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Abstract

In this paper, the specification of hyper-parameters of the prior distri-
bution of log-linear parameters is taken into account. Determination of
a prior for the log-linear parameters is considered. Some approaches are
given to specify the covariance matrix of the prior distribution, which
reflects our degree of belief in the prior information. A new approach is
proposed to specify the dispersion parameter of the prior distribution.
An example is given to clarify the argued matters and a sensitivity
analysis is also conducted.
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1. Introduction

Log-linear models are widely used for the analysis of contingency tables. When one
has a priori information about the subject before taking a sample, one may use it along
with the information that comes from the sample. Bayesian methods allow this infor-
mation to be included in the estimation process. There are two main approaches for
the Bayesian analysis of the log-linear models; the first one is to use a Dirichlet dis-
tribution and the second is to use a normal distribution as the prior distribution of the
log-linear parameters. The Dirichlet approach has the advantage of allowing a convenient
factorization of the likelihood through the identification of cliques within the undertaken
model graph. Knuiman&Speed [8] stated that the hyper-Dirichlet distribution is the
most tractable choice for multinomial distributed data, however, the researcher restricts
himself to decomposable models when using a hyper-Dirichlet distribution as prior. In
addition, the necessity of specifying a very large number of hyper-parameters adds an ad-
ditional level of complexity when a hyper-Dirichlet distribution is used as prior [6]. The
second approach is to use a multivariate normal (MVN) distribution as prior distribution
[2, 6, 8, 9]. This prior rids us of the decomposable model restriction. The disadvantages
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of a MVN prior are that a convenient decomposition of the likelihood could not be ob-
tained, and the log-linear parameter updates require global calculations rather than local
[6].

Leighty&Johnson [9] discuss Bayesian approaches for the log-linear parameters with
a MVN prior induced on the log-linear parameters. Leighty& Johnson [9] use a Cauchy-
tail prior for the precision parameter, which reflects one’s degree of belief in the prior.
Chen&Dunson [1] use a Cholesky decomposition to re-parameterize the covariance matrix
of prior distribution of one of the generalized linear mixed model components.

In this paper, the prior specification for the Bayesian estimation of the parame-
ters of a log-linear model is considered. Joint posterior distributions are reached us-
ing various prior distributions. To obtain posterior estimates of the log-linear parame-
ters, Markov chain Monte Carlo methods (MZMC) are used. Firstly, the approach of
Leighty&Johnson [9] is described, and then it is proposed that the Cholesky decom-
position of the covariance matrix of prior distribution can be used to specify a prior
distribution for the dispersion parameter of the prior of log-linear parameters. In addi-
tion, full conditional posterior distribution of one of the log-linear parameters given the
others is derived, when it can be found analytically, and derivation of the mean vector
and covariance matrix of the joint posterior distribution of the log-linear parameters is
given.

In section 2, basic notations for log-linear models are given, in section 3 determination
of the prior distribution and its hyper-parameters is mentioned. Section 4 gives joint pos-
terior densities associated with the log-linear parameters. Finally, a numerical example
is presented as an application of the approaches discussed in section 5.

2. The log-linear model and notation

In this paper, the notations given in King&Brooks [6] are used. The set of sources,
where the data come from, is denoted by S. The number of elements in a set is denoted
by | · |, so each source is labelled such that S = {Sζ : ζ = 1, . . . , |S|}. The set of levels for
source Sζ is Kζ , for ζ = 1, . . . , |S|. The cells of a contingency table can be represented
by the set K = K1 × · · · ×K|S|, so the cells are indexed by k ∈K. Expected cell counts
and observed cell counts are denoted by nk and yk for k ∈ K, respectively.

To construct models other than the saturated model, the set of subsets of S, ℘(S) =
{s : s ⊆ S} is defined. Then, to represent a log-linear model, the index, m ⊆ ℘(S) is used,
where m lists the log-linear terms presented in the model. Each element of the model,
m is included in a set c such that c ∈ m ⊆ ℘(S). The constant term of the log-linear
model is represented by the inclusion of the empty set in ℘(S). The set M c contains all
possible combinations of the levels of sources included in c. In general, the highest level
is not included among the elements of M c. Thus the set M c is {mc

1, . . . ,m
c
|Mc|}. Then

the log-linear model vector for each c ∈ m ⊆ ℘(S) is

β
c = {βc

m1
, βc
m2

, . . . , βc
m|Mc|

}.

Thus, the log-linear parameter vector for the model m is

β
m = {(βc1)T , (βc2)T , . . . , (βc|m|)T }.

The design matrix or model matrix corresponding to the model m ⊆ ℘(S) is denoted
by Xm. Using this design matrix and the parameter vector, the log-linear model is
represented as follows:

(1) logn = Xmβm.
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In addition, the likelihood of the log-linear parameters can be approximated by the
asymptotic normal distribution of the maximum likelihood estimator (MLE), b, that is

(2) `(βm|b) ∝ exp

{
−
1

2
(b− βm)

T
V

−1
b (b− βm)

}
.

More detailed notations for the elements of the design matrix, order of parameters and
cells, and examples are given in King&Brooks [6, 7] and Demirhan [3].

3. Prior specification

In this section, a normal prior is induced on the log-linear parameters and specification
of hyper-parameters of the prior is considered. When the MVN distribution is taken for
the log-linear parameters as prior,

βm ∼ N(µm,Σm),

for m ⊆ ℘(S), the probability density function (pdf) of βm is

p(βm) ∝ exp

{
−
1

2
(βm − µm)

TΣ−1
m (βm − µm)

}
,−∞ < βi

m ∈ βm <∞.

After specifying the family of the prior distribution, its parameters and hyper-parameters
are determined. The mean vector of the log-linear parameters follows a proper uniform
distribution. Determination of the prior for the covariance matrix, Σm, can be done in
two ways.

3.1. The Approach of Leighty&Johnson. In the approach of Leighty&Johnson [9],
a prior distribution for Σm is specified in two stages. In the first stage, the covariance
matrix of the prior distribution is taken as,

Σm = αCm = αcIm,

where Im is the identity matrix of dimension p = dim(βm), and c = p/tr(V −1
b ), where

V −1
b is the inverse of the covariance matrix of MLEs [9]. In this case, for m ⊆ ℘(S),

(3) p(βm|α) ∝ α−p/2 exp

{
−
1

2
(βm − µm)

T 1

α
C

−1
m (βm − µm)

}
,

where µm follows a proper uniform distribution. The distribution of the general precision
parameter α is given by the second stage prior.

It is taken that τ = 1/(1 + α) and that τ ∼ uniform(0, 1), to make calculations
easier. Values of τ represent the degree of our belief in the prior. Leonard [10] and
Leighty&Johnson [9] state that values of this precision parameter close to zero, represent
disbelief. According to Dellaportas&Forster [2] values of this precision parameter close
to zero give a vague prior and values close to one give an improper prior.

If τ is distributed as uniform(0, 1), then the distribution of α is a Cauchy-tail prior
with pdf,

p(α) =
1

(1 + α)2
, α ≥ 0,

which can be obtained by a transformation of variables using the distribution of τ , and
the pdf given in Eq. (3) is expressed in terms of τ as follows:

p(βm|τ) ∝

[
τ

1− τ

]p/2
exp

{
−
1

2
(βm − µm)

T τ

1− τ
C

−1
m (βm − µm)

}
.

The distribution of α can be taken as inverse-gamma, however if the variances of the
parameters are small, inferences become too sensitive to changes occurring in the values
of parameters of the distribution. Using log-uniform or uniform makes the tails of the
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distribution more flat, and also taking log-uniform causes an improper posterior, and
when the number of levels of the sources is small, a uniform prior results in an improper
posterior, besides, it brings a small bias when the variance tends to infinity. The reasons
for our choosing a Cauchy-tail prior are that it helps to identify a reasonable prior mean
for τ , and our analysis is intended to be used when little prior information is available
[4, 6, 9].

3.2. An approach based on the Cholesky decomposition. In the second approach,
the Cholesky decomposition of Σm is used and then prior distributions are induced on
the elements appearing as a result of the decomposition. Let the Cholesky decomposition
of Σm be

Σm = Ψ(Ψ)T .

When Ψ = ΛΓ, the decomposition becomes

Σm = ΛΓΓTΛ,

where Λ = diag(λ1, . . . , λp) and for i = 1, . . . p and j = i+ 1, . . . , p, Γ = (γij). Here and
hereafter p is the number of parameters included in the model and is given by

1 +
∑

c∈m

∏

ζ:Sζ∈c

(|Kζ | − 1).

Using this decomposition it is assumed that Σm is defined uniquely, that λi > 0, and
that Γ is a lower triangular matrix. Let ωij denote the (i, j)th element of Σm, whose
dimension is p× p. For i = 1, . . . , p, j = 1, . . . , p; ωii and ωij are found as follows:

ωii = λ2
i (1 +

i−1∑

j=1

γ2
ij),

and

ωij = λiλj(γij +

i−1∑

r=1

γirγjr).

The non-zero elements of Γ represent prior information on covariances between the log-
linear parameters. When the log-linear parameters are assumed a priori to be mutually
independent from each other, Σm reduces to the form: Σm = diag(λ2

1, . . . , λ
2
p).

Then, prior distributions can be placed on each λi, for i = 1, . . . , p. It is proposed
that when it is assumed that λi are independently and identically distributed for all i, a
Cauchy-tail prior could be induced on each λi, using the transformation, ξi = 1/(1+λi).
In this case, the distribution of ξi is uniform(0, 1). Choosing the distribution of ξi as
uniform, prior belief in the prior could be expressed more easily because it has a closed
form. Here, the values of ξi close to zero represent disbelief and the values close to one
represent a strong belief in the prior information. Furthermore, by using our approach,
precision of the prior belief can be represented for each log-linear parameter separately.
At the same time, we can utilize the advantages of using the Cauchy-tail distribution
mentioned previously.

4. Posterior inferences

When the prior information is combined with the information coming from the sample,
a posterior distribution appears. The posterior distribution differs with the choice of
prior. Two different approaches are described for the specification of prior the distribution
of the hyper-parameter, Σm in §3.1 and §3.2. Thus, the posterior distribution will vary
according to the changes in the specification of the prior of Σm. If the prior is specified
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by the first approach, a posterior analysis could be made for βm, conditioning on the
relative precision parameter τ or the joint posterior density of βm, and τ can be used
for the posterior analysis. When the proposed procedure is used to specify the prior for
βm, the posterior distribution of βm given λi or the joint posterior distribution of λi and
β
c`
mr ∈ βm could be used for the posterior analysis, where, c` ∈ ℘(S), ` = 1, . . . , |m| and

r = 1, . . . , |M c|.

Posterior densities are given for various cases and the full conditional distributions of
some cases are derived when it is possible to find a known distributional form for the
relevant full conditional distribution. If such a form is found, Gibbs sampling algorithm
can be used for marginal posterior inferences; otherwise, the Metropolis-Hastings (M-H)
algorithm, which is described in general in A.1, is a way to obtain them.

4.1. Posterior densities when the approach of Leighty&Johnson is used.

4.1.1. Posterior density of βm given τ . The posterior distribution of βm given τ is as
follows:

p(βm|b, τ) ∝ p(βm|τ)`(βm|b)

∝

[
τ

1− τ

]p/2
· exp

{
−
1

2
(βm − µm)

T τ

1− τ
C

−1
m (βm − µm)

}

× exp

{
−
1

2
(b− βm)

T
V

−1
b (b− βm)

}

∝ exp

{
−
1

2
(βm − µβ)

TΣ−1
β (βm − µβ)

}
.

Here, µβ and Σβ are the mean vector and covariance matrix of the joint distribution of
the log-linear parameters, and can be obtained as

(4) Σβ =

[
V

−1
b +

τ

1− τ
C

−1
m

]−1

and

(5) µβ = Σβ

[
V

−1
b b+

τ

1− τ
C

−1
m µm

]
,

respectively. The derivation of (4) and (5) is given in A.2.

4.1.2. Joint posterior density of βm and τ . The joint posterior density of βm and τ can
be perceived such as

(6)

p(βm, τ |b) ∝ p(τ |b)p(βm|τ, b)

∝ p(τ)`(τ |b)p(βm|τ)`(βm|b)

∝ `(τ |b)p(βm|τ)`(βm|b).

Leighty&Johnson [9] take `(τ |b) proportional to the MVN distribution of b, that is

(7)

`(τ |b) ∝ det

(
V b +

1− τ

τ
Cm

)−1/2

× exp

{
−
1

2
(b− µm)

T

(
V b +

1− τ

τ
Cm

)−1

(b− µm)

}
.
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From Eqs. (6) and (7), p(βm, τ |b) is found as follows:

p(βm, τ |b) ∝ det

(
V b +

1− τ

τ
Cm

)−1/2(
τ

1− τ

)p/2

× exp

{
−
1

2

[
(βm − µm)

T τ

1− τ
C

−1
m (βm − µm)

× (b− βm)
T
V

−1
b (b− βm)

× (b− µm)
T

(
V b +

1− τ

τ
Cm

)−1

(b− µm)

]}
.

4.2. Posterior densities when the Cholesky decomposition of Σm is used. In
this subsection, posterior distributions are studied by dividing the subject into two cases.
The first case is that of a Cauchy-tail prior on λi when ξi is given, the second is with the
same prior but when ξi is not given.

4.2.1. Posterior density of βm given ξ with Cauchy-tail prior on each λi. As stated in
§ 3.2, ξi is used instead of λi to make the calculations easier. Then,

(8)

p(βm|b, ξ) ∝ p(βm|ξi)`(βm|b)

∝

[ p∏

i=1

ξ2
i

(1− ξi)2

]p/2
exp

{
−
1

2
(βm − µm)

Tdiag

(
ξ2
i

(1− ξi)2

)
(βm − µm)

}

× exp

{
−
1

2
(b− βm)

T
V

−1
b (b− βm)

}

∝ exp

{
−
1

2
(βm − µβ)

TΣ−1
β (βm − µβ)

}
.

The covariance matrix and the mean vector of p(βm|b, ξi) is found as follows:

(9) Σβ =

[
V

−1
b + diag

(
ξ2
i

(1− ξi)2

)]−1

and

(10) µβ = Σβ

[
V

−1
b b+ diag

(
ξ2
i

(1− ξi)2

)
µm

]
.

The derivation of (9) and (10) is mentioned in A.2.

4.2.2. Joint posterior density of βm and ξ with Cauchy-tail prior on each λi. The joint
posterior density of βm and ξ can be obtained as

p(βm, ξ|b) ∝ p(ξ|b)p(βm|ξ, b)

∝ `(ξ|b)p(βm|ξ)`(βm|b),

where `(ξ|b) can be taken proportional to the MVN distribution of b. This argument is
similar that of §4.1.2., but using the covariance matrix of the MVN distribution. Then,
`(ξ|b) is taken as follows:

`(ξ|b) ∝ det

[
V b + diag

(
(1− ξi)

2

ξ2
i

)]−1/2

× exp

{
−
1

2
(b− µm)

T

[
V b + diag

(
(1− ξi)

2

ξ2
i

)]−1

(b− µm)

}
.



Hyper-Parameters for Normal Prior Distributions 97

Then,

(11)

p(βm, ξ|b) ∝ det

[
V b + diag

(
(1− ξi)

2

ξ2
i

)]−1/2[ p∏

i=1

ξ2
i

(1− ξi)2

]p/2

× exp

{
−
1

2

[
(b− µm)

T

[
V b + diag

(
(1− ξi)

2

ξ2
i

)]−1

(b− µm)

× (βm − µm)
Tdiag

(
ξ2
i

(1− ξi)2

)
(βm − µm)

× (b− βm)
T
V

−1
b (b− βm)

]}
.

4.3. Derivation of full conditional posterior distributions. For simplicity, the
log-linear parameter vector, βm,(

βc1
m1

, . . . , βc1
m|Mc1 |

, βc2
m1

, . . . , βc2
m|Mc2 |

, . . . , β
c|m|
m1 , . . . , β

c|m|
m∣∣Mc|m|

∣∣

)

is denoted by
(
β1, β2 . . . , βp

)
.

In this section, the full conditional posterior distribution of βi given β−i and τ or ξ with
a Cauchy-tail prior on each λi is derived. Here, β−i denotes the vector that contains
the elements of β, but the i th element of it. The derivation is the same for both of the
situations; however the notations convenient for the case when τ is given are used. For
the other case, ξ is substituted in place of τ in the Eqs. (12), (13) and (14); and Eqs.
(9) and (10) are used to represent Σβ and µβ , respectively.

Because τ and β−i are given, p(βi|β−i, τ, b) is a function of only βi. Then from A.2,

(12) p(βm|τ, b) ∝ exp

{
−
1

2

[
β
T
mΣ

−1
β βm − 2βT

mΣ
−1
β µβ

]}
.

Let ϕij denote the (i, j) th element of the matrix, Σβ for i = 1, . . . , p and j = 1, . . . , p.
Then

(13)

p(βi|β−i, τ, b) ∝ exp

{
−
1

2

[
β2
i ϕii + 2βi

(
µβiϕi −

∑

i6=j

ϕij(βj − µβi)

)
+ E

}

∝ exp

{
−
1

2

[
β2
i ϕii + 2βi

(
µβiϕi −D

))
+ E

}

after excluding the constant E and once adding and once subtracting the constant,

1

2ϕ−1
ii

(
µβi −

D

ϕii

)2

,

p(βi|β−i, τ, b) is obtained as

(14) p(βi|β−i, τ, b) ∝ exp

{
−

1

2ϕ−1
ii

[
βi −

(
µβi −

D

ϕii

)]2}
,−∞ < βi <∞.

The constant D is defined in matrix notation as:

D = (β−i − µ−i)
T
η

where β−i and µ−i are vectors including all the elements of βm and µβ except for the
i th element. The vector η contains elements of the k th row or k th column of Σβ other
than the i th.
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In conclusion, on each pass of the Gibbs sampling algorithm a sample point is gener-
ated from the normal distribution with mean

(
µβi −D/ϕii

)
and variance 1/ϕii [3].

For the cases given in §4.1.2 and 4.2.2, the M-H algorithm can be used to find posterior
estimates of the log-linear parameters.

5. A numerical example

A 4 × 2 × 2 table containing information about 1154 individuals, whose death was
caused by skin cancer, was used. See Table 1. The data were collected by the US
National Center for Health Statistics and taken from Nazaret [11].

First of all the MLEs of the log-linear parameters were obtained. Then a vague prior
was specified for the log-linear parameters by the approach of Leighty&Johnson [9], and
then by using the proposed approach based on the Cholesky decomposition.

Table 1. Skin Cancer Data (Observed Counts).

Melanoma Non-Melanoma

Male Female Total Male Female Total

Lips 0 1 1 47 34 81

Eyelids 1 4 5 75 79 154

Ears 3 3 6 106 39 145

Other 24 19 43 360 359 719

Total 38 27 55 588 511 1099

The three sources are the sites of the body (SB) where the cancer originally developed,
sex (SX) and the type of cancer (TC). Following the notation given in § 2, |S| = 3, S1 is
SB, S2 is SX and S3 is TC, so K1 = {1, 2, 3, 4}, K2 = K3 = {1, 2} and

K = {(1, 1, 1), (2, 1, 1), (3, 1, 1), (4, 1, 1), (1, 2, 1), (2, 2, 1), (3, 2, 1),

(4, 2, 1), (1, 1, 2), (2, 1, 2), (3, 1, 2), (4, 1, 2), (1, 2, 2), (2, 2, 2),

(3, 2, 2), (4, 2, 2)}.

For this example, ℘(S) = {∅, {S1}, {S2}, {S3}, {S1, S2}, {S1, S3}, {S2, S3},{S1, S2, S3}},
and model concerned is

m = {{S1}, {S2}, {S3}, {S1, S2}}.

Then the log-linear model is the same as (1) with

βm = (βc1 ,βc2 ,βc3 ,βc4)

and

β
c1 = (βc1

1 , βc1
2 , βc1

3 ), β
c2 = (βc2

1 ),βc3 = (βc3
1 ), β

c4 = (βc4
11 , β

c4
21 , β

c4
31).

The MLEs of the log-linear parameters were obtained using the Newton-Raphson method.
The vector containing the MLEs of the log-linear parameters was found to be

β̂m =
(
−1.750985113,−0.008052855,−0.381914929, 0.19729938,

− 3.824214123,−0.219551426,−0.28684926, 0.695668566
)
.
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5.1. Analyses by the approach of Leighty&Johnson. In this subsection, posterior
analyses for βm are carried on when τ is given and when it is not. The approach of
Leighty&Johnson [9] is used to determine the prior distributions.

All elements of the mean vector of the prior of log-linear parameters were taken as
the average of the MLEs, which was equal to -0.69732497. To specify a vague prior, τ
was taken as 10−4 and α was obtained as 104. Then, Σm was found as a diagonal matrix
with the elements 10.43736952 on the main diagonal.

The likelihood function, used for the analysis, was given by (2). The full conditional
posterior distribution of § 4.3 was used to implement the Gibbs sampling. The total
number of iterations was 200000, 3750 of which were discarded as burn-in. To reduce the
autocorrelation of the Gibbs sequence, a record was made at the end of each 750 cycles.
Convergence of the Gibbs sequence was tested by a formal method, namely Geweke’s
modified z-test, which was introduced by Geweke [5]. Test statistics for all parameters
were close to zero, thus it is concluded that there is not enough evidence to conclude that
the convergence has not been achieved. Posterior estimates of the log-linear parameters
were given by the vector,

β̃m =
(
−1.68554084,−0.06951882,−0.40279793, 0.17844316,

− 3.79476511,−0.22285423,−0.27682759, 0.66529336
)
.

The marginal posterior distributions of βc1
1 , βc1

2 , βc1
3 and βc4

21 were symmetric and sharper
than the normal distribution. Others were not symmetric. Figure 1 presents the results
of the sensitivity analysis for βc1

m , conducted by taking the values of τ as 0.00001, 0.0001,
0.001, 0.001, 0.1, 0.2, 0.4, 0.5, 0.7 and 0.9. It can be concluded from Figure 1 that the
posterior estimates of βm are insensitive to the changes occurring in τ . For the other
elements of βm the same conclusion holds, thus figures for these are omitted.

Figure 1. Posterior estimates of βc1
m versus τ .

When τ is also a random variable, the joint posterior distribution of Eq. (8) is used for
the posterior analysis of βm and τ . To obtain the marginal posterior distributions of
the log-linear parameters and posterior estimates of them, the M-H algorithm was used.
10000 iterations were made and a record was taken at the end of each 10 cycles. The first
1000 iterations were discarded to reduce the autocorrelation. Geweke’s modified z-test
indicated convergence. The posterior estimate of τ was found to be 0.002338203. The
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marginal posterior distribution of τ was approximately a uniform distribution. Posterior
estimates of the log-linear parameters were obtained as follows:

β̃m =
(
−1.750811502,−0.007962351,−0.381661032,

0.197719215,−3.823869793,−0.2193746,−0.286279317, 0.696276107
)
.

The marginal distributions corresponding to the levels of SB were approximately symmet-
ric and similar to the normal distribution. The marginal distributions of βc1

1 , βc1
2 , βc1

3 ,
βc2

1 , βc4
11 , βc4

21 and βc4
31 were similar; they were symmetric and sharper than the normal

distribution.

5.2. Analyses when the Cholesky decomposition is used. Firstly, posterior es-
timates of the elements of βm given ξ were obtained. Again all elements of the mean
vector of the prior of the log-linear parameters were taken to give -0.69732497, and after
the aforementioned convenient modifications, the full conditional posterior distribution
of § 4.3 was used to implement the Gibbs sampling. Implementation conditions were the
same as those in § 5.1. The value of ξi was taken as 0.0001 for i = 1, . . . , 5 and 0.01
for i = 6, 7, 8. Geweke’s modified z-test results indicated that convergence had been
achieved. Thus the posterior estimates of the log-linear parameters were found to be

β̃m =
(
−1.750952825,−0.008036772,−0.381929293, 0.197446479,

− 3.824182879,−0.219367624,−0.286845778, 0.695666129
)
.

The marginal distributions of βc1
1 , βc1

3 , βc4
21 and βc4

31 were symmetric and normal-like
distributions. Other marginal distributions were also similar but they were not symmetric
or normal-like. To investigate the sensitivity of the posterior estimates to the chosen
values of the elements of ξ, ξi were taken as ξ and values of ξ chosen as 0.00001, 0.0001,

0.001, 0.001, 0.1, 0.2, 0.4, 0.5, 0.7 and 0.9. Figure 2 shows the changes in β̃c1
m for various

values of ξ. There is not any major change in the estimated values of βc1
m while ξ < 0.5,

therefore, the posterior estimates are sensitive to the values of ξ when ξ > 0.5.

Figures for the other elements of β̃m are almost the same as those of β̃c1
m , and thus

are omitted here.

Figure 2. Posterior estimates of βc1
m versus ξ.

Secondly, a posterior analysis of βm and ξ was considered for this example. Eq. (11) was
used as the joint posterior distribution of βm and ξ. Again, the M-H algorithm was used
to obtain marginal posterior distributions of the elements of the log-linear parameter
vector. Implementation conditions were the same as for the case of the posterior analysis
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of βm and τ given in § 5.1. After deciding that convergence had taken place by using
Geweke’s modified z-test, the posterior estimate of ξ was found to be

ξ̃ =
(
0.000097, 0.000098, 0.000097, 0.000097,

0.000097, 0.000978, 0.000974, 0.000972
)
,

and the posterior estimate of the log-linear parameter vector was obtained as

β̃m =
(
−1.750751651,−0.007971609,−0.382000615, 0.197287176,

− 3.824238483,−0.219585117,−0.286828099, 0.695709563
)
.

The marginal distributions of the elements of ξ were all approximately uniform, and
the marginal distributions of the elements of the log-linear parameter vector had an
approximately normal distribution.

6. Discussion

In this paper, a Bayesian estimation of the log-linear parameters has been discussed
for various prior distributions. An approach has been proposed for specifying a prior
distribution for the dispersion parameter of the prior distribution of log-linear parame-
ters. The proposed approach is more flexible than the approach of Leighty&Johnson [9],
because in the proposed approach the user can be represent his degree of belief in the
prior information on each log-linear parameter separately. Thus, it results in more reli-
able Bayesian inferences. Furthermore, when Figure 1 and Figure 2 of § 5 are compared,
the Bayesian estimates obtained by using our approach are seen to be less sensitive for
the indifference cases.

Appendices

A.1 Implementation of the Metropolis-Hastings Algorithm

Let β = (β1, . . . , βp) denote the interested parameter vector, where p is the dimension
of the vector. At each step of the algorithm, let the interested element of β be βi, for i =
1, . . . , p. The algorithm starts with the generation of a candidate point from a proposal
distribution, q(β, β∗). Here, β−i = β∗

−i for β−i = (βj , j 6= i) and β∗
−i = (β∗j , j 6= i).

After generating the candidate point from q(β,β∗), β∗ = (β1, . . . , βi−1, β
∗
i , βi+1, . . . , βp),

the generated value is accepted with the probability of α that

α(β,β∗) = min

[
1,

p(β∗)q(β∗,β)

p(β)q(β,β∗)

]
.

If the candidate point is not accepted, the process is restarted by the generation of a new
candidate point.

A.2 Joint posterior distribution of the log-linear parameters given τ or given
λ

Derivation of the parameters of the joint posterior distribution of the log-linear pa-
rameters given τ is as follows:

p(βm|b, τ) ∝ p(βm|τ)`(βm|b)

∝

[
τ

1− τ

]p/2
exp

{
−
1

2
(βm − µm)

T τ

1− τ
C

−1
m (βm − µm)

}

× exp

{
−
1

2
(b− βm)

T
V

−1
b (b− βm)

}
.
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When Σm =
(
τ/1− τ

)p/2
,

p(βm|b, τ) ∝ exp

{
−
1

2

[
b
T
V

−1
b b− b

T
V

−1
b βm − β

T
mV

−1
b b+ β

T
mV

−1
b βm

+ β
T
mΣ

−1
m βm − β

T
mΣ

−1
m µm − µ

T
mΣ

−1
m βm + µ

T
mΣ

−1
m µm

]}

∝ exp

{
−
1

2

[
β
T
mV

−1
b βm + β

T
mΣ

−1
m βm − b

T
V

−1
b βm + µ

T
mΣ

−1
m βm

− β
T
mV

−1
b b− β

T
mΣ

−1
m µm + b

T
V

−1
b b+ µ

T
mΣ

−1
m µm

]}

∝ exp

{
−
1

2

[
β
T
m

(
V

−1
b +Σ−1

m

)
β + β

T
m

(
V

−1
b b+Σ−1

m µm

)

−
(
b
T
V

−1
b + µ

T
mΣ

−1
m

)
βm

]}
.

Letting Σβ =
(
V −1
b +Σ−1

m

)−1
and µβ = Σβ

(
V −1
b b+Σ−1

m µm

)
,

p(βm|b, τ) ∝ exp

{
−
1

2

[
β
T
mΣ

−1
β βm − β

T
mΣ

−1
β µβ − µ

T
βΣ

−1
β βm

]}
.

When λ is given instead of τ , Σm is taken as diag

(
ξ2
i

(1− ξi)2

)
, and no changes occur in

the rest of the derivation process [3].
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