CYCLES OF INDEFINITE QUADRATIC FORMS AND CYCLES OF IDEALS

Ahmet Tekcan*

Received $08: 03: 2006$: Accepted $30: 05: 2006$

Abstract

Let δ denotes a real quadratic irrational integer with trace $t=\delta+\bar{\delta}$ and norm $n=\delta . \bar{\delta}$. Given a real quadratic irrational $\gamma \in \mathbb{Q}(\delta)$, there are rational integers P and Q such that $\gamma=\frac{P+\delta}{Q}$ with $Q \mid(\delta+P)(\bar{\delta}+P)$. Hence for each $\gamma=\frac{P+\delta}{Q}$, there is a corresponding ideal $I_{\gamma}=[Q, P+$ $\delta]$, and an indefinite quadratic form $F_{\gamma}(x, y)=Q(x-\delta y)(x-\bar{\delta} y)$ of discriminant $t^{2}-4 n$. In this paper, we consider the cycles of I_{γ} and cycles of F_{γ} for some specific values of $\delta=\sqrt{D}$, where $D \neq 1$ is a positive non-square integer.

Keywords: Quadratic forms, Ideals, Cycles of forms, Cycles of ideals.
2000 AMS Classification: Primary : 11E 15, Secondary 11 A 55, 11 J 70.

1. Introduction.

Binary quadratic forms play an important role in the theory of numbers and have been studied by many authors. A real binary quadratic form (or just a form) F is a polynomial in two variables x, y of the type
(1.1) $\quad F=F(x, y)=a x^{2}+b x y+c y^{2}$,
with real coefficients a, b, c. We denote F briefly by $F=(a, b, c)$. The discriminant of F is defined by the formula $b^{2}-4 a c$ and is denoted by Δ. A quadratic form F of discriminant Δ is called indefinite if $\Delta>0$.

Gauss (1777-1855) defined the group action of the extended modular group $\bar{\Gamma}$ on the set of forms as follows:

$$
g F(x, y)=\left(a r^{2}+b r s+c s^{2}\right) x^{2}+(2 a r t+b r u+b t s+2 c s u) x y
$$

$$
\begin{equation*}
+\left(a t^{2}+b t u+c u^{2}\right) y^{2} \tag{1.2}
\end{equation*}
$$

for $g=\left(\begin{array}{cc}r & s \\ t & u\end{array}\right) \in \bar{\Gamma}$ and $F=(a, b, c)$.

[^0]Two forms F and G are called equivalent iff there exists a $g \in \bar{\Gamma}$ such that $g F=G$. If $\operatorname{det} g=1$, then F and G are called properly equivalent. If $\operatorname{det} g=-1$, then F and G are called improperly equivalent. A quadratic form F is said to be ambiguous if it is improperly equivalent to itself. An indefinite quadratic form $F=(a, b, c)$ of discriminant Δ is said to be reduced if

$$
\begin{equation*}
|\sqrt{\Delta}-2| a|\mid<b<\sqrt{\Delta} \tag{1.3}
\end{equation*}
$$

1.1. Theorem. [1, Sec:6.10, p.106] Let $F=(a, b, c)$ be an indefinite quadratic form of discriminant Δ. Then the cycle of F is $F_{0} \sim F_{1} \sim F_{2} \sim \cdots \sim F_{l-1}$ of length l, where $F_{0}=F=\left(a_{0}, b_{0}, c_{0}\right)$,

$$
\begin{equation*}
s_{i}=\left|s\left(F_{i}\right)\right|=\left[\frac{b_{i}+\sqrt{\Delta}}{2\left|c_{i}\right|}\right] \tag{1.4}
\end{equation*}
$$

and

$$
\begin{align*}
F_{i+1} & =\left(a_{i+1}, b_{i+1}, c_{i+1}\right) \\
& =\left(\left|c_{i}\right|,-b_{i}+2 s_{i}\left|c_{i}\right|,-\left(a_{i}+b_{i} s_{i}+c_{i} s_{i}^{2}\right)\right) \tag{1.5}
\end{align*}
$$

for $1 \leq i \leq l-2$.
Mollin [4, Sec:1.1, p.4] considers the arithmetic of ideals in his book. Let $D \neq 1$ be a square free integer and let $\Delta=\frac{4 D}{r^{2}}$, where $r=2$ if $D \equiv 1(\bmod 4)$, and $r=1$, otherwise. If we set $\mathbb{K}=\mathbb{Q}(\sqrt{D})$, then \mathbb{K} is called a quadratic number field of discriminant Δ, and O_{Δ} is the ring of integers of the quadratic field \mathbb{K} of discriminant Δ.

Let $[\alpha, \beta]$ denote the \mathbb{Z} - module $\alpha \mathbb{Z} \oplus \beta \mathbb{Z}$. Then every integer $w_{\Delta} \in O_{\Delta}$ can be uniquely expressed as $w_{\Delta}=x \alpha+y \beta$, where $x, y \in \mathbb{Z}$, and $\alpha, \beta \in O_{\Delta}$. We call α, β an integral basis for \mathbb{K}. The discriminant of \mathbb{K} is D if $D \equiv 1(\bmod 4)$, and is $4 D$ otherwise. If $I=\left[a, b+c w_{\Delta}\right]$, then I is a non-zero ideal of O_{Δ} if and only if

$$
\begin{equation*}
c|b, c| a, a c \mid N\left(b+c w_{\Delta}\right) . \tag{1.6}
\end{equation*}
$$

Furthermore, for a given ideal I the integers a and c are unique and a is the least positive rational integer in I which we will denote as $L(I)$. The norm of an ideal I is defined as $N(I)=|a c|$. If I is an ideal of O_{Δ} with $L(I)=N(I)$, i.e. $c=1$, then I is called primitive, which means that I has no rational integer factors other than ± 1. Every primitive ideal can be uniquely given by $I=\left[a, b+w_{\Delta}\right]$.

Mollin, Poorten and Cheng (see [3] and [5]) consider the ideals and their cycles extensively. The cycle of a primitive ideal $I=\left[a, b+w_{\Delta}\right]$ is defined as follows: Let $<m_{0}, \overline{m_{1} m_{2} \cdots m_{l-1}}>$ be the continued fraction expansion of $\frac{b+w_{\Delta}}{a}$ with period length $l=l(I)$, where

$$
\begin{equation*}
m_{i}=\left[\frac{P_{i}+\sqrt{D}}{Q_{i}}\right], \quad P_{i+1}=m_{i} Q_{i}-P_{i} \text { and } Q_{i+1}=\frac{D-P_{i+1}^{2}}{Q_{i}} \tag{1.7}
\end{equation*}
$$

for $i \geq 0$. From the continued fraction factoring algorithm we get all reduced ideals equivalent to a given reduced ideal $I=\left[a, b+w_{\Delta}\right]$, i.e. in the continued fraction expansion of $\frac{b+w_{\Delta}}{a}$ we have $I=I_{0}=\left[Q_{0}, P_{0}+\sqrt{D}\right] \sim I_{1}=\left[Q_{1}, P_{1}+\sqrt{D}\right] \sim \cdots \sim I_{l-1}=$ $\left[Q_{l-1}, P_{l-1}+\sqrt{D}\right]$. Finally, $I_{l}=I_{0}=I$ for a complete cycle of reduced ideals of length $l(I)=l$. (see also [2] and [6]).

Let δ denotes a real quadratic irrational integer with trace $t=\delta+\bar{\delta}$ and norm $n=\delta \bar{\delta}$. Evidently, given a real quadratic irrational $\gamma \in \mathbb{Q}(\delta)$, there are rational integers P and Q such that $\gamma=\frac{P+\delta}{Q}$ with $Q \mid(\delta+P)(\bar{\delta}+P)$. Hence, for each $\gamma=\frac{P+\delta}{Q}$ there is a corresponding \mathbb{Z}-module $I_{\gamma}=[Q, P+\delta]$. In fact this module is an ideal by (1.6).

There is a connection between quadratic irrationals and quadratic forms. For any quadratic irrational $\gamma=\frac{P+\delta}{Q}$, we can generate a quadratic form

$$
\begin{aligned}
F_{\gamma}(x, y) & =Q(x-\delta y)(x-\bar{\delta} y) \\
& =Q x^{2}-(t+2 P) x y+\left(\frac{n+P t+P^{2}}{Q}\right) y^{2}
\end{aligned}
$$

of discriminant $\Delta=t^{2}-4 n$ which corresponds to γ. Hence one associates with γ a quadratic form defined as above. If one takes $\delta=\sqrt{D}$, then $t=0, n=-D$ and hence

$$
\begin{equation*}
F_{\gamma}=\left(Q,-2 P, \frac{P^{2}-D}{Q}\right) \tag{1.8}
\end{equation*}
$$

of discriminant $\Delta=4 D$.

2. Cycles of Indefinite Quadratic Forms and Cycles of Ideals.

Let $D \neq 1$ be a positive non-square integer, $\delta=\sqrt{D}$, and let $Q=k, P=-k$ for a positive integer k. Then $\gamma=\frac{-k+\sqrt{D}}{k}$ is a quadratic irrational, and hence $I_{\gamma}=$ $[k,-k+\sqrt{D}]$ is an ideal and $F_{\gamma}=\left(k, 2 k, \frac{k^{2}-D}{k}\right)$ is an indefinite quadratic form. We consider the cycles of I_{γ} and F_{γ} in four cases: $D=4 k^{2}-k, D=k^{2}+2 k, D=3 k^{2}$ and $D=2 k^{2}$. First we give the following theorem.
2.1. Theorem. $F_{\gamma}=\left(k, 2 k, \frac{k^{2}-D}{k}\right)$ is reduced if and only if $k^{2}<D<4 k^{2}$.

Proof. Let F_{γ} be reduced. Then by definition, we get

$$
|\sqrt{\Delta}-2| a||<b<\sqrt{\Delta} \Longleftrightarrow| \sqrt{4 D}-2 k|<2 k<\sqrt{4 D} \Longleftrightarrow \sqrt{D}-k<k<\sqrt{D}
$$

Hence it is clear that $k^{2}<D$ and $D<(2 k)^{2}$. Therefore $k^{2}<D<4 k^{2}$.
Conversely, let $k^{2}<D<4 k^{2}$. Then

$$
\begin{aligned}
k^{2} & <D<4 k^{2} \\
& \Longrightarrow \sqrt{k^{2}}<\sqrt{D}<\sqrt{4 k^{2}} \\
& \Longrightarrow k<\sqrt{D}<2 k \\
& \Longrightarrow 0<|\sqrt{D}-k|<k<\sqrt{D} \\
& \Longrightarrow 2|\sqrt{D}-k|<2 k<2 \sqrt{D} \\
& \Longrightarrow|\sqrt{4 D}-2 k|<2 k<\sqrt{4 D} \\
& \Longrightarrow|\sqrt{\Delta}-2| a|\mid<b<\sqrt{\Delta}
\end{aligned}
$$

This is the definition of reduced forms. Therefore, F_{γ} is reduced.
2.2. Theorem. If $D=4 k^{2}-k$ then:
(1) The continued fraction expansion of γ is $<0, \overline{1,4 k-2,1,2}\rangle$, and the cycle of I_{γ} is

$$
\begin{aligned}
& I_{\gamma}^{0}=\left[k,-k+\sqrt{4 k^{2}-k}\right] \sim I_{\gamma}^{1}=\left[3 k-1, k+\sqrt{4 k^{2}-k}\right] \\
\sim & I_{\gamma}^{2}
\end{aligned}=\left[1,2 k-1+\sqrt{4 k^{2}-k}\right] \sim I_{\gamma}^{3}=\left[3 k-1,2 k-1+\sqrt{4 k^{2}-k}\right] ~=\left[\begin{array}{l}
4 k_{\gamma}^{2}-k
\end{array}\right] ;
$$

(2) F_{γ} is ambiguous, and the cycle of F_{γ} is

$$
\begin{aligned}
F_{\gamma}^{0} & =(k, 2 k, 1-3 k) \\
\sim F_{\gamma}^{1} & =(3 k-1,4 k-2,-1) \\
\sim F_{\gamma}^{2} & =(1,4 k-2,1-3 k) \\
\sim F_{\gamma}^{3} & =(3 k-1,2 k,-k) .
\end{aligned}
$$

Proof. (1) For the quadratic irrational $\gamma=\frac{-k+\sqrt{4 k^{2}-k}}{k}$ we have $m_{0}=0$ from (1.7). Hence

$$
\begin{aligned}
& P_{1}=m_{0} Q_{0}-P_{0}=0 \cdot k-(-k)=k, \\
& Q_{1}=\frac{D-P_{1}^{2}}{Q_{0}}=\frac{4 k^{2}-k-k^{2}}{k}=3 k-1, m_{1}=1 .
\end{aligned}
$$

For $i=1$ we have

$$
\begin{aligned}
& P_{2}=m_{1} Q_{1}-P_{1}=1 \cdot(3 k-1)-k=2 k-1, \\
& Q_{2}=\frac{D-P_{2}^{2}}{Q_{1}}=\frac{4 k^{2}-k-(2 k-1)^{2}}{3 k-1}=\frac{3 k-1}{3 k-1}=1, m_{2}=4 k-2 .
\end{aligned}
$$

For $i=2$ we have

$$
\begin{aligned}
& P_{3}=m_{2} Q_{2}-P_{2}=(4 k-2) \cdot 1-(2 k-1)=2 k-1, \\
& Q_{3}=\frac{D-P_{3}^{2}}{Q_{2}}=\frac{4 k^{2}-k-(2 k-1)^{2}}{1}=3 k-1, m_{3}=1 .
\end{aligned}
$$

For $i=3$ we have

$$
\begin{aligned}
P_{4} & =m_{3} Q_{3}-P_{3}=1 \cdot(3 k-1)-(2 k-1)=k, \\
Q_{4} & =\frac{D-P_{4}^{2}}{Q_{3}}=\frac{4 k^{2}-k-k^{2}}{3 k-1}=k, m_{4}=2 .
\end{aligned}
$$

For $i=4$ we have

$$
\begin{aligned}
& P_{5}=m_{4} Q_{4}-P_{4}=2 \cdot k-k=k=P_{1}, \\
& Q_{5}=\frac{D-P_{5}^{2}}{Q_{4}}=\frac{4 k^{2}-k-k^{2}}{k}=3 k-1=Q_{1}, m_{5}=1=m_{1} .
\end{aligned}
$$

Therefore, the continued fraction expansion of γ is $\langle 0, \overline{1,4 k-2,1,2}\rangle$, and hence the cycle of I_{γ} is $I_{\gamma}^{0}=\left[k,-k+\sqrt{4 k^{2}-k}\right] \sim I_{\gamma}^{1}=\left[3 k-1, k+\sqrt{4 k^{2}-k}\right] \sim I_{\gamma}^{2}=$ $\left[1,2 k-1+\sqrt{4 k^{2}-k}\right] \sim I_{\gamma}^{3}=\left[3 k-1,2 k-1+\sqrt{4 k^{2}-k}\right] \sim I_{\gamma}^{4}=\left[k, k+\sqrt{4 k^{2}-k}\right]$.
(2) Let $g=\left(\begin{array}{ll}r & s \\ t & u\end{array}\right) \in \bar{\Gamma}$ and $F_{\gamma}=(k, 2 k, 1-3 k)$. Then by (1.2), the system of equations

$$
\begin{aligned}
k r^{2}+2 k r s+(1-3 k) s^{2} & =k \\
2 k r t+2 k r u+2 k t s+2(1-3 k) s u & =2 k \\
k t^{2}+2 k t u+(1-3 k) u^{2} & =1-3 k
\end{aligned}
$$

has a solution for $g=\left(\begin{array}{cc}4 k-1 & 4 k \\ 2-4 k & 1-4 k\end{array}\right) \in \bar{\Gamma}$. Hence F_{γ} is improperly equivalent to itself since $\operatorname{det} g=-1$. Therefore F_{γ} is ambiguous.

For the quadratic form $F_{\gamma}=(k, 2 k, 1-3 k)$ of discriminant $\Delta=4\left(4 k^{2}-k\right)$ we get from (1.4), $s_{0}=1$ and from (1.5)

$$
\begin{aligned}
F_{\gamma}^{1} & =\left(a_{1}, b_{1}, c_{1}\right)=\left(\left|c_{0}\right|,-b_{0}+2 s_{0}\left|c_{0}\right|,-a_{0}-b_{0} s_{0}-c_{0} s_{0}^{2}\right) \\
& =(3 k-1,-2 k+2(3 k-1),-k-2 k .1-(1-3 k) \cdot 1) \\
& =(3 k-1,4 k-2,-1) .
\end{aligned}
$$

For $i=1$ we have $s_{1}=4 k-2$, and

$$
\begin{aligned}
F_{\gamma}^{2} & =\left(a_{2}, b_{2}, c_{2}\right)=\left(\left|c_{1}\right|,-b_{1}+2 s_{1}\left|c_{1}\right|,-a_{1}-b_{1} s_{1}-c_{1} s_{1}^{2}\right) \\
& =\left(1,2-4 k+2(4 k-2) \cdot 1,1-3 k-(4 k-2)(4 k-2)+(4 k-2)^{2}\right) \\
& =(1,4 k-2,1-3 k) .
\end{aligned}
$$

For $i=2$ we have $s_{2}=1$, and

$$
\begin{aligned}
F_{\gamma}^{3} & =\left(a_{3}, b_{3}, c_{3}\right)=\left(\left|c_{2}\right|,-b_{2}+2 s_{2}\left|c_{2}\right|,-a_{2}-b_{2} s_{2}-c_{2} s_{2}^{2}\right) \\
& =(3 k-1,2-4 k+2(3 k-1),-1-(4 k-2)-(1-3 k)) \\
& =(3 k-1,2 k,-k) .
\end{aligned}
$$

For $i=3$ we have $s_{3}=2$, and

$$
\begin{aligned}
F_{\gamma}^{4} & =\left(a_{4}, b_{4}, c_{4}\right)=\left(\left|c_{3}\right|,-b_{3}+2 s_{3}\left|c_{3}\right|,-a_{3}-b_{3} s_{3}-c_{3} s_{3}^{2}\right) \\
& =(k,-2 k+2 \cdot 2 \cdot k, 1-3 k-2 k \cdot 2+k \cdot 4) \\
& =(k, 2 k, 1-3 k) \\
& =F_{\gamma}^{0} .
\end{aligned}
$$

Therefore the cycle of F_{γ} is completed and is $F_{\gamma}^{0}=(k, 2 k, 1-3 k) \sim F_{\gamma}^{1}=(3 k-1,4 k-$ $2,-1) \sim F_{\gamma}^{2}=(1,4 k-2,1-3 k) \sim F_{\gamma}^{3}=(3 k-1,2 k,-k)$.
2.3. Theorem. If $D=k^{2}+2 k$ then:
(1) The continued fraction expansion of γ is $\langle 0, \overline{k, 2}\rangle$, and the cycle of I_{γ} is

$$
\begin{aligned}
& I_{\gamma}^{0}=\left[k,-k+\sqrt{k^{2}+2 k}\right] \\
\sim & I_{\gamma}^{1}=\left[2, k+\sqrt{k^{2}+2 k}\right] \\
\sim & I_{\gamma}^{2}=\left[k, k+\sqrt{k^{2}+2 k}\right] ;
\end{aligned}
$$

(2) F_{γ} is ambiguous, and the cycle of F_{γ} is

$$
\begin{aligned}
& F_{\gamma}^{0}=(k, 2 k,-2) \\
\sim F_{\gamma}^{1} & =(2,2 k,-k) .
\end{aligned}
$$

Proof. (1) For the quadratic irrational $\gamma=\frac{-k+\sqrt{k^{2}+2 k}}{k}$ we have from (1.7), $m_{0}=0$. Hence

$$
\begin{aligned}
P_{1} & =m_{0} Q_{0}-P_{0}=0 . k-(-k)=k, \\
Q_{1} & =\frac{D-P_{1}^{2}}{Q_{0}}=\frac{k^{2}+2 k-k^{2}}{k}=2, m_{1}=k .
\end{aligned}
$$

For $i=2$ we have

$$
\begin{aligned}
P_{2} & =m_{1} Q_{1}-P_{1}=k .2-k=k, \\
Q_{2} & =\frac{D-P_{2}^{2}}{Q_{1}}=\frac{k^{2}+2 k-k^{2}}{2}=k, m_{2}=2 .
\end{aligned}
$$

For $i=3$ we have

$$
\begin{aligned}
& P_{3}=m_{2} Q_{2}-P_{2}=2 \cdot k-k=k=P_{1}, \\
& Q_{3}=\frac{D-P_{3}^{2}}{Q_{2}}=\frac{k^{2}+2 k-k^{2}}{k}=2=Q_{1}, m_{3}=k=m_{1}
\end{aligned}
$$

Therefore, the continued fraction expansion of γ is $\langle 0, \overline{k, 2}\rangle$, and hence the cycle of I_{γ} is $I_{\gamma}^{0}=\left[k,-k+\sqrt{k^{2}+2 k}\right] \sim I_{\gamma}^{1}=\left[2, k+\sqrt{k^{2}+2 k}\right] \sim I_{\gamma}^{2}=\left[k, k+\sqrt{k^{2}+2 k}\right]$.
(2) Let $g=\left(\begin{array}{ll}r & s \\ t & u\end{array}\right) \in \bar{\Gamma}$ and $F_{\gamma}=(k, 2 k,-2)$. Then by (1.2), the system of equations

$$
\begin{aligned}
k r^{2}+2 k r s-2 s^{2} & =k \\
2 k r t+2 k r u+2 k t s-4 s u & =2 k \\
k t^{2}+2 k t u-2 u^{2} & =-2
\end{aligned}
$$

has a solution for $g=\left(\begin{array}{cc}2 k+1 & 2 k^{2}+2 k \\ -2 & -1-2 k\end{array}\right) \in \bar{\Gamma}$. Hence F_{γ} is improperly equivalent to itself since $\operatorname{det} g=-1$. Therefore F_{γ} is ambiguous.

For the quadratic form $F_{\gamma}=(k, 2 k,-2)$ of discriminant $\Delta=4\left(k^{2}+2 k\right)$ we get from (1.4), $s_{0}=k$ and from (1.5)

$$
\begin{aligned}
F_{\gamma}^{1} & =\left(a_{1}, b_{1}, c_{1}\right)=\left(\left|c_{0}\right|,-b_{0}+2 s_{0}\left|c_{0}\right|,-a_{0}-b_{0} s_{0}-c_{0} s_{0}^{2}\right) \\
& =\left(2,-2 k+2 \cdot k \cdot 2,-k-2 k \cdot k+2 k^{2}\right) \\
& =(2,2 k,-k) .
\end{aligned}
$$

For $i=1$ we have $s_{1}=2$, and

$$
\begin{aligned}
F_{\gamma}^{2} & =\left(a_{2}, b_{2}, c_{2}\right)=\left(\left|c_{1}\right|,-b_{1}+2 s_{1}\left|c_{1}\right|,-a_{1}-b_{1} s_{1}-c_{1} s_{1}^{2}\right) \\
& =(k,-2 k+2 \cdot 2 \cdot k,-2-2 k \cdot 2+k \cdot 4) \\
& =(k, 2 k,-2) \\
& =F_{\gamma}^{0} .
\end{aligned}
$$

Therefore the cycle of F_{γ} is completed and is $F_{\gamma}^{0}=(k, 2 k,-2) \sim F_{\gamma}^{1}=(2,2 k,-k)$.
2.4. Theorem. If $D=3 k^{2}$ then:
(1) The continued fraction expansion of γ is $\langle 0, \overline{1,2}\rangle$, and the cycle of I_{γ} is

$$
\begin{aligned}
I_{\gamma}^{0} & =\left[k,-k+\sqrt{3 k^{2}}\right] \\
\sim I_{\gamma}^{1} & =\left[2 k, k+\sqrt{3 k^{2}}\right] \\
\sim I_{\gamma}^{2} & =\left[k, k+\sqrt{3 k^{2}}\right] ;
\end{aligned}
$$

(2) F_{γ} is ambiguous, and the cycle of F_{γ} is

$$
\begin{aligned}
F_{\gamma}^{0} & =(k, 2 k,-2 k) \\
\sim F_{\gamma}^{1} & =(2 k, 2 k,-k) .
\end{aligned}
$$

Proof. (1) For the quadratic irrational $\gamma=\frac{-k+\sqrt{3 k^{2}}}{k}$ we have $m_{0}=0$ from (1.7). Hence

$$
\begin{aligned}
& P_{1}=m_{0} Q_{0}-P_{0}=0 \cdot k-(-k)=k, \\
& Q_{1}=\frac{D-P_{1}^{2}}{Q_{0}}=\frac{3 k^{2}-k^{2}}{k}=2 k, m_{1}=1 .
\end{aligned}
$$

For $i=1$ we have

$$
\begin{aligned}
P_{2} & =m_{1} Q_{1}-P_{1}=1 \cdot 2 k-k=k, \\
Q_{2} & =\frac{D-P_{2}^{2}}{Q_{1}}=\frac{3 k^{2}-k^{2}}{2 k}=k, m_{2}=2 .
\end{aligned}
$$

For $i=2$ we have

$$
\begin{aligned}
& P_{3}=m_{2} Q_{2}-P_{2}=2 \cdot k-k=k=P_{1}, \\
& Q_{3}=\frac{D-P_{3}^{2}}{Q_{2}}=\frac{3 k^{2}-k^{2}}{k}=2 k=Q_{1}, m_{3}=1=m_{1} .
\end{aligned}
$$

Therefore, the continued fraction expansion of γ is $\langle 0, \overline{1,2}\rangle$, and hence the cycle of I_{γ} is $I_{\gamma}^{0}=\left[k,-k+\sqrt{3 k^{2}}\right] \sim I_{\gamma}^{1}=\left[2 k, k+\sqrt{3 k^{2}}\right] \sim I_{\gamma}^{2}=\left[k, k+\sqrt{3 k^{2}}\right]$.
(2) Let $g=\left(\begin{array}{ll}r & s \\ t & u\end{array}\right) \in \bar{\Gamma}$ and $F_{\gamma}=(k, 2 k,-2 k)$. Then by (1.2), the system of equations

$$
\begin{aligned}
k r^{2}+2 k r s-2 k s^{2} & =k \\
2 k r t+2 k r u+2 k t s-4 k s u & =2 k \\
k t^{2}+2 k t u-2 k u^{2} & =-2 k
\end{aligned}
$$

has a solution for $g=\left(\begin{array}{cc}1 & 1 \\ 0 & -1\end{array}\right) \in \bar{\Gamma}$. Hence F_{γ} is improperly equivalent to itself since $\operatorname{det} g=-1$. Therefore F_{γ} is ambiguous.

For the quadratic form $F_{\gamma}=(k, 2 k,-2 k)$ of discriminant $\Delta=12 k^{2}$ we get from (1.4), $s_{0}=1$ and from (1.5)

$$
\begin{aligned}
F_{\gamma}^{1} & =\left(a_{1}, b_{1}, c_{1}\right)=\left(\left|c_{0}\right|,-b_{0}+2 s_{0}\left|c_{0}\right|,-a_{0}-b_{0} s_{0}-c_{0} s_{0}^{2}\right) \\
& =(2 k,-2 k+2 \cdot 2 k,-k-2 k \cdot 1+2 k) \\
& =(2 k, 2 k,-k)
\end{aligned}
$$

For $i=1$ we have $s_{1}=2$, and

$$
\begin{aligned}
F_{\gamma}^{2} & =\left(a_{2}, b_{2}, c_{2}\right)=\left(\left|c_{1}\right|,-b_{1}+2 s_{1}\left|c_{1}\right|,-a_{1}-b_{1} s_{1}-c_{1} s_{1}^{2}\right) \\
& =(k,-2 k+2 \cdot 2 \cdot k,-2 k-2 k \cdot 2+k \cdot 4) \\
& =(k, 2 k,-2 k) \\
& =F_{\gamma}^{0} .
\end{aligned}
$$

Therefore the cycle of F_{γ} is completed and is $F_{\gamma}^{0}=(k, 2 k,-2 k) \sim F_{\gamma}^{1}=(2 k, 2 k,-k)$.
2.5. Theorem. If $D=2 k^{2}$ then:
(1) The continued fraction expansion of γ is $\langle 0, \overline{2}\rangle$, and the cycle of I_{γ} is

$$
\begin{aligned}
I_{\gamma}^{0} & =\left[k,-k+\sqrt{2 k^{2}}\right] \\
\sim I_{\gamma}^{1} & =\left[k, k+\sqrt{2 k^{2}}\right] ;
\end{aligned}
$$

(2) F_{γ} is ambiguous, and the cycle of F_{γ} is $F_{\gamma}^{0}=(k, 2 k,-k)$.

Proof. (1) For the quadratic irrational $\gamma=\frac{-k+\sqrt{2 k^{2}}}{k}$ we have $m_{0}=0$ from (1.7). Hence $P_{1}=m_{0} \cdot Q_{0}-P_{0}=0 \cdot k-(-k)=k$,
$Q_{1}=\frac{D-P_{1}^{2}}{Q_{0}}=\frac{2 k^{2}-k^{2}}{k}=k, m_{1}=2$.

For $i=1$ we have

$$
\begin{aligned}
P_{2} & =m_{1} Q_{1}-P_{1}=2 \cdot k-k=k=P_{1} \\
Q_{2} & =\frac{D-P_{2}^{2}}{Q_{1}}=\frac{2 k^{2}-k^{2}}{k}=k=Q_{1}, m_{2}=2=m_{1}
\end{aligned}
$$

Therefore, the continued fraction expansion of γ is $\langle 0, \overline{2}\rangle$, and hence the cycle of I_{γ} is $I_{\gamma}^{0}=\left[k,-k+\sqrt{2 k^{2}}\right] \sim I_{\gamma}^{1}=\left[k, k+\sqrt{2 k^{2}}\right]$.
(2) Let $g=\left(\begin{array}{ll}r & s \\ t & u\end{array}\right) \in \bar{\Gamma}$ and $F_{\gamma}=(k, 2 k,-k)$. Then by (1.2), the system of equations

$$
k r^{2}+2 k r s-k s^{2}=k
$$

$$
2 k r t+2 k r u+2 k t s-2 k s u=2 k
$$

$$
k t^{2}+2 k t u-k u^{2}=-k
$$

has a solution for $g=\left(\begin{array}{cc}1 & 2 \\ 0 & -1\end{array}\right) \in \bar{\Gamma}$. Hence F_{γ} is improperly equivalent to itself since $\operatorname{det} g=-1$. Therefore F_{γ} is ambiguous.

For the quadratic form $F_{\gamma}=(k, 2 k,-k)$ of discriminant $\Delta=8 k^{2}$ we get from (1.4), $s_{0}=2$ and from (1.5)

$$
\begin{aligned}
F_{\gamma}^{1} & =\left(a_{1}, b_{1}, c_{1}\right)=\left(\left|c_{0}\right|,-b_{0}+2 s_{0}\left|c_{0}\right|,-a_{0}-b_{0} s_{0}-c_{0} s_{0}^{2}\right) \\
& =(k,-2 k+2 \cdot 2 k,-k-2 k \cdot 2+4 k) \\
& =(k, 2 k,-k) \\
& =F_{\gamma}^{0} .
\end{aligned}
$$

Therefore the cycle of F_{γ} is completed and is $F_{\gamma}^{0}=(k, 2 k,-k)$.

References

[1] Buchmann, J. Algorithms for Binary Quadratic Forms (Darmstadt, 2000).
[2] Jacobson, M. J. Computational Techniques in Quadratic Fields (PhD thesis, University of Manitoba, 1995).
[3] Mollin, R. A. and Poorten, A. J. A Note on Symmetry and Ambiguity. Bull. Austral. Math. Soc. 51, 215-233, 1995.
[4] Mollin, R. A. Quadratics (CRS Press, Boca Raton, New York, London, Tokyo, 1996).
[5] Mollin, R. A. and Cheng, K. Palindromy and Ambiguous Ideals Revisited, Journal of Number Theory 74, 98-110, 1999.
[6] Mollin, R. A. Jocabi symbols, ambiguous ideals, and continued fractions, Acta Arith. 85, 331-349, 1998.

[^0]: *Uludag University, Faculty of Science, Department of Mathematics, Görükle 16059, Bursa, Turkey. E-mail: tekcan@uludag.edu.tr

