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Abstract 

In the network analysis, vulnerability plays key role. Similarly, Laplacian matrices are also effective tools in network 
analysis. In this study, we examine correlations between those two concepts. We first calculate the well-known vulnerability 
measures called edge connectivity, vertex connectivity, and solitude number. Then, we find correlation between 
vulnerability measures and energies of Laplacian matrices. As a result, we find strong correlations between Laplacian 
energies and vertex connectivity of a network. 
Keywords: Network analysis, Network vulnerability, Laplacian, Graph energies 

AĞ KIRILGANLIĞI VE LAPLASYEN ENERJİLER ARASINDAKİ KORELASYONLAR 

Özet 

Ağ analizinde kırılganlık kavramı önemli rol oynamaktadır. Benzer şekilde, Laplasyen matrisleri de ağ analizinde etkili 
araçlardır. Bu çalışmada, bu iki kavram arasındaki korelasyon incelenmiştir. İlk olarak, oldukça çok bilinen ayrıt 
bağlantılık, tepe bağlantılık ve yalnızlık sayıları hesaplanmıştır. Daha sonra, bu kırılganlık ölçüleri ile Laplasyen 
matrislerinin enerjileri arasındaki korelasyon hesaplanmıştır. Sonuç olarak, bir ağın Laplasyen enerjileri ile tepe 
bağlantılık ölçüsü  arasında güçlü korelasyonlar bulunmuştur. 
Anahtar Kelimeler: Ağ analizi, Ağ kırılganlığı, Laplasyen, Graf enerjileri 
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1.  Introduction 

A network structure consists of connection lines that 
provide communication between nodes. Network design 
is based on continuity of communication. For any 
communication network, the durability of the network 
despite the interruptions that occur in certain nodes or 
connection lines is called the vulnerability measurement 
of the network. Networks with greater vulnerability are 
more stable [1,2,3,4,5]. Communication networks can be 
modeled with graphs such that the nodes are the vertices 
of the graph and the connecting lines are the edges of the 
graph. Therefore, in order to examine the stability 
structure of a network, it is sufficient to examine the 
vulnerability measures over the graph structure that 
models the network. Vulnerability measurements are 
used in a network structure to determine the strength of 
the network. At the same time, these measurements 
enable the selection of the most stable structure for the 

continuity of data communication among alternative 
graph models used in designing a network. The greater 
the vulnerability measurements, the more stable the 
graph indicates. Only the solitude number is the opposite 
of these measurements [6]. In other words, graph 
structures with smaller solitude number are more stable. 
In this study, vertex connectivity, edge connectivity, and 
solitude number vulnerability measurements were 
examined. 

The concept of energy originates from chemistry and 
refers to the willingness of atoms to form molecules 
together. Since the bond formed by the atoms forming 
stable molecules is strong, the energies of such molecules 
are also high. In Hückel Molecular Orbital Theory, an area 
of theoretical chemistry, the Hückel energy of a 
conjugated hydrocarbon (carbon atoms saturated with 
hydrogen) is given as the sum of the energies of pi and 
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sigma electrons. The formulated form thereof is as 
follows: 

 ℰ𝑖 = 𝑛𝛼 + 𝑚𝛽 (1) 
In the formula 𝛼 and 𝛽 Hückel molecular orbital 
constants, 𝑛 and 𝑚 are real numbers. The 𝑛𝛼 value used 
to calculate the Hückel energy gives the sum of the 
energies of the sigma electrons and the 𝑚𝛽 gives the sum 
of the energies of the pi electrons [7,8].   
For any 𝐴 ∈ 𝑀𝑚,𝑛 define the energy of 𝐴, 𝜀(𝐴), 

 
𝜀(𝐴) = ∑ 𝑠𝑖(𝐴)

𝑚

𝑖=1

 (2) 

If the 𝑀 matrix is a square matrix, the graph energy of the 
𝑀 matrix is calculated as follows: 

 
𝐸𝑀(𝐺) = ∑ │𝜇𝑖 − �̅�│,

𝑛

𝑖=1

 (3) 

where 𝜇1, … , 𝜇𝑛 are the eigenvalues of 𝑀 and �̅� is the 
average of 𝜇1, … , 𝜇𝑛. If 𝑀 is the adjacency matrix 𝐴(𝐺), 
then �̅� = 0. 
The aim of this study is to determine correlation between 
the vulnerability measures and graph Laplacian energies. 
Graph Laplacian is discrete analogues of the continuous 
Laplacian, and encodes information about the shape of a 
graph. There are several graph Laplacian definitions [9].  
Rest of the paper is as follows: In Section 2, we give basic 
definitions on several vulnerability measures, graph 
Laplacians and energies. Then, in Section 3, we present 
computational results. Finally, in Section 4, we give 
concluding remarks. 

2.  Preliminaries 
Definition 1. [10] Let 𝐺 be a simple, connected graph and 
𝑆 ⊆ 𝑉. If  𝐺 − 𝑆 is not conneted, 𝑆 is called the vertex cut 
cluster. The vertex-connected value of the graph is the 
number of elements of the cluster with the minimum 
cardinality out of all possible vertex cut sets and is 
defined as 

 𝑘(𝐺) = min{│𝑆│, 𝑆 ⊆ 𝑉} (4) 

Definition 2. [10] Let G be a simple, connected graph and 
𝑇 ⊆ 𝐸. If  𝐺 − 𝑇 is not conneted, 𝑇 is called the edge cut 
cluster. The edge-connected value of the graph, is defined 
as 

 𝑘′(𝐺) = 𝑚𝑖𝑛{│𝑇│, 𝑇 ⊆ 𝐸} (5) 

Definition 3. [11] For a G graph, m is the number of 
components of the graph (G-S), the toughness value of 
this graph, is defined as 

 
𝑡(𝐺) = 𝑚𝑖𝑛𝑆⊆𝑉 {

│𝑆│

𝑚(𝐺 − 𝑆)
} (6) 

 
 
Definition 4. [12] S⊆V, the integrity value of a G graph, 
is defined as 

 ℐ(𝐺) = 𝑚𝑖𝑛𝑆⊆𝑉{|𝑆| + 𝑚(𝐺 − 𝑆)}. (7) 
Definition 5. [13] Let 𝑖𝑠𝑜(𝐺) of isolated vertices formed 
by subtraction of vertices from the graph. The solitude 
number of a simple and combined G graph, is defined as 

 
𝑆(𝐺) =

∑ ∑ │𝑖𝑧𝑖,𝑗(𝐺)│𝑛
𝑗=𝑖+1

𝑛−1
𝑖=1

(𝑛
2
)

. (8) 

Definition 6. The degree matrix of , 𝐷(𝐺), is an 𝑛 × 𝑛 
diagonal matrix such that 𝐷(𝐺)𝑖𝑖  =  𝑑𝑖,where di is 
the degree of vertex vi. 
 
Definition 7. [14] The Laplacian matrix of a graph, 𝐿(𝐺), 
is defined as 𝐿(𝐺) = 𝐷(𝐺) − 𝐴(𝐺), where D(G) is the 
degree matrix, and A(G) is the adjacency matrix of G. 
 
The Laplacian matrix is both a positive semidefinite 
and an 𝑀-matrix [15].  Since the sum of the degrees of 
vertices of a graph G is 2m, we note that the trace of 

L(G) is 2m. Therefore, the mean of its eigenvalues is 
2𝑚

𝑛
. 

Definition 8. Let 𝜇1, 𝜇2, … , 𝜇𝑛 be the eigenvalues of 
𝐿(𝐺). Then the Laplacian energy, LE(G), is defined as 

 
𝐿𝐸(𝐺) = ∑ |𝜇𝑖 −

2𝑚

𝑛
| .

𝑛

𝑖=1

 (9) 

Definition 9. The sign-less Laplacian matrix of a graph, 
L+(G), is defined as 𝐿+(𝐺) = 𝐷(𝐺) + 𝐴(𝐺), where D(G) is 
the degree matrix, and A(G) is the adjacency matrix of 
G [7]. Thus, the entries of the sign-less Laplacian matrix 
equal the absolute values of those in the Laplacian 
matrix. 
 
Definition 10. [15] Let 𝜇1

+,  𝜇2
+ , … , 𝜇𝑛

+ be the 
eigenvalues of 𝐿+(𝐺). Then the sign-less Laplacian 
energy, 𝐿𝐸+(𝐺), is defined as 

 
𝐿𝐸+(𝐺) = ∑ |𝜇𝑖

+ −
2𝑚

𝑛
|

𝑛

𝑖=1

 (10) 

Definition 11. Let the transition matrix of a random 
walker on the graph 𝑃 = 𝐷−1𝐴. A graph of random walk 
normalized Laplacian, is defined as 

 𝐿𝑅𝑊 = 𝐷−1𝐿 = 𝐷−1(𝐷 − 𝐴) = 𝐼 − 𝑃 (11) 
where 𝐼, is unit matrix. For any graph, random walk 
Laplacian defined as 𝐿𝑅𝑊 = 𝜋(𝐼 − 𝑃), where π is a scalar 
number [16]. 
 
Definition 12. Let 𝜇1

𝑅𝑊,  𝜇2
𝑅𝑊 , … , 𝜇𝑛

𝑅𝑊 be the 
eigenvalues of 𝐿𝑅𝑊(𝐺). Then the random walk Laplacian 
energy, 𝐿𝐸𝑅𝑊(𝐺), is defined as 

 
𝐿𝐸𝑅𝑊(𝐺) = ∑ |𝜇𝑖

𝑅𝑊 −
2𝑚

𝑛
|

𝑛

𝑖=1

 (12) 

 

. 

3.  Computational Results 

In order to determine the correlation between the graph 
vulnerabilities and Laplacian energies, we first examine 
non-isomorphic simple graphs with 50 vertices. The 
vertex degree distributions of the graphs are presented 
in Fig 1. 
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Figure 1. Vertex degree distributions 

In order to obtain correlations, we first compute edge 
connectivity, vertex connectivity and solitude number of 
each graphs, then compare those vulnerability measures 
with energies of Laplacian, sign-less Laplacian, and 
random walk Laplacian. 

 

The density plots of vulnerability measures and 
Laplacian energies are presented in Fig 2. 

 
Figure 2. Vulnerability measures and Laplacian energies 

 

 

The density plots of vulnerability measures and sign-less 
Laplacian energies are presented in Fig 3. 

 
Figure 3. Vulnerability measures and signless Laplacian 

energies 

 

The density plots of vulnerability measures and random 
walk Laplacian energies are presented in Fig 4. 

 

 
Figure 4. Vulnerability measures and random walk 

Laplacian energies 

 

From Fig 2-4, it is straightforward that there are strong 
positive correlation between the vertex connectivity and 
all Laplacian energies. However, there are no correlation 
between the solitude number and Laplacian energies. 
Besides, there are no correlation also between the edge 
connectivity and Laplacian energies. In Tab 1, we present 
the cross correlations between those values. 
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Table 1. Cross Correlations 

 Laplacian 
Energy 

Signless 
Laplacian 
Energy 

Random 
Walk 
Laplacian 
Energy 

Edge 
Connectivity 

0.011 0.011 0.01 

Vertex 
Connectivity 

0.887 0.886 0.902 

Solitude −0.131 −0.131 −0.119 

 

4.  Conclusions 

Vulnerability emerges as a strong measure for network 
analysis and design. There are several types of 
vulnerability measures defined in literature. Most 
common ones are vertex and edge connectivity 
measures. Besides, there is a vulnerability measure 
called solitude number which measures stability of a 
graph model. Another important topic emerges for 
network analysis is Laplacian. Network Laplacian 
encodes information about the shape of a graph.  

In this study, we present cross correlation between these 
two important topics. In order to present cross 
correlations, we examined the energies of Laplacian, 
sign-less Laplacian, and random walk Laplacian of a 
simple graph.  

Our results show that there is strong correlation between 
the vertex connectivity and all types of Laplacians. We 
also show that there are very weak positive correlations 
between edge connectivity and Laplacian energies. 
Similarly, we show that there are very weak negative 
correlations between solitude number and Laplacian 
energies.  

Regarding to our findings, we may conclude that the 
shape of a network is only correlated to its stability by 
the means of vertex measures. 
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