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Abstract: Hydrogen gas (H2(g)) production is one of the major topic of the industry and energy production fields, for the last 

decades. Especially it is popular with showing high energy density. Among the other industrial methods electrolysis is the cleanest 

one without any by product emissions. It has been very popular to recovery of the discarded materials (such as batteries) as an 
environmentally friendly equipments. Here the coal of a used up battery is utilized as an electrode in the electrolysis system in 

order to produce (H2(g)). Then these electrodes were modified with impregnation of Zr and Ce metal oxides. At first, HNO3(aq) and 

H2SO4(aq) solutions were compared as electrolytes with plain electrodes and H2SO4(aq) is defined as the optimum electrolyte medium 

(maximum H2(g) production densities as 24.10xE-5 mL sec-1 and 87.22xE-5 mL sec-1,charge densities as 1137.40xE-4 C mm-2 and 

2976.19xE-4 C mm-2 and current densities as 45.68xE-7 A mm-2 and 165.34xE-7 A mm-2for 0.10 M HNO3(aq) (pH 1.10) and H2SO4(aq) 

(pH 1.70) solutions respectively). Then all of these modified electrodes were utilized to the electrolysis system and compared in 

the case of H2(g) production yield, charge and current density values. The best performances were obtained from CeO2 modified 

electrode (maximum H2 (g) production density as 125.00xE-5 mL sec -1, charge density as 4265.24xE-4 C mm-2 and current density 

as 236.96xE-7 A mm-2  in 0.10 M of H2SO4(aq) electrolyte). All of the experiments were duplicated. Hydrogen is one of the most 

promising, clean and sustainable energy carrier, that can be produced effectively by the usage of CeO2 modified battery coal. 

Keywords: Energy, Battery coal, Hydrogen gas production, Electrolysis, Cerium. 

Atık pil kömürlerinin elektrot olarak kullanılması ve daha sonra Zr ve Ce metal oksitleriyle 

emprenye edilerek hidrojen gazı üretim performanslarının iyileştirilmesi 

Özet: Son yıllarda sektörün ve enerji üretim alanlarının ana konularından biri hidrojen gazı üretimidir. Özellikle yüksek miktarda 

enerji üretilebilmesi açısından hidrojen, yakıt olarak popülerleşmiştir. Elektroliz, zararlı gaz emisyonu oluşturmadığı için diğer 

endüstriyel yöntemler arasında en temiz olanıdır. Atılan malzemelerin (pil gibi) çevre dostu bir ekipman olarak geri kazanılması 

da oldukça rağbet gören başka bir alandır. Burada, kullanılmış bir pilin kömürü çıkartılarak, hidrojen gazı (H2 (g)) üretmek için 
elektroliz sisteminde bir elektrot olarak kullanılmıştır. Daha sonra bu elektrotlar, Zr ve Ce metal oksitleri ile modifiye edilerek 

elektroliz performansları karşılaştırılmıştır. İlk başta yalın karbon elektrotlar kullanılarak, 0.10 M HNO3(aq) (pH 1.10) ve 0.10 M 

H2SO4(aq) (pH 1.70) çözeltilerinin elektrolit olarak performansları karşılaştırılmıştır. Sonuçta 0.10 M HNO3(aq) ve 0.10 M H2SO4(aq) 

çözeltilerinin sırasıyla elde edilen maksimum H2 (g) üretim yoğunlukları 24.10xE-5 mL s -1 ve 87.22xE-5 mL s-1, yük yoğunlukları 
1137.40xE-4 C mm-2  ve 2976.19xE-4 C mm-2  ve akım yoğunlukları 45.68xE-7 A mm-2  ve 165.34 xE-7 A mm-2  olarak ölçülmüştür. 

Bu nedenle optimum elektrolit) olarak 0.10 M H2SO4(aq belirlenmiştir. Karbon elektrotlar Zr ve Ce metal oksitleriyle modifiye 

edilerek elektroliz sisteminde katot olarak kullanılmıştır. Tüm sonuçlar karşılaştırılarak en iyi performansların CeO2 modifiye 

edilmiş elektrottan elde edildiği görülmüştür (maksimum H2 (g) üretim yoğunluğu 125.00xE-5 mL s -1, yük yoğunluğu 4265.24xE-4 C 
mm-2 ve akım yoğunluğu 236.96xE-7 A mm-2  0.10 M H2SO4(aq) elektrolit ortamında). Tüm ölçümler tekrarlanmıştır. Sonuçlar 

göstermiştir ki CeO2 modifiye pil kömürünün elektrot olarak kullanıldığı elektroliz sisteminden hidrojen gazı üretimi verimli bir 

şekilde gerçekleştirilebilmektedir. Elde edilen veriler sürdürülebilir ve temiz enerji eldesi üzerine yapılabilecek çalışmalar için ileri 

modifikasyonlar yapılarak geliştirilmeye açıktır. 

Anahtar Kelimeler: Enerji, Atık pil kömürü, Hidrojen gazı üretimi, Elektroliz, Seryum 
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1. Introduction 

Sustainable energy development requires innovative affords 

bearing clean energy solutions in it. An energy production 

method fails from the protocols that needs to explain itself 

in terms of biocompatibility and low cost demands. So the 

priority to achieve an acceptable clean energy production 

procedure has to include at least no hazardous gas emission. 

There has been many aspects to produce hydrogen gas (H2 

(g)) such as coal gasification, oil/naphta reforming, 

electrolysis (Uǧurlu et al. 2006, Sen et al. 2016) methane 

steam reforming, biomass, biological sources 

(Sivagurunathan et al. 2016; Mujeebu et al. 2016; Seyitoglu 

et al 2017). H2 (g) consumption performance of the industries 

are scened as fertilizers (Eren et al. 2010), petroleum 

refining processes (Erkarslan et al. 2018), petrochemical 

(Karaoǧlu et al. 2010), fuel cells (Karaoglu and Uğurlu 

2011), and chemical industries (Züttel et al. 2004; Lim et al. 

2015; Lee et al. 2017, Aslan et al. 2018). In electrolysis 

process, water molecule is the reactant and it is dissociated 

into hydrogen (H2) and oxygen (O2) by the help of external 

electricity (Kumar and Humabindu, 2019). 

Billions of electrodes and fuel cell types were designed to 

produce energy from electrolysis and the main point of these 

studies point to the efficient yield achievement. The 

presented study stands on the efficient electrode 

development from discarded alkaline battery coals. Zr and 

Ce were used as the triggering catalyst metals. Previously 

they have been used on the electrode modifications as 

highly active hydrogen evoluating catalysts by Demir et al. 

(2018), and in recent years, efforts to develop 

heterogeneous catalysts (Karaoğlu et al., 2012; Dinçer at al., 

2016) have been accelerated and there are different types of 

catalyst utilizations (Karahan et al., 2016; Donmez et al., 

2018; Gungor et al., 2018; Kara et al., 2018), photocatalysts 

(Uğurlu et al., 2006; Karaoğlu et al., 2010; Karaoğlu and 

Uğurlu, 2010). Finally, Zr and Ce used together to improve 

the catalytic performance reported by Polliotto et al. (2018). 

The electrolyte type is also discussed. A suitable electrolyte 

is expected to be a tramendous charge carrier and 

nonpoisonous for the electrodes. Up to now several water 

electrolysis methods are developed and they can be 

classified in four types based on their electrolyte, operating 

conditions, and ionic agents (OH-, H+, O2-). Queved as (i) 

alkaline water electrolysis (Zeng and Zhang, 2010), (ii) 

solid oxide electrolysis (Ni et al. 2009), (iii) microbial 

electrolysis cells (Kadier et al. 2016) and (iv) proton 

exchange membrane using water electrolysis (Foteini et al. 

2017). Alkaline electrolysis operates with aqueous solution 

(KOH/NaOH) as the electrolyte but asbestos diaphragm and 

nickel electrodes should be used (Kumar et al. 2017). Other 

types of electrolysis cells based on the transfer of electrons 

through the external circuit to cathode while the protons are 

passed through to cathode from the pores of proton 

conducting membrane (as electrolyte) (Rathinam et al. 

2018) Acidic electrolytes have been used as being very 

conventional electrolytes. The most convinient one is the 

H2SO4(aq) (pH 1.70) but also HNO3(aq) (pH 1.10) is used as 

an alternative solution (Lei et al. 2019).  

H2 (g) generation experiments were performed in a lab scale 

basic electrolysis equipment and H2 (g) ,charge and current 

generation densities of each system yields were evaluated. 

The results indicated that H2SO4(aq)  (pH 1.70) is a better 

electrolyte than HNO3(aq) (pH 1.10) and CeO2 modified 

discarded battery coal electrode (CeO2/C) showed the best 

fuel cell performances among plain coal electrode (C) and 

ZrO2 modified coal electrode (ZrO2/C). This study, offers a 

new sight into “environment for environmet” motto. Every 

single researcher can produce his own hydrogen gas with 

low voltage inputs and any harmful chemical release.  

2. Materials and Method 

2.1. Materials and chemicals 

H2SO4(aq) (99.80 % pure) (pH 1.70), HNO3 (aq) (99.80 % 

pure) (pH 1.10), ammonium cerium (IV) nitrate (99.00 % 

pure), zirconium IV butoxide (99.00 % pure), ethanol 

(99.00 % pure),  from Sigma-Aldrich. Dicarded batteries 

were obtained from a recovery bin in the building. 

2.2. Preperation of the solutions and impregnation 

processes of the electrodes  

In order to prepare 0.10 M H2SO4(aq) (pH 1.70) and HNO3(aq) 

(pH 1.10) solutions commercially available stock solutions 

were used. Required amounts of acids were diluted with 

deionized water and filled into the electrolysis cell. This 

solution is sucked into the burette that contains cathode 

electrode and the volume of hydrogen collected at the top of 

the burette was measured during the electrolysis was in 

progress. Scheme is shown below. The coal (C )inside of a 

discarded AA battery was used as anode or cathode 

electrode. Modification of the electrodes were achieved by 

the method as reported by Ghodsi et al. (2011). As it is 

reported (Ghodsi et al. 2011) the final products are the 

oxides of these metals. Since the same anions of the metals 

were achieved on the electrodes synergistic anion effect was 

prevented for the comparison of the electrode performances.  

CeO2/C electrode was prepared as follows: precursor 

solution was prepared by dissolving Ce(NO3)6(NH4)2 in 10 

mL of ethanol and 5 mL of distilled water mixture. Bare C 

was sucked into this solution completely then stirred for 30 

min. Subsequently calcinated for 5 hours at 500 C. Similarly 

ZrO2/C was prepared by using zirconium IV butoxide 

precursor. Obtained electrodes utilized as cathode and C 

was used as anode for all experiments. 

 

Scheme 1. Electrolysis set up. Anode is C electrode, cathode is 

adjusted according to the experiment as C, CeO2/C or ZrO2/C. 
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2.3. Electrolysis experiments  

Electrolysis experiments were conducted with a beaker and 

burette at room conditions. Cathode electrode was stucked 

into the mouth of a 25 mL burette and electrolyte solution 

was sucked with a bulb into the burette. Anode was 

maintained as C for all experiments. Firstly dissociation 

potential measurements were recorded for all electrolysis 

experiments. After the minimum current was observed H2 

(g) volume was recorded by running chronometer.  

Firstly H2SO4(aq) (pH 1.70) and HNO3(aq) (pH 1.10) 

electrolytes were compared to each others with C 

electrodes, then modified electrodes were conducted as 

cathodes to the 0.10 M H2SO4(aq) (pH 1.70) filled cell. All 

of the results are given in the following section. 

3. Results  

3.1. Calculation of the total H2 (g) produced by the systems, 

charge and current density values 

In a typical electrolysis system the volume of the gases have 

to be determined in order to calculate the amount of charge, 

current and flow density values. Here the amount of the H2 

(g) was measured as mL for each experiment set up 

individually. Then these values were used to calculate H2 (g)  

volume density by dividing into the cathode surface area 

(439.60 mm2). Then readed volume of the H2 (g)  was divided 

into the theoretical charge of the H2 (g)  mL 0.12 then charge 

of the system was obtained. This data was used to calculate 

current of the system by dividing charge value into the time 

(second). Current and charge densities were calculated by 

division of these charge and current values into electrode 

surface area. 

3.2. Comparison of the cell performances of HNO3(aq) and 

H2SO4(aq)  as electrolytes  

At the beginning of the experiments two types of 

electrolytes were determined as model. Cell performances 

of the chosen electrolytes were examined with C cathode 

and anode electrodes. HNO3(aq) (pH 1.10) and H2SO4(aq) (pH 

1.70) were compared to each other in terms of dissociation 

potential, H2 (g)  production (Fig.1a), current density (Fig.1b) 

and charge density (Fig. 1c) performances. An ideal 

electrolyte is expected to be an excellent charge carrier and 

has to lead the charge transfer duty well. H2SO4(aq) is very 

commonly used electrolyte but HNO3(aq) is also a promising 

candidate with the high acidic constant near to the H2SO4(aq). 

Results of the experiments showed that the dissociation 

potential value of the HNO3(aq) was measured as 3.60 V 

whereas  H2SO4(aq) has 3.20 V. This shows that cell potential 

of the H2SO4(aq) used electrolysis system is able to run easier 

than HNO3(aq) in the presence of C electrodes. Additionally 

H2(g)  production, current and charge density values of 

H2SO4(aq)  are higher than HNO3(aq). As result H2SO4(aq) was 

choosen as the electrolyte for subsequent experiments. 

Table 1 shows the comparison of the cell performance 

values including modified electrodes at the upcoming 

sections. This graphs also show that the measured cell 

performances of the H2SO4(aq) electrolyte is better than 

HNO3(aq).  

 

Table 1. Comparison of the dissociation potential, H2 (g)  

production, current and charge density values of the different 

electrolysis cells. 

Cell type DP*  H2(g) 

PD**  

CD§ CD£ 

C cathode/C anode in 

0.10 M of H2SO4(aq)  

3.2 87.22

xE-5 

2976.19

xE-4 

165.34 

xE-7 

C cathode/C anode in 

0.10 M of HNO3(aq)  

3.6 24.10

xE-5 

1137.40

xE-4 

45.68x

E-7 

ZrO2/C cathode/C anode 

in 0.10 M ofH2SO4(aq) 

2.8 94.44 
xE-5 

3222.63
xE-4 

179.03
xE-7 

CeO2/C cathode/C anode 

in 0.10M of H2SO4(aq)  

2.3 125.0

xE-5 

4265.24

xE-4 

236.96

xE-7 
* Dissociation potential (V); ** H

2 (g) 
 production density (mL sec -1); § Charge density 

(C mm -2); £ Current density (A mm -2) 

 

Figure 1. Comparison of the cell performances of two different 
electrolytes. a) H2 (g)  production performances, b) current density 

curves, c) charge density graphics of the 0.10 M H2SO4(aq) (pH 

1.70) and HNO3(aq) (pH 1.10) electrolytes recpectively. All of the 

measurements were recorded with plain carbon electrodes as 

anode and cathode, at 21 ⁰C, atmospheric pressure and electrolyte 

solutions were prepared with distilled water. 
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3.3. Comparison of the cell performances of C, ZrO2/C 

and CeO2/C cathodes  

All of the electrolysis experiments were carried out in 0.10 

M of H2SO4(aq) (pH 1.70) electrolyte at room conditions. 

After the modification of electrodes they were utilized as 

cathodes where C electrode was anode. First of all 

dissociation voltages of the electrodes were compared. As 

the datas revealed that CeO2 modified electrode showed the 

lowest dissociation voltage that means the electrolysis 

process initiates the easiest by using CeO2/C electrode 

among all. That explains the charge transfer efficiency is 

trigerred by the Ce ions on C electrode. Also the other 

parameters are supporting this idea as being at maximum 

levels for CeO2/C electrode. All of the maximum density 

values presented after 300 sec. measurement for all of the 

cathode types.  Figure 2 shows the comparison of the H2 (g)  

production, current and charge density value plots of the C, 

ZrO2/C and CeO2/C cathodes vs. C anodes 0.10 M of 

H2SO4(aq)  (pH 1.70) electrolyte containing electrolysis cells. 

 

Figure 2. H2 (g)  production, current and charge density value plots 
of the C, ZrO2/C and CeO2/C cathodes vs. C anodes 0.10 M of 

H2SO4(aq)  (pH 1.70) electrolyte containing electrolysis cells. 

3.4. Evaluation of the electrolysis performance of 

electrodes 

This results exhibits the higher H2 (g)  production volumes 

and cell performances can be achieved by the electrode 

modification such as CeO2 and the group elements.  Priority 

of the fuel cells generation of the high energy outputs but if 

the point is generation and the storage of the H2 (g)  

production performance of the cathode comes forward. It 

pushes the researcher to find new ways to modify electrode 

so with these current and charge density values system 

exhibits promising power outputs. Untill now different 

types of the cells were reported in their specialized 

measurement parameters but it is clear that solid oxide cells 

are gaining huge attention (Ni et al. 2009). Proton exchange 

membrane (PEM) of an electrolysis cell is our next step and 

these electrodes will be adapted to the PEM body and 

measurements will be conducted as well. 

4. Conclusions  

Waste management of the batteries “in terms of coals” 

recovery and development of these wastes are discussed 

here successfully. This is a good attempt to obtain energy 

from wastes in a lab scale set up. Production yields of the 

electrodes can be improved by the choice of the suitable 

electrolyte, may the alkaline medium can be preferred also 

more useful cell type can be selected as solid or PEM 

electrodes can be used in the future experiments. Hydrogen 

storage experiments are also upcoming subject of this 

research.  
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