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1. INTRODUCTION
Recently, due to the need for both high strength and heat 
resistant materials, scientists began to work on different 
materials structures. The idea of functionally grading the 
thermomechanical properties of particulate composites 
was first introduced and developed by a group of materials 
scientists working on materials in Japan [1,2]. In this con-
text, the functionally graded materials (FGMs) [3] are obta-
ined by forming different types of materials according to a 
certain rule. These materials are generally considered to be a 
model that varies continuously from one surface to another. 
They can be produced in a macroscopic way, both in resis-
tance to high temperature environments and in optimizing 
the stress and displacement of the material. FGMs can be 
used in many areas, such as in nuclear field, space field, me-
dical field, energy field, etc.

The stress analysis of the functional graded thick hollow cylin-
der and sphere have been investigated deeply in the literatu-
re. Horgan and Chan [4] investigated the effects of functi-
onally graded circular cylinders and disks on displacement 
and stresses under uniform internal and external pressure. 
The exact analysis of the functionally graded cylindrical and 
spherical vessels under the plane-strain assumption with 
radially graded elastic modulus are readily available [5, 6]. 
Using the infinitesimal theory of elasticity, Yarımpabuç et.al. 

[7-9] investigated the effect of the both Young’s modulus 
and Poisson’s ratio that are graded radially on the FG vessels 
numerically. There are many other studies on these subje-
cts, e.g., [10-20], where an additional reference can also be 
found.

Dai et.al. [21], presented the magnetoelastic behavior of the 
functionally graded cylindrical and spherical vessels under 
the effect of uniform magnetic field with radially graded 
elastic modulus and magnetic permeability by using the infi-
nitesimal theory of magnetoelasticity. Dai et.al. [22], presen-
ted the exact analysis of the functionally graded cylindrical 
and spherical structures, subjected to mechanical loading 
and electric excitation with radially graded mechanical, pie-
zoelectric and dielectric properties by using the axisymmet-
ric plain strain assumption.

In this study, the stress analysis of functionally graded thick 
hollow cylindrical and spherical vessels subjected to an in-
ternal pressure under the effect of uniform magnetic field are 
numerically handled by both the Complementary Function 
Method (CFM), [23, 24] and the Pseudospectral Chebyshev 
Method (PCM), [25, 26]. It is assumed that the pressure ves-
sels are composed of ceramic and metal, alternating expo-
nentially through the radial direction. In addition, magnetic 
permeability is also changed in the same way. These con-
ditions produce a linear ordinary differential equation that 
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may not be solved analytically with conventional methods 
except for some simple grading functions. Therefore, nume-
rical solution is essential. The results of stresses and displa-
cement distributions are discussed for two different mixture 
with two different approach. The mixture of the materials is 
chosen in such a way that the Poisson’s ratio in one does not 
change, while in the other there is a slight difference. The 
results obtained from the study of Dai et.al.[21] are used for 
validation purposes. The stress and displacement distributi-
ons under the effects of two different mixture materials and 
uniform magnetic field that are both grading exponentially 
are shown in graphical form.

2. THE FORMULATION OF PRESSURE VESSELS
The stress analysis of functionally graded thick cylindrical 
and spherical vessels subjected to an internal pressure under 
the effect of uniform magnetic field are discussed numeri-
cally. The inner and outer radius of the thick-hollow bodies 
are taken as  and  respectively. The cross-section of the func-
tionally graded body is shown in Figure 1. It is assumed that 
these bodies are made from a mixture of metal and ceramic 
and the all material properties and magnetic permeability 
are graded exponentially in radial direction as:

E r E ei
r a= b -^ ^h h  (2.1.a)

v r v ei
r a= c -^ ^h h  (2.1.b)

( )µ µr e ( )
i

w r a= -  (2.1.c)

Here , ,E v n  and , ,E vi i in^ h  are the modulus of elasticity, 
Poisson’s ratio, magnetic permeability and material cons-
tants in the inner boundary, respectively. The constants 
, ,wb c^ h  indicate the inhomogeneity parameters and can 

be calculated from the following relations:
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where , ,E v0 0 0n^ h  are the material constants in the outer 
boundary. The subscripts "i" and "0" show the material pro-
perties of the inner and outer boundary. It is supposed that 
the thick hollow bodies have a pressure only on its inner 
surface, so the boundary conditions for the radial stress are:

,r a P r b 0v v= =- = =^ ^h h  (2.3)

Here, rv  is radial stress of the bodies and P is the pressure 
in the inner surface. 

3. CYLINDRICAL VESSELS
Functionally graded infinitely long hollow cylinder made 
from a mixture of metal and ceramic under the effect of a 
uniform magnetic field , ,HH 0 0 z^ h  is considered. Under 
the axisymmetric plain strain assumption, the stress-strain 
and strain-displacement equations in cylindrical coordinate  
, ,r zi^ h can be written as follow:

C r C rr r11 12v f f= + i^ ^h h  (3.1a)

C r C r r11 12v f f= +i i^ ^h h  (3.1b)
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The equilibrium equation for cylindrical pressure vessel un-
der the effect uniform magnetic field:

dr
d

r f 0r r
z

v v v
+

-
+ =i  (3.2)

where fz is the Lorentz’s force derived from electrodynamic 
Maxwell equations [21] and defined as
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Here , , , , , ,uH Jr rv v f fi i  correspond to radial and circum-
ferential stresses, radial and circumferential strain, magnetic 
intensity vector, electric current density vector and displace-
ment in radial direction, respectively. Substituting Eqs. (3.1) 
and material properties (2.1) into the governing equation 
(3.2), yields the following linear ordinary differential equati-
on in terms of displacement:

u Q r u R r u 0c cm l+ + =^ ^h h  (3.4)

where

with, .v r v r v r1 1 21 = + -^ ^ ^ ^ ^h hh hh  The boundary 
conditions in terms of displacement, derived from radial 
stress-strain relation (3.1a) and boundary conditions (2.3), 
can be written as

C r u C r r
u P

r a
11 12l + =-

=
^ ^h h8 B  (3.5a)

Figure 1. The cross-section of the FG 
pressure vessel subjected to internal 
pressure (P) and uniform magnetic 

field (H)
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4. SPHERICAL VESSELS
Functionally graded hollow sphere made from a mixture of 
metal and ceramic under the effect of a uniform magnetic 
field , ,HH 0 0 z^ h  is considered. The stress-strain equations 
in spherical coordinate , ,r i {^ h can be written as follow:

C r C r2r r11 12v f f= + i^ ^h h  (4.1a)

C r C r C r r11 12 12v f f= + +i i^ ^ ^h h h6 @  (4.1b)

The equilibrium equation for spherical pressure vessel un-
der the effect uniform magnetic field:

dr
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where f]  is the Lorentz’s force derived from electrodynamic 
Maxwell equations [21] and defined as
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Substituting Eqs. (4.1), (3.1c) and (4.3) into the governing 
equation (4.2), yields the following linear ordinary differen-
tial equation in terms of displacement:

u Q r u R r u 0s sm l+ + =^ ^h h  (4.4)

Where

The boundary conditions in terms of displacement, derived 
from radial stress-strain relation (3.1a) and boundary condi-
tions (2.3), can be written as
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5. SOLUTION PROCEDURE
The solution of these differential equations ((3.4), (4.4)) are 
handled by both the Complementary Function Method 
(CFM) and the Pseudospectral Chebyshev Method (PCM). 
The former is solved the boundary value problem (BVP) in 
two steps: first the BVP is converted to system of initial va-
lue problem (IVP) and then solved any convenient method. 
The accuracy of this method is depend on the method used 
to solve IVP. For small mesh size it gives good results. The 
latter method only needs a good decompositions method 
for solving linear algebraic system. Although it results in 
spectral accuracy, in the need of big mesh size the accuracy 
slows down due the full differential matrix.

5.1 Complementary Functions Method (CFM)
The CFM is a method that allows the boundary value prob-
lem to be solved by converting it into an easily solvable 

system of initial value problem Fourth order Runge-Kutta 
method (RK4) is utilized to solve the system of initial value 
problems of concern. The detailed solution procedure of the 
CFM can be followed from the study of Tutuncu and Temel 
[23, 24].

The second order boundary value problem (3.4) can simply 
be converted by a simple change of variables y uc1 =  and 
y uc2 l=  to a system of two first order ordinary differential 
equation:

, ,Y Rhs r y y1 2l = ^ h  (5.1.1)
where

, , ,Y
y
y

Rhs r y y
y

Q r y R r yc c

1

2
1 2

2

2 1

= =
-

^ ^ ^ ^h h h h= =G G
This system (5.1.1) is solved by selecting any dummy initial 
condition to ensure linear independence. Assuming that the 
complete solution of the second order boundary value prob-
lem is as follows:

, ,u b u j 1 2c j cj= =  (5.1.2)

the coefficients , ,b j 1 2j =  are calculated from the boun-
dary conditions (3.5). Note that by using CFM both the so-
lution u rc^ ^ hh  and its derivative u rc l^ ^ h h  are calculated at 
the same time.

The same solution procedure is followed for the solution of 
the spherical vessel.

5.2 Pseudospectral Chebyshev Method (PCM)
The Pseudospectral Chebyshev method [25, 26] is based on 
the differential matrix approach and converts the differential 
equation into a system of linear equations. After that, the 
linear system can be solved by any decomposition method 
to achieve the desired accuracy.

The PCM is based on Chebyshev polynomials of the first 
kind, see, e.g., [25, 26]. The first order ( ) ( )N N1 1#+ +  
Chebyshev differentiation matrix associated with the Che-
byshev-Gauss-Lobatto collocation points

0 10 ... ,Nr r r= < <  with 
cos( / ), 0,1,...,jr j N j Nπ= =

will be denoted by D. First-order Chebyshev diffe-
rentiation matrix (D) provides highly accurate ap-
proximation to , , ,u r u rj jl m f^ ^h h  simply by multip-
licating differential matrix with corresponding data 
vector , ,u r Du u r D uj j j j

2l m= =^ ^ ^ ^h h h h  suchlike that 
, ,u u un

T
0 f= 6 @  discrete vector data at positions rj . 

The computation procedure of the Chebyshev differentiati-
on matrix and codes as an m-file can be found in a notable 
references, see, e.g., Trefethen [26], where the collocation 
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points rj  are numbered from right to left and defined in 
[-1,1]. With a small adaptation, the m-file of the differentia-
tion matrix D can be transcribed to any desired range [a,b].

Efficiency, accuracy and the ease of implementation of the 
method are explained in detail in the study of Trefethen [26]. 
Therefore, the second order boundary value problem (3.4) is 
simply converted into a linear system by using the PCM as 
follows:

u 0L =  (5.2.1)
where

M D Q r D R rs s
2= + +^ ^h h

After imposing the boundary conditions (3.5) to this linear 
system (5.2.1), non-trival solution is obtained for the cylind-
rical body.      

The same solution procedure is followed for the solution of 
the spherical vessel.

6. RESULTS AND DISCUSSIONS 
The stress analysis of functionally graded thick hollow cy-
lindrical and spherical vessels subjected to an internal pres-
sure P=50 MPa under the effect of uniform magnetic field 
are numerically handled by both the Complementary Fun-
ctions Method and the Pseudospectral Chebyshev Method. 
Inner and outer radius of the hollow bodies are a=0.6, b=1 
respectively. It is assumed that the all material properties of 
the vessels and magnetic permeability are graded exponen-
tially in radial direction. Two different mixture of ceramic 
and metal are used as a special material and the properties 
are given in Table 1. The corresponding inhomogeneity pa-
rameters for the two mixture are calculated from Eqs. (2.2) 
and monitored in Table 2. It is obvious that selecting the pa-
rameters 0b c ~= = =  results in homogeneous material 
that is pure metal. In this article, T Al V6 4i - -  and ZrO2  
will be expressed as the first material pair and Mullite and 
Molybdenum as the second material pair.

Table 1. Properties of Mixture (Ceramic-Metal)

Material E (GP a) ν
 ZrO2(Ceramic) 151 1/3

Ti-6Al-4V (Metal) 116.7 1/3

Mullite (Ceramic) 225 0.27

Molybdenum (Metal) 330 0.30

Firstly, grid refinement test is made to compare the methods 
and show the accuracy as the mesh size increase. The solu-
tions of a simple power-law grading function for only elastic 
modulus and magnetic permeability with fixed inhomoge-
neity parameters on the study of Dai et.al.  [21] are used. The 
results in the midpoint of thickness  for   are presented with 
PCM and CFM in Table 3 for cylindrical vessel and Table 4 
for spherical vessels.

Table 2. Inhomogeneity parameters for the two mixture

b c

0.6442 0

−0.9575    −0.2634 

Table 3. Grid refinement test of displacement in the midpoint of thick-

ness ( 0.8)r =  for FG cylindrical pressure vessel graded with a simple 
power law

N PCM CFM Analytic [21]

4
6
8

10
12
14
16
18
20

0.888395290
0.888192802 
0.888184239
0.888184001 
0.888183995
0.888183995
0.888183995 
0.888183995
0.888183995

0.888167625
0.888181260
0.888183197
0.888183685
0.888183851
0.888183919
0.888183952
0.888183968
0.888183978

0.888183995
0.888183995
0.888183995
0.888183995
0.888183995
0.888183995
0.888183995
0.888183995
0.888183995

In order to compare of PCM and CFM, Chebyshev-Ga-
uss-Lobatto collocation points, which are dense in the boun-
dary and coarse on the other part, are used in the analysis. 
MATLAB software are used in all calculation. It can be no-
ticed   form the Tables 3-4 that the results obtained with 
PCM are better than the CFM. Furthermore, PCM results 
are in a good agreement with analytical solution and have at 
least six-digit accuracy by picking only 11 collocation points 
(10 intervals). Therefore, 11 collocation points are used after 
this stage in all the other calculation made in this manusc-
ript. Additionally, the same analytic solutions of the displa-
cement are used to compare the PCM and CFM along the 
thickness for 11 collocation points. It can be noticed   form 
the Tables 5-6 that the results obtained along the thickness 
with PCM are better than the CFM. 

Table 4. Grid refinement test of displacement in the midpoint of thi-

ckness ( 0.8)r =  for FG spherical pressure vessel graded with a simple 
power law

N PCM CFM Analytic [21]

4
6
8

10
12
14
16
18
20

0.737408033
0.739161920
0.739205773
0.739206781
0.739206804
0.739206804
0.739206804
0.739206804
0.739206804

0.739588723
0.739274518
0.739227029
0.739214779
0.739210548
0.739208785
0.739207948
0.739207509
0.739207262

0.739206804
0.739206804
0.739206804
0.739206804
0.739206804
0.739206804
0.739206804
0.739206804
0.739206804

Table 5. Comparison of displacement through the thickness for functio-
nally graded cylindrical pressure vessel graded with a simple power law

r PCM CFM Analytic [21]

0.6000 1.000000000 1.000000000 1.000000000

0.6098 0.994015053 0.994015046 0.994015053

0.6382 0.976911255 0.976911216 0.976911253

0.6824 0.951136104 0.951135972 0.951136101

0.7382 0.920267918 0.920267665 0.920267913

0.8000 0.888184001 0.888183685 0.888183995

0.8618 0.858274209 0.858273890 0.858274202

0.9176 0.833049965 0.833049661 0.833049957

0.9618 0.814141670 0.814141375 0.814141662

0.9902 0.802490047 0.802489757 0.802490039

1.0000 0.798560219 0.798559930 0.798560211

In the absence of a magnetic field, the displacement and 
stress distributions of the functionally graded cylinder and 
sphere are shown in Figure 2 for the first material pair and 
Figure 3 for the second material pair. Two different material 
models are compared with different homogeneous materials 
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(dashed line). In the first mixture the homogeneous materi-
al  corresponds to the metal Ti-6Al-4V, while in the second 
mixture the homogeneous material  corresponds to the me-
tal molybdenum. According to the properties given in Table 
1, the elastic modulus of the metal in the first material pair 
is smaller than the second material pair. While the Poisson’s 
ratio is taken constant in the first mixture, both elastic mo-
dulus and Poisson’s ratio are taken variable in the second 
mixture. The displacements occurring in both the functio-
nally graded cylindrical and spherical pressure vessels ob-
tained from the first material mixture are lower than in the 
homogeneous material state (Figure 2(a-b)), while they are 
higher in the second material mixture (Figure 3(a-b)). It is 
observed that the radial stress occurs in the compression 
direction (Figure 2-3(c-d)), while the circumferential stress 

         
    (a)   (b)

          
    (c)   (d)

        
    (e)   (f )
Figure 2. In the absence of magnetic field, the comparison of the functionally graded cylindrical and spherical vessels with the homogeneous material 
for the first material pair (Poisson ratio constant). The figures in the left column are corresponding to the hollow cylinder and the right column to hollow 

sphere

Table 6. Comparison of displacement through the thickness for functio-
nally graded spherical pressure vessel graded with a simple power law

r PCM CFM Analytic [21]

0.6000 1.000000000 1.000000000 1.000000000

0.6098 0.982784793 0.982785091 0.982784795

0.6382 0.936154077 0.936155292 0.936154084

0.6824 0.872067323 0.872070469 0.872067336

0.7382 0.803290365 0.803296210 0.803290384

0.8000 0.739206781 0.739214779 0.739206804

0.8618 0.685015182 0.685024070 0.685015208

0.9176 0.642822554 0.642831428 0.642822582

0.9618 0.613039354 0.613047930 0.613039383

0.9902 0.595403517 0.595411856 0.595403546

1.0000 0.589572052 0.589580310 0.589572082
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occurs in the tensile direction (Figure 2-3(e-f )). In the se-
cond pair of materials, the radial stress remains relatively 
low than the homogeneous one (Figure 3(c-d)). For the first 
pair of materials, the circumferential stress of the graded 
material of both geometries is lower than the homogeneous 
one in the inner wall, but higher in the outer wall (Figure 
2(e-f )). The opposite is true for the second material pairs (Fi-
gure 3(e-f )).  In addition, it is seen that the analytical results 

obtained for the homogeneous material coincide with the 
numerical results in all conditions.

The displacement, radial and circumferential stress results 
are given for the different permeability coefficients under the 
influence of internal pressure and uniform magnetic field  in 
cylindrical and spherical geometry for two different materi-
al pairs (Figure 4). The solid line indicates the first material 

   
       (a)      (b)

   
       (c)     (d)

     (e)      (f )

Figure 3. In the absence of magnetic field, the comparison of the functionally graded cylindrical and spherical vessels with the homogeneous material 
for the second material pair. The figures in the left column are corresponding to the hollow cylinder and the right column to hollow sphere
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pair, while the dashed line indicates the second material pair. 
The ellipses on the figures are used to show two material 
pairs for different permeability coefficients. In Figure 4(a-b), 
it is seen that the displacements reach larger values   in the 
inner wall for both geometries. The displacements increa-
se with increasing permeability coefficient, which is more 
obvious for the first material pair. In the second pair of ma-

terials, minus the permeability coefficient ensures that the 
displacements remain both lower and similar along the wall. 
For all geometries and conditions, the radial stress occurs 
in the compression direction (Figure 4(c-d)). The negative 
magnetic permeability coefficient keeps radial stresses at 
low values, but its effect is not as determinative as in displa-
cements. It is observed that spherical geometries are not sig-

   
       (a)      (b)

   
       (c)     (d)

   
     (e)      (f )

Figure 4. The effect of magnetic permeability on displacement and stresses in a functionally graded cylindrical and spherical vessels under the effect 
of uniform magnetic field. First material pair is shown with solid line and second material pair with dashed line. The figures in the left column are cor-

responding to the hollow cylinder and the right column to hollow sphere.
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nificantly affected by the change in permeability coefficient 
(Figure 4(d)). The amount of circumferential stress occur-
ring in tensile direction from the inner wall to the outer wall 
in the second pair of materials is higher than the first pair of 
materials (Figure 4(e-f )). For example, for the second mate-
rial pair (w = 1.5), the circumferential tensile strength ratio 
between the inner wall and the outer wall in the cylinder 
geometry is greater than twice, whereas in the first material 
pair this difference is less than 1.5 times. This is proporti-
onal to the magnitude of the elastic modulus values   of the 
material pairs. When the stress distributions are examined, 
it can be concluded that the permeability coefficient is more 
effective in controlling circumferential stress as opposed to 
radial stress. In order to keep the circumferential stress dist-
ribution along the wall at the lowest possible value and close 
to the constant, it would be more appropriate to prefer the 
first pair of materials with minus permeability coefficient in 
both geometries.

7. CONCLUSIONS
In this research, the stress analysis of functionally graded 
thick hollow cylindrical and spherical vessels subjected to 
an internal pressure under the effect of uniform magne-
tic field are investigated. It is assumed that the all material 
properties of the hollow bodies are graded exponentially in 
radial direction. These conditions produce a linear ordi-
nary differential equation. These differential equations are 
numerically handled by both the Complementary Function 
Method and the Pseudospectral Chebyshev Method. Firstly, 
grid refinement test is made to compare the methods and 
show the accuracy as the mesh size increase. The solutions 
of a simple power-law grading function for only elastic mo-
dulus and magnetic permeability with fixed inhomogeneity 
parameters on the study of Dai et.al.  [21] are used. It can 
be noticed   that PCM are better than the CFM and have at 
least six-digit accuracy by picking only 11 collocation points 
(10 intervals). Additionally, the same analytic solutions of 
the displacement are used to compare the PCM and CFM 
along the thickness for 11 collocation points. It can be noti-
ced from the Tables 5-6 that the results obtained along the 
thickness with PCM are better than the CFM. Primarily, the 
effect of two different ceramic-metal mixtures on displace-
ment and stresses is investigated in the absence of magnetic 
field. It has been shown that displacement and stress valu-
es   can be reduced by appropriate selection of the material. 
Then, the displacement and stress values under the effect of 
uniform magnetic field   for different magnetic permeability 
values are investigated in two materials simultaneously. The 
effect of magnetic field and permeability on displacement 
and stresses is discussed. It can be concluded that FG ma-
terials have strong effect on the stresses and displacement, 
and magnetic field can be used to optimize the structural 
performance.
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