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ON WEAK BIHARMONIC GENERALIZED ROTATIONAL

SURFACE IN E4

M. HARMANLI, K. ARSLAN, AND B. BULCA

Abstract. In the present paper we consider weak biharmonic rotational sur-

faces in Euclidean 4-space E4. We have proved that the general rotational
surface of parallel mean curvature vector field is weak biharmonic then ei-

ther it is minimal or a constant mean curvature. Further, we show that if

Vranceanu surface of constant mean curvature is weak-biharmonic then it is a
Clifford torus in E4.

1. Introduction

The biharmonic submanifolds, i.e., the submanifolds satisfying the condition

∆
−→
H = 0 have been investigated in [15], [13], [14] and [18]. It is known that in

many cases they reduce to minimal submanifolds, but in pseudo-Euclidean spaces
they do not (see [9]). Further, biharmonic hypersurfaces in Riemannian manifolds
considered by Y-L, Ou in [23]. For spherical case see also [6]. Recently, the re-
searchers considered biharmonic submanifolds in different ambient spaces [2] and
[20]. See also [24] for some recent progress of biharmonic submanifolds. The proper-
biharmonic (i.e. non-harmonic) submanifolds of a real space form were extensively
studied in [3], [4] and [8].

There is another possibility to introduce ∆D−→H by means of the normal curvature
∆, and to define the submanifolds with harmonic mean curvature vector (or shortly

weak biharmonic submanifolds), as those satisfying ∆D−→H = 0. The submanifold is
said to be 2−parallel if the third fundamental form α3 = ∇h of M is parallel, i.e.,
∇α3 = 0 holds identically. The first results about 2−parallel submanifolds were
obtained for curves in Em. In [5] all curves with harmonic mean curvature vector
in Em are classified. In [19] the second named author and at all found some results
related with weak biharmonic submanifolds and 2−parallelity.

The rotational embeddings are introduced first by N.H. Kuiper in 1970 [21]. In
[10], Cole studied with the general theory of rotations 4−dimensional Euclidean
space in E4. Later, Moore considered the general rotational surface M in E4 [22].
However, the rotational surfaces in E4 with constant curvatures are studied in [26]
and [11]. A special case of Moore consideration is the general rotational surface (see,
[1], [16], [17] and [27]). Moreover, Vranceanu surface are the interesting examples
of general rotational surface in E4 [25].
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In the present paper we give the necessary and sufficient conditions for general
rotational surfaces to become weak biharmonic. Further, we obtain some results
for weak biharmonic Vranceanu surface. We also give some examples.

2. Preliminaries

In the present section we recall definitions and results of [7]. Let M be a
n−dimensional Euclidean submanifold of Em. Consider the orthonormal frame field
{e1, ..., en, en+1, ..., em} in Em such that e1, e2, ..., en, are tangent to the M and
en+1, en+2..., em normal to M. Then the Gaussian and Weingarten formulas are
given respectively by

(2.1) ∇̃eiej = ∇eiej + h(ei, ej); 1 ≤ i, j ≤ n,

(2.2) ∇̃eieα = −Aeαei +Deieα; n+ 1 ≤ α ≤ m,
where h is the second fundamental form, D is the normal connection and Aeα the
shape operator in the direction of eα.

The mean curvature vector field
−→
H of M is defined by

(2.3)
−→
H =

1

n

n∑
i=1

h(ei, ei).

The norm of the mean curvature vector α =
∥∥∥−→H∥∥∥ is called mean curvature

of M . Recall that a submanifold is said to be minimal if its mean curvature
vanishes identically. The submanifolds with constant mean curvature are called
CMC−submanifolds.

The Laplacian on the normal bundle of M is given by

(2.4) ∆D = −
n∑
i=1

(
DeiDei −D∇eiei

)
.

where D is the normal connection of M .

3. Weak Biharmonic Submanifolds in Euclidean Spaces

Let M be a n−dimensional smooth submanifold in m−dimensional Euclidean
space Em. For the local orthonormal frame field {e1, ..., en, en+1, ..., em} define

−→
H =

αen+1. We can compute the Laplacian of
−→
H with respect to the normal connection

D of M by

∆D−→H =

n∑
i=1

(
D∇eiei

−→
H −DeiDei

−→
H
)

=

n∑
i=1

(
D∇eiei (αen+1)−DeiDei (αen+1)

)
(3.1)

=

n∑
i=1

{
(∆α) en+1 + αD∇eieien+1 − 2ei [α]Deien+1 − αDeiDeien+1

}
.

Hence, multiplying both sides of equation (3.1) by en+1 one can get

(3.2)
〈

∆D−→H, en+1

〉
= ∆α+ α ‖Den+1‖2 .

We give the following well-known definitions;
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Definition 3.1. LetM be a n−dimensional smooth submanifold inm−dimensional
Euclidean space Em. If the condition

(3.3) D
−→
H = 0,

holds then the submanifold M is called H−parallel [7].

The complete classification of H−parallel surfaces in Euclidean m−space, m ≥ 4,
was obtained by [7] and Yau [28] in the following result;

Theorem 3.2. A surface M of a Euclidean m−space Em is H−parallel if and only
if it is one of the following surfaces:
i) a minimal surface of Em;
ii) a minimal surface of a hypersphere of Em;
iii) a surface of E3 with constant mean curvature;
iv) a surface of constant mean curvature lying in a hypersphere of an affine

4−subspace of Em.

Definition 3.3. LetM be a n−dimensional smooth submanifold inm−dimensional
Euclidean space Em. If the condition

(3.4) ∆D−→H = 0,

holds then the submanifold M is said to have harmonic mean curvature vector field
[5]. These kind of submanifolds shortly called weak biharmonic [19].

We obtain the following result.

Theorem 3.4. Let M be a n-dimensional smooth CMC-submanifold in m-dimensional
Euclidean space Em. If M is weak biharmonic submanifold then either it is minimal
or a H−parallel submanifold of Em.

Proof. Suppose that M is a weak biharmonic submanifolds of Em then from the
equation (3.2)

∆α+ α ‖Den+1‖2 = 0,

holds. Since the mean curvature is a constant function on M then ∆α = 0 implies
α ‖Den+1‖ = 0. Consequently, we have two possible cases; α = 0, or ‖Den+1‖ = 0
and α 6= 0. In the first case M is a minimal submanifold. Further, substituting−→
H = αen+1 into the second condition one can show that M is H−parallel. This
completes the proof of the theorem. �

4. Weak Biharmonic General Rotational Surfaces in E4

Let M be a general rotational surface in E4 given with the parametrization

(4.1) x(u, v) = (f(u) cos cv, f(u) sin cv, g(u) cos dv, g(u) sin dv) ,
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where γ(u) = (f(u), g(u)) is the meridian curve of the rotation. The orthonormal
frame field of M is given by

e1 =
∂

ψ(u)∂u
,

e2 =
∂

φ(u)∂v
,(4.2)

e3 =
1

ψ(u)
(g′(u) cos cv, g′(u) sin cv,−f ′(u) cos dv,−f ′(u) sin dv),

e4 =
1

φ(u)
(−dg(u) sin cv, dg(u) cos cv, cf(u) sin dv,−cf(u) cos dv).

where

(4.3)
ψ(u) =

√
(f ′(u))2 + (g′(u))2,

φ(u) =
√
c2f2(u) + d2g2(u).

With respect to this frame the Gaussian and Weingarten formulas (2.1)-(2.2) of
M look like

∇̃e1e1 =
κ

ψ3
e3,

∇̃e1e2 =
ρ

ψφ2
e4,(4.4)

∇̃e2e1 =
λ

ψφ2
e2 +

ρ

ψφ2
e4,

∇̃e2e2 = − λ

ψφ2
e1 +

β

ψφ2
e3,

and

∇̃e1e3 =
κ

ψ3
e1,

∇̃e1e4 = − ρ

ψφ2
e2,(4.5)

∇̃e2e3 = − β

ψφ2
e2 +

δ

ψφ2
e4,

∇̃e2e4 = − ρ

ψφ2
e1 −

δ

ψφ2
e3.

where

κ = f ′′g′ − f ′g′′,
λ = c2ff ′ + d2gg′,

β = c2f ′g − d2fg′,(4.6)

ρ = cd (f ′g − fg′) ,
δ = cd (ff ′ + gg′)

are the smooth functions on M .
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Consequently, by the use of (4.4) we obtain the shape operator matrices as
follows;

Ae3 =

(
κ
ψ3 0

0 β
ψφ2

)

Ae4 =

(
0 ρ

ψφ2

ρ
ψφ2 0

)
.

So, the Gaussian curvature and mean curvature vector of M are given by

(4.7)
K = det (Ae3) + det (Ae4)

= 1
ψ2φ2

(
κβ − ρ2

φ2

)
.

(4.8)

−→
H = 1

2 (tr (Ae3) e3 + tr (Ae4) e4)

= 1
2ψ

(
κ
ψ2 + β

φ2

)
e3,

respectively. So, we get

α =
∥∥∥−→H∥∥∥ =

φ2κ+ ψ2β

2ψ3φ2
.

Definition 4.1. The normal curvature of the surface M ⊂ Em is defined by

(4.9) KN =


m−2∑

1=α<β

〈
R⊥(e1, e2)Nβ , Nα

〉2
1
2

,

(see,[12]), where R⊥ is the curvature tensor of the normal bundle of M defined by

R⊥(e1, e2)Nβ = h(e1, ANβe2)− h(e2, ANβe1).

The normal curvature of the general rotational surface M is given by

KN = h312(h422h
4
11) + h412(h322h

3
11)

=
ρ

ψ2φ2

(
κ

ψ2
− β

φ2

)
.

We have the following well-known result.

Proposition 1. [16] Let M be a generalized rotational surface given with the
parametrization (4.1). If M is a minimal surface with vanishing normal curvature
then it is a part of the plane with the parametrization

(4.10) x(u, v) = (ucosv, usinv, c0ucosv, εc0usinv), u > 0, ε =
c

d
= ±1.

We obtain the following results;

Theorem 4.2. Let M be a generalized rotational surface given with the parametriza-
tion (4.1). If M is H−parallel then either it is minimal or a CMC−surface given
with the parametrization

(4.11) x(u, v) =

(
r0 cos

(
u

r0

)
cos cv, r0 cos

(
u

r0

)
sin cv, r0 sin

(
u

r0

)
cos dv, r0 sin

(
u

r0

)
sin dv

)
which is a minimal surface in S3(r0) ⊂ R4.
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Proof. Differentiating (4.8) with respect to e1, e2 and using (4.5) a straight-forward
computation gives

(4.12)
De1

−→
H = α′

ψ e3

De2

−→
H = αδ

ψφ2 e4.

Assume that M is a H−parallel surface then (4.12) implies that either α = 0 or
α′ = 0 and δ = 0. For the first case M is minimal surface satisfying

φ2κ+ ψ2β = 0,

where φ, ψ, κ and β are smooth functions defined in (4.3) and (4.6). For the second
case M is a CMC−surface satisfying ff ′ + gg′ = 0, i.e., f2 + g2 = a2, where a
is a positive real number. Hence, the meridian curve γ is an open part of a circle
parametrized by

γ(u) =
(
a cos

(u
a

)
, a sin

(u
a

))
(see,[16], pp. 77). Therefore, M is an open part of the surface given by (4.11). �

Similarly, Differentiating (4.12) with respect to e1, e2 and using (4.5) we obtain

(4.13)
De1De1

−→
H = 1

ψ

(
α′

ψ

)′
e3

De2De2

−→
H = −α

(
δ
ψφ2

)2
e3

and

(4.14)

D∇e1e1
−→
H = 0

D∇e2e2
−→
H = − λ

ψφ2De1

−→
H

= − λα′

ψ2φ2 e3.

The Laplacian of the mean curvature vector can be expressed as

(4.15) ∆D−→H = D∇e1e1H +D∇e2e2H −De1De1H −De2De2H.

So, substituting (4.13) and (4.14) into (4.15) we obtain the Laplacian of the mean

curvature vector
−→
H as follows

(4.16) ∆D−→H =

αδ
2 + φ2α′

(
φ2ψ′

ψ − λ
)
− α′′φ4

ψ2φ4

 e3

We obtain the following results.

Theorem 4.3. Let M be a generalized rotational surface given with the parametriza-
tion (4.1). Then M is weak biharmonic if and only if

(4.17) αδ2 + φ2α′
(
φ2ψ′

ψ
− λ
)
− α′′φ4 = 0,

holds, where α is the mean curvature and δ, ψ, λ are the smooth functions on M
defined as before.

Corollary 4.4. Let M be a generalized rotational surface of constant mean curva-
ture. If M is weak biharmonic then either it is minimal or a CMC−surface given
with the parametrization (4.11).
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Proof. Let M be a generalized rotational surface of constant mean curvature. If
M is weak biharmonic then by (4.17) αδ2 = 0. So we have the possibilities; α = 0
or ff ′ + gg′ = 0. These imply that either M is minimal or a CMC−surface given
with the parametrization (4.11). �

Definition 4.5. The Vranceanu surface in E4 is defined by the following parametriza-
tion;

(4.18) f(u) = r(u) cosu, g(u) = r(u) sinu, a = b = 1,

where r(u) is a real valued non-zero function [25]. If r(u) is a real constant then
the Vranceanu surface turns into a Clifford torus i.e., it is the product of two plane
circles with the same radius (see, [27]).

For Vranceanu surface one can get the following results;

Proposition 2. Let M be a Vranceanu surface in E4 given with the parametriza-
tion (4.18). Then the Gaussian curvature and mean curvature vector of M are
given by

(4.19) K = KN =
(r′)2 − rr′′

(r2 + (r′)2)
2

and

(4.20)
−→
H =

rr′′ − 3(r′)2 − 2r2

2 (r2 + (r′)2)
3/2

e3.

respectively.

Proposition 3. Let M be a Vranceanu surface given with the parametrization
(4.18). Then the Laplacian of the mean curvature vector is given by

(4.21) ∆D−→H =
{
η2ϕ2α− η (η′ + ηϕ)α′ − η2α′′

}
e3

where

(4.22) η =
1√

r2 + (r′)2
, ϕ =

r′

r

are smooth functions on M .

Corollary 4.6. Let M be a Vranceanu rotational surface of constant mean curva-
ture. If M is weak biharmonic then it is a Clifford torus in E4.

5. Conclusion

Harmonic surfaces are one of the important subject in differential geometry.
They are the generalization of minimal surfaces. Recently, weak biharmonic sur-
faces are considered with some researchers. In the present study we consider general
rotational surfaces in E4 satisfying the weak biharmonic condition. We also give
some results related with Vranceanu surfaces in E4. It is possible to consider other
kind of surfaces in higher dimensional Euclidean spaces satisfying weak biharmonic
property.
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