√
4k2 − k] ∼ I2γ =

[1, 2k − 1 +
√
4k2 − k] ∼ I3γ = [3k − 1, 2k − 1 +

√
4k2 − k] ∼ I4γ = [k, k +

√
4k2 − k].

(2) Let g =

(

r s

t u

)

∈ Γ and Fγ = (k, 2k, 1 − 3k). Then by (1.2), the system of

equations

kr
2 + 2krs+ (1− 3k)s2 = k

2krt+ 2kru+ 2kts+ 2(1− 3k)su = 2k
kt
2 + 2ktu+ (1− 3k)u2 = 1− 3k

has a solution for g =

(

4k − 1 4k
2− 4k 1− 4k

)

∈ Γ. Hence Fγ is improperly equivalent to itself

since det g = −1. Therefore Fγ is ambiguous.
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For the quadratic form Fγ = (k, 2k, 1 − 3k) of discriminant ∆ = 4(4k2 − k) we get
from (1.4), s0 = 1 and from (1.5)

F
1
γ = (a1, b1, c1) =

(

|c0|, −b0 + 2s0|c0|, −a0 − b0s0 − c0s
2
0

)

= (3k − 1,−2k + 2(3k − 1),−k − 2k.1− (1− 3k) · 1)
= (3k − 1, 4k − 2,−1) .

For i = 1 we have s1 = 4k − 2, and
F
2
γ = (a2, b2, c2) =

(

|c1|, −b1 + 2s1|c1|, −a1 − b1s1 − c1s
2
1

)

=
(

1, 2− 4k + 2(4k − 2).1, 1− 3k − (4k − 2)(4k − 2) + (4k − 2)2
)

= (1, 4k − 2, 1− 3k) .
For i = 2 we have s2 = 1, and

F
3
γ = (a3, b3, c3) =

(

|c2|, −b2 + 2s2|c2|, −a2 − b2s2 − c2s
2
2

)

= (3k − 1, 2− 4k + 2(3k − 1),−1− (4k − 2)− (1− 3k))
= (3k − 1, 2k,−k) .

For i = 3 we have s3 = 2, and

F
4
γ = (a4, b4, c4) =

(

|c3|, −b3 + 2s3|c3|, −a3 − b3s3 − c3s
2
3

)

= (k,−2k + 2 · 2 · k, 1− 3k − 2k · 2 + k · 4)
= (k, 2k, 1− 3k)
= F

0
γ .

Therefore the cycle of Fγ is completed and is F
0
γ = (k, 2k, 1− 3k) ∼ F 1γ = (3k − 1, 4k −

2,−1) ∼ F 2γ = (1, 4k − 2, 1− 3k) ∼ F 3γ = (3k − 1, 2k,−k). ¤

2.3. Theorem. If D = k2 + 2k then:

(1) The continued fraction expansion of γ is < 0, k, 2 >, and the cycle of Iγ is

I
0
γ = [k,−k +

√

k2 + 2k]

∼ I
1
γ = [2, k +

√

k2 + 2k]

∼ I
2
γ = [k, k +

√

k2 + 2k];

(2) Fγ is ambiguous, and the cycle of Fγ is

F
0
γ = (k, 2k,−2)

∼ F
1
γ = (2, 2k,−k).

Proof. (1) For the quadratic irrational γ =
−k+

√
k2+2k

k
we have from (1.7), m0 = 0.

Hence

P1 = m0Q0 − P0 = 0.k − (−k) = k,

Q1 =
D − P 21

Q0
=

k2 + 2k − k2

k
= 2, m1 = k.

For i = 2 we have

P2 = m1Q1 − P1 = k.2− k = k,

Q2 =
D − P 22

Q1
=

k2 + 2k − k2

2
= k, m2 = 2.
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For i = 3 we have

P3 = m2Q2 − P2 = 2 · k − k = k = P1,

Q3 =
D − P 23

Q2
=

k2 + 2k − k2

k
= 2 = Q1, m3 = k = m1.

Therefore, the continued fraction expansion of γ is < 0, k, 2 >, and hence the cycle of Iγ
is I0γ = [k,−k +

√
k2 + 2k] ∼ I1γ = [2, k +

√
k2 + 2k] ∼ I2γ = [k, k +

√
k2 + 2k].

(2) Let g =

(

r s

t u

)

∈ Γ and Fγ = (k, 2k,−2). Then by (1.2), the system of equations

kr
2 + 2krs− 2s2 = k

2krt+ 2kru+ 2kts− 4su = 2k
kt
2 + 2ktu− 2u2 = −2

has a solution for g =

(

2k + 1 2k2 + 2k
−2 −1− 2k

)

∈ Γ. Hence Fγ is improperly equivalent to

itself since det g = −1. Therefore Fγ is ambiguous.

For the quadratic form Fγ = (k, 2k,−2) of discriminant ∆ = 4(k2 + 2k) we get from
(1.4), s0 = k and from (1.5)

F
1
γ = (a1, b1, c1) =

(

|c0|, −b0 + 2s0|c0|, −a0 − b0s0 − c0s
2
0

)

=
(

2,−2k + 2 · k · 2,−k − 2k · k + 2k2
)

= (2, 2k,−k) .

For i = 1 we have s1 = 2, and

F
2
γ = (a2, b2, c2) =

(

|c1|, −b1 + 2s1|c1|, −a1 − b1s1 − c1s
2
1

)

= (k,−2k + 2 · 2 · k,−2− 2k · 2 + k · 4)
= (k, 2k,−2)
= F

0
γ .

Therefore the cycle of Fγ is completed and is F
0
γ = (k, 2k,−2) ∼ F 1γ = (2, 2k,−k). ¤

2.4. Theorem. If D = 3k2 then:

(1) The continued fraction expansion of γ is < 0, 1, 2 >, and the cycle of Iγ is

I
0
γ = [k,−k +

√
3k2]

∼ I
1
γ = [2k, k +

√
3k2]

∼ I
2
γ = [k, k +

√
3k2];

(2) Fγ is ambiguous, and the cycle of Fγ is

F
0
γ = (k, 2k,−2k)

∼ F
1
γ = (2k, 2k,−k).

Proof. (1) For the quadratic irrational γ = −k+
√
3k2

k
we have m0 = 0 from (1.7). Hence

P1 = m0Q0 − P0 = 0 · k − (−k) = k,

Q1 =
D − P 21

Q0
=
3k2 − k2

k
= 2k, m1 = 1.
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For i = 1 we have

P2 = m1Q1 − P1 = 1 · 2k − k = k,

Q2 =
D − P 22

Q1
=
3k2 − k2

2k
= k, m2 = 2.

For i = 2 we have

P3 = m2Q2 − P2 = 2 · k − k = k = P1,

Q3 =
D − P 23

Q2
=
3k2 − k2

k
= 2k = Q1, m3 = 1 = m1.

Therefore, the continued fraction expansion of γ is < 0, 1, 2 >, and hence the cycle of Iγ
is I0γ = [k,−k +

√
3k2] ∼ I1γ = [2k, k +

√
3k2] ∼ I2γ = [k, k +

√
3k2].

(2) Let g =

(

r s

t u

)

∈ Γ and Fγ = (k, 2k,−2k). Then by (1.2), the system of equations

kr
2 + 2krs− 2ks2 = k

2krt+ 2kru+ 2kts− 4ksu = 2k
kt
2 + 2ktu− 2ku2 = −2k

has a solution for g =

(

1 1
0 −1

)

∈ Γ. Hence Fγ is improperly equivalent to itself since

det g = −1. Therefore Fγ is ambiguous.

For the quadratic form Fγ = (k, 2k,−2k) of discriminant ∆ = 12k2 we get from (1.4),
s0 = 1 and from (1.5)

F
1
γ = (a1, b1, c1) =

(

|c0|, −b0 + 2s0|c0|, −a0 − b0s0 − c0s
2
0

)

= (2k,−2k + 2 · 2k,−k − 2k · 1 + 2k)
= (2k, 2k,−k) .

For i = 1 we have s1 = 2, and

F
2
γ = (a2, b2, c2) =

(

|c1|, −b1 + 2s1|c1|, −a1 − b1s1 − c1s
2
1

)

= (k,−2k + 2 · 2 · k,−2k − 2k · 2 + k · 4)
= (k, 2k,−2k)
= F

0
γ .

Therefore the cycle of Fγ is completed and is F
0
γ = (k, 2k,−2k) ∼ F 1γ = (2k, 2k,−k). ¤

2.5. Theorem. If D = 2k2 then:

(1) The continued fraction expansion of γ is < 0, 2 >, and the cycle of Iγ is

I
0
γ = [k,−k +

√
2k2]

∼ I
1
γ = [k, k +

√
2k2];

(2) Fγ is ambiguous, and the cycle of Fγ is F 0γ = (k, 2k,−k).

Proof. (1) For the quadratic irrational γ = −k+
√
2k2

k
we have m0 = 0 from (1.7). Hence

P1 = m0.Q0 − P0 = 0 · k − (−k) = k,

Q1 =
D − P 21

Q0
=
2k2 − k2

k
= k, m1 = 2.
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For i = 1 we have

P2 = m1Q1 − P1 = 2 · k − k = k = P1,

Q2 =
D − P 22

Q1
=
2k2 − k2

k
= k = Q1, m2 = 2 = m1.

Therefore, the continued fraction expansion of γ is < 0, 2 >, and hence the cycle of Iγ is

I0γ = [k,−k +
√
2k2] ∼ I1γ = [k, k +

√
2k2].

(2) Let g =

(

r s

t u

)

∈ Γ and Fγ = (k, 2k,−k). Then by (1.2), the system of equations

kr
2 + 2krs− ks

2 = k

2krt+ 2kru+ 2kts− 2ksu = 2k
kt
2 + 2ktu− ku

2 = −k

has a solution for g =

(

1 2
0 −1

)

∈ Γ. Hence Fγ is improperly equivalent to itself since

det g = −1. Therefore Fγ is ambiguous.

For the quadratic form Fγ = (k, 2k,−k) of discriminant ∆ = 8k2 we get from (1.4),
s0 = 2 and from (1.5)

F
1
γ = (a1, b1, c1) =

(

|c0|, −b0 + 2s0|c0|, −a0 − b0s0 − c0s
2
0

)

= (k,−2k + 2 · 2k,−k − 2k · 2 + 4k)
= (k, 2k,−k)

= F
0
γ .

Therefore the cycle of Fγ is completed and is F
0
γ = (k, 2k,−k). ¤
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