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Abstract

This paper focuses on the existence results for nonlocal fractional integrodifferential equations with interval
impulses and measure of noncompactness using Mönch fixed point theorem and sectorial operator. At the
end of this paper, an example is given to illustrate the applications of the abstract results.
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1. Introduction

In this paper, we study the existence results for the following nonlocal problem of non-instantaneous
impulsive fractional integrodifferential equations

siD
α
t u(t) = Au(t) + f(t, u(t), Gu(t)), t ∈ (si, ti+1], i = 0, 1, .....,m (1.1)

u(t) = gi(t, u(t)), t ∈ (ti, si], i = 1, 2, .....,m (1.2)
u(0) = u0 + k(u) (1.3)

where 0 < α < 1 and A is a sectorial operator on a Banach space (X, ‖.‖). siD
α
t is the Caputo fractional

derivative of the order α and f is a given function f : [0, a]×X ×X → X,

Gu(t) =

∫ t

0
H(t, s)u(s)ds, H ∈ C[D,R+], D = {(t, s) ∈ R2 : 0 ≤ s ≤ t ≤ a},
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0 = t0 = s0 < t1 ≤ s1 ≤ t2 ≤ tm ≤ .... ≤ sm ≤ tm+1 = a are pre-fixed numbers, k : X → X, u0 ∈ X and
gi ∈ C

(
(ti, si]×X;X

)
for all i = 1, 2, ......,m.

The main techniques relay on the impulsive fractional integro- differential equation, Mönch fixed point
theorem via measure of noncompactness.

In the past few years, many researchers have focused their research on the study of fractional differential
equations defined on bounded and unbounded intervals. Which have been receiving greater attention due
to various theoritical results obtained. For a detailed study see the monogrphs of several authors [35, 3, 33,
31, 17, 10]. These reults are applied in different fields of science and engineering such as physics, biology
and chemistry etc. Byszewski [18, 22, 30] initiated in many cases a non-local conditions u(0) + g(u) = u0 in
treating physical problems. So which has been studied extensively by several authors for different kinds of
problems see [29, 14, 5, 11, 6] and the references therein.

Recently a great attention has been focused on the study of impulsive differential equations for which
the impulses are not intantaneous and is also an important area of research. They appear in mathematical
models of phenomenon in both physical and social sciences. Also such problems appear in mathematical
models with suddenly changes of their state in population dynamics, pharmacology, optimal control etc. [21]
. Impulsive problems for fractional equations are treated by topological methods in [20, 25].

Integrodifferential equations are important for investigating some problems raised from natural phenom-
ena. They have been studied in many different aspects. In recent years, this theory has been applied to a
large class of non-linear differential equations in Banach spaces. For further details, see [26, 32, 23, 24, 4, 19].
Shaochun.Ji, Gang Li [29] investigated a unified approach to nonlocal impulsive differential equations with
measure of non-compactness. In [4], Ahmad et al. studies nonlocal problem of impulsive integrodifferential
equations with measure of non-compactness by applying a new fixed point theorem. For some recent results,
see [2, 13, 12]. Eduardo Hernandez and Donal O’Regan [16] established on a new class of abstract impulsive
differential equations for which the impulses are not instantaneous. Jin Rong Wang et al. [34] also proved
periodic BVP integer/fractional order nonlinear differential equations with non-instantaneous impulses.

In a recent paper [1], Agarwal.R et al. studies stability by Lyapunov like functions of non linear differential
equations with non- instantaneous impulses.

Motivated by above works, we derive the existence results for the mild solutions of (1.1)-(1.3) combining
impulsive conditions and nonlocal conditions. Our results are obtained by means of Mönch fixed point
theorem and the technique of Hausdorff measure of noncompactness. This paper is organized as follows:

In section 2, we introduce some defections, notations and some preliminary notions. In section 3, we
present out main results on existence results. Example is presented in section 4 illustrating the applicability
of the improved conditions.

2. Preliminaries

Let C([0, a];X) denote the Banach space of all continuous functions from [0, a] into X with the norm
‖u‖C := sup{|u(t)| : t ∈ [0, a]} for u ∈ C([0, a];X). Now we consider the space
PC([0, a];X) := {u : [0, a] → X : u ∈ C((tk, tk+1], X), k = 0, 1, ....,m and there exist u(t−k ) and u(t+k ),
k = 1, ....m, with u(t−k ) = u(tk)} with the norm‖u‖PC :=sup{|u(t)| : t ∈ [0, a]}. Set PC1([0, a];X) := {u ∈
PC([0, a];X) : u′ ∈ PC([0, a];X) with ‖u‖PC1 : max{‖u‖PC , ‖u′‖PC}.
Clearly, PC1([0, a], X) endowed with the norm ‖.‖PC1 is a Banach space.

In this paper, β denotes the Hausdorff measure of noncompactness on both X and PC([0, a];X). The
following lemma describes some properties of the Hausdorff measure of noncompactness.

Lemma 1. ([7]) Let Y be a real Banach space and B,C ⊆ Y be bounded. Then

1. βY(B) = 0 ⇔ B is compact ( B is relatively compact) ;
2. βY(B) = βY(B) = βY(convB), where B and conv B mean the closure and convex hull of B respectively;
3. βY(B) ≤ βY(C), where B ⊆ C;
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4. βY(B + C) ≤ βY(B) + βY(C), where B + C = {x+ y : x ∈ B, y ∈ C};
5. βY(B ∪ C) ≤ max{βY(B), βY(C)};
6. βY(λB) ≤ |λ|βY(B) for any λ ∈ R;
7. If the map Q : D(Q) ⊆ Y → Z is Lipschitz continuous with constant k, then βZ(QB) ≤ kβY(B) for

any bounded subset B ⊆ D(Q), where Z be a Banach space;
8. If {Wn}+∞n=1 is decreasing sequence of bounded closed nonempty subsets of Y and limn→∞ βY(Wn) = 0,

then
⋂+∞
n=1Wn is nonempty and compact in Y.

The map Q : W ⊆ Y → Y is said to be a βY-contraction if there exists a constant 0 < k < 1 such that
βY(Q(B)) ≤ kβY(B) for any bounded closed subset B ⊆W , where Y is a Banach space.

Lemma 2. ([7]). If W ⊆ PC([0, a];X) is bounded, then β(W (t)) ≤ βPC(W ) for all t ∈ [0, a], where
W (t) = {u(t) : u ∈ W} ⊆ X. Furthermore if W is equicontinuous on [0,a], then β(W (t)) is continuous on
[0,a], and βPC(W ) = sup{β(W (t)) : t ∈ [0, a]}.

Lemma 3. ([27]). If {un}∞n=1 ⊂ L1(0,K;X) is uniformly integrable, then β({un(t)}∞n=1) is measurable and

β
({∫ t

0
un(s)ds

}∞
n=1

)
≤ 2

∫ t

0
β{un(s)}∞n=1ds

Lemma 4. ([9]) . If W is bounded, then for each ε > 0, there is a sequence {un}∞n=1 ⊆ W such that
β(W ) ≤ 2β({un}∞n=1) + ε.

Lemma 5. ([7]. Darbo-Sadovskii). IfW ⊆ Y is bounded closed and convex, the continuous map Q : W →W
is an β− contraction, then the map Q has at least one fixed point in W .

The following fixed point theorem, a nonlinear alternative of Mönch type, plays a key role of the system
(1.1)-(1.3).

Theorem 1. ([27]) Let D be a bounded, closed and convex subset of a Banach space such that 0 ∈ D, and
let Γ be a continuous mapping of D into itself. If the implication
Q = convΓ(Q) or Q = Γ(Q) ∪ {0} ⇒ β(Q) = 0 holds for every subset Q of D, then Γ has a fixed point.

Now we introduce some notations about sectorial operators, solution operators, and analytic solution
operators.

An operator A is said to be sectorial if there are constants µ ∈ R, θ ∈ [π2 , π],M > 0 such that the
following two conditions are satisfied:

{
(1)ρ(A) ⊂

∑
θ,µ = {λ ∈ C : λ 6= µ, |arg(λ− µ)| < θ},

(2)‖R(λ,A)‖L(X) ≤ M
|λ−µ| , λ ∈

∑
θ,µ

Consider the following Cauchy problem for the Caputo fractional derivative evolution equation of order
α(m− 1 < α < m,m > 0 is an integer):

Dα
∗ u(t) = Au(t), u(0) = x, u(k)(0) = 0, k = 1, 2, .....,m− 1, (2.1)

where A is a sectorial operator. The solution operators Sα(t) of (2.1) is defined by (see [8])

Sα(t) =
1

2πi

∫
γ
eλtλα−1R(λα, A)dλ,

where γ is a suitable path lying on
∑

θ,µ .
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An operator A is said to belong to ζα(X;M,µ), or ζα(M,µ) if problem (2.1) has a solution operator
Sα(t) satisfying ‖Sα(t)‖ ≤Meµt, t ≥ 0. Denote ζα(µ) := ∪{ζα(M,µ) : M ≥ 1} and ζα := ∪{ζα(µ) : µ ≥ 0}.
Definition 2.1([8]). A solution operator Sα(t) of (2.1) is called analytic if Sα(t) admits an analytic extension
to a sector

∑
θ0

:= {λ ∈ C \ {0} : |arg λ| < θ0} for some θ0 ∈ (0, π2 ]. An anaytic soluton operator is
said to be of analyticity type (θ0, µ0) for each θ < θ0 and µ > µ0 there is an M = M(θ, µ) such that
‖Sα(t)‖ ≤MµRet, t ∈

∑
θ := {t ∈ C \ {0} : |arg t| < θ. Denote Aα(θ0, µ0) := {A ∈ ζα : A generates analytic

solution operators Sα(t) of type (θ0, µ0)}.

Lemma 6. ([9, 28]). Let α ∈ (0, 2). A linear closed densely defined operator A belongs to Aα(θ0, µ0) iff
λα ∈ ρ(A) for each λ ∈

∑
θ0+π/2,and for any µ > µ0, θ < θ0, there is a constant C = C(θ, µ) such that

‖λα−1R(λα, A)‖ ≤ C

|λ− µ|
, for λ ∈

∑
θ+π/2

(µ). (2.2)

Consider the following cauchy problem{
(Dα

t u) = Au(t) + f(t), 0 < α < 1,

u(0) = x0 ∈ X,
(2.3)

where f is an abstract function defined on [0,∞) and with values in X, A is a sectorial operator.

Theorem 2. ([31]) If f satisfies the uniform Hölder condition with exponent β ∈ (0, 1] and A is a sectorial
operator, then the unique solution of the Cauchy problem (2.3) is given by

u(t) = Sα(t)x0 +

∫ t

0
Tα(t− s)f(s)ds, (2.4)

where

Sα(t) =
1

2πi

∫
Γ
eλtλα−1R(λα, A)dλ, Tα(t) :=

1

2πi

∫
Γ
eλtR(λα, A)dλ

and Γ is a suitable path lying on
∑

θ,µ.

Theorem 3. If α ∈ (0, 1) and A ∈ Aα(θ0, µ0), then for any x ∈ X and t > 0, we have

‖Tα(t)‖ ≤ Ceµt(1 + tα−1), t > 0, µ > µ0. (2.5)

Definition 2.2. ([15]) The fractional integral of order α with the lower limit si for a function f(t) is
defined as

siI
α
t f(t) =

1

Γ(α)

∫ t

si

(t− s)α−1f(s)ds t > si, α > 0

provided the right side is point-wise defined on[α,∞), where Γ(.) is the gamma function.
Definition 2.3. ([15]) Riemann- Liouville derivative of order order α with the lower limit si for a function
f(t) is defined as

L
si(D

α
t f)(t) =

1

Γ(n− α)
(
d

dt
)n ×

∫ t

si

(t− s)n−α−1f(s)ds, t > si n− 1 < α < n.

Definition 2.4. ([15])The Caputo derivative of order α for the function f(t) can be written as

c
siD

α
t f(t) =L

si D
α
t

(
h(t)−

n−1∑
k=0

(t− si)k

k!
f (k)(si)

)
, t > si, n− 1 < α < n.
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Remark 2.1
(1) If f(t) ∈ Cn[si,∞), then

L
si(D

α
t f)(t) =

1

Γ(n− α)

∫ t

si

(t− s)n−α−1f (n)(s)ds

=si I
n−α
t f (n)(t), t > si n− 1 < α < n.

(2) The Caputo derivative of a constant is equal to zero.
To study the existence results for the problem (1.1)− (1.3), we need the following lemma.

Lemma 7. A function u is given by

u(t) =


Sα(t)[u0 − k(u)] +

∫ t
0 Tα(t− θ)h(θ)dθ, t ∈ [0, t1],

Gi(t), t ∈ (ti.si], i = 1, 2, ....,m,

Sα(t− si)Gi(si) +
∫ t
si
Tα(t− θ)h(θ)dθ, t ∈ (si, ti+1],

i = 0, 1, .....,m

(2.6)

is a solution of the following problem
siD

α
t u(t) = h(t), t ∈ (si, ti+1], i = 0, 1, .....,m

u(t) = Gi(t), t ∈ (ti.si], i = 1, 2, ....,m,

u(0) = u0 + k(u)

(2.7)

Proof: Assume that u satisfies (2.7). If t ∈ [0, t1]. Integrating the first equation of (2.7) from zero to t,
we have

u(t) = Sα(t)[u0 − k(u)] +

∫ t

0
Tα(t− θ)h(θ)dθ (2.8)

On the other hand, if t ∈ (si, ti+1], i = 0, 1, .....,m and one can apply the impulsive condition of (2.7)
to derive.

u(t) = Sα(t− si)Gi(si) +

∫ t

si

Tα(t− θ)h(θ)dθ. (2.9)

So, we have

u(0) = Sα(t− sm)Gm(sm) +

∫ t

sm

Tα(t− θ)h(θ)dθ. (2.10)

It is clear that(2.8),(2.9) and (2.10) implies that (2.6).

Definition 2.5 A function u : [0, a] → X is called a mild solution of system(1.1) − (1.3) if u ∈
PC([0, a], X) satisfies the following equation

u(t) =


Sα(t)[u0 − k(u)] +

∫ t
0 Tα(t− θ)f(θ, u(θ), Gu(θ))dθ, t ∈ [0, t1],

gi(t, u(t)), t ∈ (ti.si], i = 1, 2, ....,m,

Sα(t− si)gi(si, u(si)) +
∫ t
si
Tα(t− θ)f(θ, u(θ), Gu(θ))dθ,

t ∈ (si, ti+1], i = 0, 1, .....,m

(2.11)
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3. Main Results

In this section, we give the existence of mild solutions for the impulsive system (1.1) − (1.3). If A ∈
Aα(θ0.µ0), then ‖Sα(t)‖ ≤Meµt and ‖Tα(t)‖ ≤ Ceµt(1 + tα−1)
Let

M̃S := sup
0≤t≤a

‖Sα(t)‖L(X), M̃T := sup
0≤t≤a

Ceµt(1 + t1−α) (3.1)

where L(X) is the Banach space of bounded linear operators from X into X equipped with its natural
topology.
So we have ‖Sα(t)‖L(X) ≤ M̃S , ‖Tα(t)‖L(X) ≤ tα−1M̃T .
For some real constants r and w, we define

W = {u ∈ PC(X), ‖u(t)‖ ≤ r, ‖Gu(t)‖ ≤ w ∀t ∈ [0, a]}. (3.2)

Now we introduce the following hypotheses:
(H1) (i) The functions gi are continuous and there are positive constants Lgi such that ‖gi(t, x)− gi(t, y)‖ ≤
Lgi [‖x− y‖] for all x, y ∈ X, t ∈ (ti, si] and each i = 0, 1, ....,m.
(ii) There is a function ϕi(t), i= 1,2,...m such that ‖gi(t, x)‖ ≤ ϕi(t) for each t ∈ (ti, si] and all u ∈ X.
Setting Mi = supt∈(ti,si] ϕi(t) <∞, i = 1, 2, ...,m.
(H2)For x ∈ X, the function f(., ., x) is strongly measurable on [0, a] and f(t, ., .) ∈ C(X,X) for t ∈ [0, a],
there are mf ∈ L1([0, a];R+) and a non-decreasing function Wf ∈ C([0.∞);R+) such that
‖f(t, x, y)‖ ≤ mf (t)Wf (‖x‖+ ‖y‖), for all (t, x, y) ∈ [0, a]×X ×X.
(H3)k : X → X is continuous and there exists positive constants c and d such that ‖k(u)− k(v)‖ ≤ c‖u− v‖
and ‖k(u)‖ ≤ c‖u‖+ d, for all u ∈ PC(X).
(H4) There is an integrable function η : [0, a]→ [0,+∞) such that
β(f(t,D1, D2)) ≤ η(t)

[
sup−∞<θ≤0β(D1(θ)) +β(D2)

]
for a.e t ∈ [0, a] and any bounded subsets D1, D2 ⊂ X

and β is the Hausdorff measure of noncompactness with ζ∗ = supt∈[0,a]

∫ t
0 η(s)ds <∞

(H5) For each bounded subset D ⊂ X we have β(gi(t,D)) ≤Miβ(D),
i = 1, 2, ...,m.

Theorem 4. Assume the hypotheses (H1)- (H3) are satisfied then the nonlocal impulsive problem (1.1)−(1.3)
has at least one integral solution on [0, a] provided that

M̃S [c+ Lgi ] < 1. (3.3)

Proof. Let Γ : PC(X)→ PC(X) be defined by

Γu(0) = u0 + k(u), Γu(t) = gi(t, u(t)) for t ∈ (ti, si] and

Γu(t) =


Sα(t)[u0 − k(u)] +

∫ t
0 Tα(t− θ)f(θ, u(θ), Gu(θ))dθ, t ∈ [0, t1],

gi(t, u(t)), t ∈ (ti.si], i = 1, 2, ....,m,

Sα(t− si)gi(si, u(si) +
∫ t
si
Tα(t− θ)f(θ, u(θ), Gu(θ))dθ,

t ∈ (si, ti+1], i = 0, 1, .....,m

(3.4)

Here Γ is well defined on PC(X).

It is easy to see that the fixed point of Γ is the integral solution of the nonlocal impulsive problem
(1.1)− (1.3). Subsequently we will prove that Γ has a fixed point by using Lemma 1.

First, we prove that the mapping Γ is continuous on PC([0, a];X). Let {un}∞n=1 be a sequence in
PC([0, a];X) with limn→∞un = u in PC([0, a];X). It follows that f(s, un(s), Gun(s)) → f(s, u(s), Gu(s))
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as n→∞.
Case 1. Now, for every t ∈ [0, t1], we have

‖Γun(t)− Γu(t)‖ ≤ M̃S‖k(un)− k(u)‖

+ M̃T

∫ t

0
(t− θ)α−1

∥∥f(θ, un(θ), Gun(θ))− f(θ, u(θ), Gu(θ))
∥∥dθ

≤ M̃S‖k(un)− k(u)‖+
εTαM̃T

α
, ε > 0, ε→ 0(n→∞).

Case 2. For every t ∈ (ti, si], i=1,2,...,m, we get
‖Γun(t)− Γu(t)‖ ≤ Lgi‖un − u‖

Case 3. For each t ∈ (si, ti+1], i=1,2,...,m, we get

‖Γun(t)− Γu(t)‖ ≤ M̃SLgi‖un − u‖+
εTαM̃T

α
ε > 0, ε→ 0(n→∞)

for every t ∈ (si, ti+1].
Thus

lim
n→∞

‖Γun − Γu‖ = 0

Which implies that the mapping Γ is continuous on PC([0, a];X).

Secondly, we claim that ΓW ⊆ W . It suffices to prove that for any r > 0 there exists γ > 0 such that
‖Γu‖ ≤ γ for each u ∈W ⊆ PC([0, a];X), we have
Case 1. Now, for every t ∈ [0, t1], we get

‖Γu(t)‖ ≤ ‖Sα(t)‖‖u0 − k(u)‖+

∫ t

0
‖Tα(t− θ)‖‖f(θ, u(θ), Gu(θ)‖dθ

≤ M̃S [‖u0‖+ (c‖u‖+ d)] +
TαM̃T

α
mf (θ)Wf (r + w)

≤ M̃S [‖u0‖+ (cr + d)] +
TαM̃T

α
mf (θ)Wf (r + w)

Case 2. For every t ∈ (ti, si], i=1,2,...,m, we have

‖Γu(t)‖ ≤ ‖gi(si, u(si))‖
≤Mi

Case 3. For each t ∈ (si, ti+1], i=1,2,...,m, we get

‖Γu(t)‖ ≤ ‖Sα(t− si)‖‖gi(si, u(si))‖+

∫ t

si

‖Tα(t− θ)‖‖f(θ, u(θ), Gu(θ)‖dθ

≤ M̃SMi +
TαM̃T

α
mf (θ)Wf (r + w)

From the above, we obtain for t ∈ [0, a],

‖Γu(t)‖ ≤ M̃S [‖u0‖+ (cr + d) +Mi] +
TαM̃T

α
mf (θ)Wf (r + w)

≤ γ

which implies that Γ : W →W is a bounded operator.
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Now according to Lemma 1, it remains to prove that Q is a β- contraction in W . By using condition
(H1) and (H3), we get
Case 1. For every t ∈ [0, t1], we have

Γu(t) = Sα(t)[u0 − k(u)] +

∫ t

0
Tα(t− θ)f(θ, u(θ), Gu(θ))dθ

(Γu)(t) = (Γ1u)(t) + (Γ2u)(t) with

(Γ1u)(t) = Sα(t)[u0 − k(u)]

(Γ2u)(t) =

∫ t

0
Tα(t− θ)f(θ, u(θ), Gu(θ))dθ

‖(Γ1u)(t)− (Γ1v)(t)‖ = supt∈[0,t1]‖Sα(t)[k(u)− k(v)]‖

≤ M̃S c‖u− v‖PC

Thus, by Lemma 1, we obtain that β(Γ1W ) ≤ M̃Scβ(W ).

Now we prove that Γ2 : W → PC([0, a];X) is a compact operator by using Arzela-Ascoli’s theorem.
From this, we conclude that Γ2 is compact. Thus β(Γ2W ) = 0.
Case 2. For every t ∈ (ti, si], i=1,2,...,m, we get

‖(Γu)(t)− (Γv)(t)‖ ≤ ‖gi(si, u(si))− gi(si, v(si))‖
≤ Lgi‖u− v‖

Thus, by Lemma 1, we obtain that β(ΓW ) ≤ Lgi β(W ).
Case 3. For each t ∈ (si, ti+1], i = 1, 2, ...,m, we get

(Γu)(t) = Sα(t− si)gi(si, u(si)) +

∫ t

si

Tα(t− θ)f(θ, u(θ), Gu(θ))dθ

(Γu)(t) = (Γ1u)(t) + (Γ2u)(t) with

(Γ1u)(t) = Sα(t− si)gi(si, u(si))

(Γ2u)(t) =

∫ t

si

Tα(t− θ)f(θ, u(θ), Gu(θ))dθ

‖(Γ1u)(t)− (Γ1v)(t)‖ ≤ ‖Sα(t− si)‖‖gi(si, u(si))− gi(si, v(si))‖

≤ M̃S Lgi‖u− v‖PC

Thus, by Lemma 1, we obtain that β(Γ1W ) ≤ M̃S Lgi β(W ).

Now we prove that Γ2 : W → PC([0, a];X) is a compact operator by using Arzela-Ascoli’s theorem.
From this, we conclude that Γ2 is compact. Thus β(Γ2W ) = 0.

From the above, we obtain for t ∈ [0, a],

β(ΓW ) ≤ M̃S [c+ Lgi ] β(W )

Since the condition (3.3), M̃S [c + Lgi ] < 1, the mapping Γ is an β− contraction in W . By Darbo-
Sadovskii’s fixed point theorem, the operator Γ has a fixed point in W , which is the integral solution of the
nonlocal impulsive problem(1.1)− (1.3).
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Theorem 5. Asssume the hypotheses (H1) - (H5) are full filled, then the system (1.1) − (1.3) has at least
one mild solution provided that

Z∗ = Mi + 2
TαM̃T

α
(1 + k)ζ∗ < 1. (3.5)

Proof. Define operator Γ : PC(X)→ PC(X) by

Γu(t) =


Sα(t)[u0 − k(u)] +

∫ t
0 Tα(t− θ)f(θ, u(θ), Gu(θ))dθ, t ∈ [0, t1],

gi(t, u(t)), t ∈ (ti.si], i = 1, 2, ....,m,

Sα(t− si)gi(si, u(si)) +
∫ t
si
Tα(t− θ)f(θ, u(θ), Gu(θ))dθ,

t ∈ (si, ti+1], i = 0, 1, .....,m

(3.6)

Here Γ is well defined on PC([0, a], X) and shows that the operator Γ satisfied the hypotheses of Theorem
1. The proof consists of following steps.
Step 1. Γ is continuous

Let {un} be a sequence in PC(X) such that un → u in PC(X). Then f(s, un(s), Gun(s))→ f(s, u(s), Gu(s))
as n→∞.
Case 1. Now, for every t ∈ [0, t1], we have

‖Γun(t)− Γu(t)‖ ≤ M̃S‖k(un)− k(u)‖+
εTαM̃T

α
, ε > 0, ε→ 0(n→∞).

Case 2. Now, for every t ∈ (ti, si],i = 1, 2, ...,m, we get
‖Γun(t)− Γu(t)‖ ≤ Lgi‖un − u‖.

Case 3. Now, for each t ∈ (si, ti+1], i = 1, 2, ...,m, we get

‖Γun(t)− Γu(t)‖ ≤ M̃SLgi‖un − u‖+
εTαM̃T

α
, ε > 0, ε→ 0(n→∞)

for every t ∈ (si, ti+1]
Thus

lim
n→∞

‖Γun − Γu‖ = 0.

Step 2. Γ(W ) is equicontinuous where W is defined by (3.2)
Case 1. For all τ1, τ2 ∈ [0, t1] and for each Γ ∈W (u) with τ1 < τ2, by ‖Sα(t)‖ ≤Meµt, we have

‖(Γu)(τ2)− (Γu)(τ1)‖ ≤M [‖u0‖+ (cr + d)]|eµτ2 − eµτ1 |

+mf (θ)Wf (r + w)M̃T

(∫ τ2

0
(τ2 − θ)α−1dθ −

∫ τ1

0
(τ2 − θ)α−1dθ

)
≤M [‖u0‖+ (cr + d)]|eµτ2 − eµτ1 |+

mf (θ)Wf (r + w)M̃T

(
τα2 − τα1

)
α

Case 2. For every τ1, τ2 ∈ (ti, si], i=1,2,...,m, we have

‖(Γu)(τ2)− (Γu)(τ1)‖ ≤ Lgi‖u(τ2)− u(τ1)‖

Case 3. For each τ1, τ2 ∈ (si, ti+1], i=1,2,...,m, we get

‖(Γu)(τ2)− (Γu)(τ1)‖ ≤MLgi |eµτ2 − eµτ1 |+
mf (θ)Wf (r + w)M̃T

(
τα2 − τα1

)
α



K. Malar , A. Anguraj, Results in Nonlinear Anal. 2 (2019), 169–181 178

From the above, we obtain for t ∈ [0, a],

lim
τ1→τ2

‖(Γu)(τ2)− (Γu)(τ1)‖ = 0

So, Γ(W ) is equicontinuous.
Step 3. Suppose that Q ⊆ W is countable and Q ⊆ conv

(
{0} ∪ Γ(Q)

)
. We show that β(Q) = 0 where β

is the Hausdorff measure of noncompactness. Without loss of generality, we may assume that Q = {un}∞n=1

and we can easily verify that Q is bounded and equicontinuous.

Now we need to show that ΓQ(t) is relatively compact in X for each t ∈ [0, a].
Case 1. For each t ∈ [0, t1], we get

β
(
{Γun}∞n=1

)
≤ β

({∫ t

0
Tα(t− θ)f(θ, u(θ), Gu(θ))dθ

}∞
n=1

)
≤ 2

TαM̃T

α

∫ t

0
β
(
f(θ, {un(θ)}∞n=1, G{un(θ)}∞n=1

)
dθ

≤ 2
TαM̃T

α

∫ t

0
η(θ)

(
β
(
{un(θ)}∞n=1

)
+ β

(
G{un(θ)}∞n=1

))
dθ

≤ 2
TαM̃T

α

∫ t

0
η(θ)

((
β(Q(θ))

)
+ k
(
β(Q(θ))

))
dθ

≤ 2
TαM̃T

α
(1 + k)

∫ t

0
η(s)ds

(
β(Q(s))

)
That is

βPC
(
ΓQ
)
≤ 2

TαM̃T

α
(1 + k)ζ∗

(
βPC(Q(s))

)
Case 2. For each t ∈ (ti, si], i=1,2,...,m, we have

β
(
{Γun}∞n=1

)
≤ β(gi(si, u(si)))

≤Mi

(
β{un(si)}∞n=1

)
That is

βPC(ΓQ) ≤Mi

(
βPC(Q(s))

)
Case 3. Now, for each t ∈ (si, ti+1], i=1,2,...,m, we get

β
(
{Γun}∞n=1

)
≤ β

({∫ t

si

Tα(t− θ)f(θ, u(θ), Gu(θ))dθ
}∞
n=1

)
≤ 2

TαM̃T

α

∫ t

si

β
(
f(θ, {un(θ)}∞n=1, G{un(θ)}∞n=1

)
dθ

≤ 2
TαM̃T

α

∫ t

si

η(θ)
(
β
(
{un(θ)}∞n=1

)
+ β

(
G{un(θ)}∞n=1

))
dθ

≤ 2
TαM̃T

α

∫ t

si

η(θ)
((
β(Q(θ))

)
+ k
(
β(Q(θ))

))
dθ

≤ 2
TαM̃T

α
(1 + k)

∫ t

si

η(s)ds
(
β(Q(s))

)
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That is

βPC
(
ΓQ
)
≤ 2

TαM̃T

α
(1 + k)ζ∗

(
βPC(Q(s))

)
From the above, we obtain for t ∈ [0, a],

βPC
(
ΓQ
)
≤
(
Mi + 2

TαM̃T

α
(1 + k)ζ∗

)
βPC(Q)

That is, βPC
(
ΓQ
)
≤ Z∗β(Q) , where Z∗ is defined by condition (3.5).

Thus from Mönch condition,we get

βPC(Q) ≤ βPC
(
conv{0} ∪ Γ(Q)

)
= βPC(Γ(Q)) ≤ Z∗βPC(Q) which implies that βPC(Q) = 0.

Hence using Theorem 1, Γ has a fixed point u in W . Which is a mild solution of (1.1) − (1.3). This
completes the proof.

Example 1. Consider a nonlocal problem of fractional impulsive integrodifferential equations given by

∂αu(t, w)

∂t
=
∂2u(t, w)

∂w2
− µu(t, w) +

∫ t

0
h(t, s, u(s, w))ds+ F (t, u(t, w)), (3.7)

(t, w) ∈ ∪mi=1[si, ti+1]× [0, π],

u(t, 0) = u(t, π) = 0, t ∈ [0, a], (3.8)

u(0, w) +

m∑
j=1

cju(tj , w) = u0(w), w ∈ [0, π], (3.9)

u(t, w) = Gi(t, u(t, w)), w ∈ [0, π], t ∈ (ti, si], (3.10)

with 0 = t0 = s0 < t1 ≤ s1 ≤ t2 < ..... < tm ≤ sm ≤ tm+1 = a are fixed real numbers, and u0 ∈ X, F ∈
C([0, b]×R;R) and Gi ∈ C((ti, si]×R;R) for all i = 1, ...,m.

Let X = L2([0, π], R) and the operator A defined on X by Ax = x′′ − vx,
(v > 0) with the domain D(A) = {x ∈ X : x′′ ∈ X,x(0) = x(π) = 0}. It is well known that ∆x = x′′ is the
infinitesimal generator of a non-compact semigroup {T (t)}t≥0 on X and β(T (t)D) ≤ β(D), where β is the
Hausdorff measure of non compactness. Hence A is sectorial of type µ = −v < 0.

To represent the problem (3.7)− (3.10) in the abstract form (1.1)− (1.3), we assume that
(i) f : [0, a]×X → X defined by f(t, x)(w) =

∫ t
0 h(t, s, x(w))ds+ F (t, x(w)), for t ∈ [0, a], w ∈ [0, π].

(ii) k : PC([0, a];X) → X is continuous function defined by k(u)(w) = u0(w) −
∑m

i=1 cju(tj)(w), t ∈
[0, b], w ∈ [0, π], where u(t)(w) = u(t, w), t ≥ 0, w ∈ [0, π].

(iii) gi : (ti, si]×X → X defined by gi(t, x)(w) = Gi(t, x(w)).

Now, we say that u ∈ PC(X) is a mild solution of (3.7)−(3.10) if u(.) is a mild solution of the associated
abstract problem (1.1)− (1.3).

Conclusion 1. We studied a new class of fractional integrodifferential systems with interval impulses in
Banach spaces. More precisely, by using Sectorial operator, Darbo-sadovskii and Mönch fixed point theo-
rems combined with the Hausdorff measure of noncompactness techniques, we investigated the existence of
mild solutions of the impulsive fractional integrodifferential equations. Finally, an application is provided to
illustrate the applicability of the new results.
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