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Abstract
The Lane-Emden type equations of arbitrary (fractional and integer) order and the white
dwarf equation are employed in the modeling of several phenomena in the areas of math-
ematical physics and astrophysics. In this paper, an efficient numerical algorithm based
on the generalized fractional order of the Chebyshev orthogonal functions (GFCFs) and
the collocation method to solve these well-known differential equations is presented. The
operational matrices of the fractional derivative and the product of order α in the Caputo’s
definition for the GFCFs are used. The obtained results are compared with other results
to verify the accuracy and efficiency of the presented method. The obtained numerical
results are better than other proposed methods.
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1. Introduction
In this section, Spectral methods and some preliminary which are useful for our method

have been introduced.

1.1. Spectral methods
Spectral methods have been developed rapidly in the past two decades. They have been

successfully applied to numerical simulations in many fields, such as heat conduction, fluid
dynamics, quantum mechanics, etc. These methods are powerful tools to solve differential
equations. The key components of their formulation are the trial functions and the test
functions. The trial functions, which are the linear combinations of suitable trial basis
functions, are used to provide an approximate representation of the solution. The test
functions are used to ensure that the differential equation and perhaps some boundary
conditions are satisfied as closely as possible by the truncated series expansion. This is
achieved by minimizing the residual function that is produced by using the truncated
expansion instead of the exact solution with respect to a suitable norm [4,29,36,48,54].
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1.2. Fractional calculus
The original ideas of fractional calculus can be traced back to the end of the 17th

century, when the classical differential and integral calculus theories were created and
developed by Newton and Leibniz in 1695 [25], but for many reasons were not used in
sciences for many years, for example, there were the various definitions of the fractional
derivative [39] and there were no the exact geometrical interpretation for them [40]. A
review of some definitions and applications of fractional derivatives is given in [24] and
[12]. In recent years, many physicists and mathematicians have considered on this subject,
and found the various applications for the fractional calculus [13, 41]. For example, the
nonlinear oscillation of earthquake [18], and the fractional optimal control problems for
dynamic systems [11, 22, 53]. Several methods have been used to solve fractional differ-
ential equations, such as Bernoulli polynomials [22], Legendre multi-wavelet collocation
method [53], the modified Jacobi polynomials [11], Adomian’s decomposition method [30],
fractional-order Legendre functions [21], fractional-order Chebyshev functions of the sec-
ond kind [8], Homotopy analysis method [17], Bessel functions and spectral methods [31],
Legendre and Bernstein polynomials [42], and other methods [14,43].

One of the most important definitions of fractional derivatives is the fractional deriv-
ative in the Caputo sense. This definition is very important for some reasons, such as
simplicity in comparison with the other definitions, similarity to ordinary derivative, ap-
ply the initial conditions in solution to easily. For these reasons, many researchers have
used this definition in your papers [2, 46,47].

The paper is organized as follows: in Section 1.3, the Lane-Emden type equations
of fractional order are described. In Section 2, some basic definitions and theorems of
fractional calculus are defined. In Section 3, the GFCFs and their properties are expressed.
Section 4 is devoted to applying the GFCFs operational matrices of the fractional derivative
and the product to obtain the solution of fractional differential equations. In Section 5,
the work method is explained. Applications of the method are shown in Section 6. Finally,
a conclusion is provided.

1.3. The Lane-Emden type equations
The study of singular initial value problems modeled by second-order nonlinear ordinary

differential equations has attracted many mathematicians and physicists. One of the
equations in this category is the following Lane-Emden type equation:

y′′(t) + k

t
y′(t) + f(t, y(t)) = g(t), k, t > 0,

with the initial conditions:

y(0) = d0, y′(0) = d1,

where k, d0 and d1 are real constants and f(t, y) and g(t) are some given continuous real-
valued functions. For special forms of f(t, y), the well-known Lane-Emden equations occur
in several models of non-Newtonian fluid mechanics, mathematical physics, astrophysics,
etc. For example, when f(t, y) = q(y), the Lane-Emden equations occur in modeling
several phenomena in mathematical physics and astrophysics such as the theory of stellar
structure, the thermal behavior of a spherical cloud of gas, isothermal gas sphere and
theory of thermionic currents [7, 9, 27,32].

Recently, the Lane-Emden equations of the fractional order have been investigated
by some researchers. In this paper, we have considered the Lane-Emden equations of
fractional order as follows [1, 28]:

Dγy(t) + k

tγ−β
Dβy(t) + f(t, y(t)) = g(t), (1.1)
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with the initial conditions:

y(0) = d0, y′(0) = d1, (1.2)

where 0 < t ≤ 1, 1 < γ ≤ 2, 0 < β ≤ 1, and k, d0, d1 are real constants, f(t, y) and g(t)
are some given continuous real-valued functions.

Some researchers have obtained approximations for Lane-Emden equations of fractional
order, for example Saeed (2017) by using the Haar Adomian method [45], Akgul et al.
(2015) by using the reproducing kernel method [1], Mechee and Senu (2012) by using the
collocation method [28], Marasi et al (2015) by using the modified differential transform
method [26], Yuzbasi (2011) by using the Bessel collocation method [55], Ibrahim (2011),
Fazly and Wei (2015), and Davila et al (2014) by using the analytical methods [10,15,19].

There are equations that are convertible into the Lane-Emden type equations, for ex-
ample, Van Gorder has examined the relation between Lane-Emden solutions and radial
solutions to the elliptic Heavenly equation on a disk [51].

2. Basic definitions
In this section, some basic definitions and theorems which are useful for our method

have been introduced.

Definition 2.1. For any real function f(t), t > 0, if there exists a real number p > µ,
such that f(t) = tpf1(t), where f1(t) ∈ C(0, ∞), is said to be in space Cµ, µ ∈ ℜ, and it
is in the space Cn

µ if and only if f (n) ∈ Cµ, n ∈ N .

Definition 2.2. The fractional derivative of f(t) in the Caputo sense by the Riemann-
Liouville fractional integral operator of order α > 0 is defined as follows [23]

Dαf(t) = 1
Γ(m − α)

∫ t

0
(t − s)m−α−1Dmf(s)ds, α > 0,

for m − 1 < α ≤ m, m ∈ N, t > 0 and f ∈ Cm
−1.

So, for f ∈ Cµ, µ ≥ −1, α, β ≥ 0, γ ≥ −1, N0 = {0, 1, 2, ...} and constant C, we have:
(i) DαC = 0,
(ii) DαDβf(t) = Dα+βf(t),
(iii)

Dαtγ =


0 γ ∈ N0 and γ < α,

Γ(γ+1)
Γ(γ−α+1) tγ−α, Otherwise.

(2.1)

(iv)

Dα(
n∑

i=1
cifi(t)) =

n∑
i=1

ciD
αfi(t), where ci ∈ R. (2.2)

Definition 2.3. Suppose that f(t) ∈ C(0, η] and w(t) is a weight function, then

∥ f(t) ∥2
w =

∫ η

0
f2(t)w(t)dt.

Theorem 2.4. Suppose that {Pi(t)} be a sequence of orthogonal polynomials, w(t) is a
weight function for {Pi(t)}, and q(t) is a polynomial of degree at most n − 1, then for
pn(t) ∈ {Pi(t)} we have: ⟨pn(t), q(t)⟩w = 0.

Proof. See Section 2.3 in [50]. �
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3. Generalized fractional order of the Chebyshev functions
Chebyshev polynomials have many properties, for example orthogonal, recursive, simple

real roots, complete in the space of polynomials. For these reasons, many authors have
used these functions in their works [3, 16,20,44].

Using some conversions, the number of the researchers extended Chebyshev polynomials
to semi-infinite or infinite interval, for example by using x = t−L

t+L , L > 0 the rational
Chebyshev functions on the semi-infinite interval [33, 34], by using x = t√

t2+L
, L > 0 the

rational Chebyshev functions on infinite interval [5], and by using x = 1 − 2( t
η )α, α, η > 0

the generalized fractional order of the Chebyshev functions (GFCF) on the finite interval
[0, η] [37, 38] are introduced.

Darani and Nasiri in [8] have been introduced the fractional-order Chebyshev functions
of the second kind, then just constructed the derivative operational matrix for them, and
used it to solve linear fractional differential equations.

In the present work, the transformation x = 1 − 2( t
η )α, α, η > 0 on the Chebyshev

polynomials of the first kind is used. The transformation was introduced in [37] and can
use to solve nonlinear and linear fractional differential equations, such as the Lane-Emden
type equations.

The GFCFs are defined on interval [0, η], are shown by ηFT α
n (t) = Tn(1 − 2( t

η )α), and
have the following analytical form [37]:

ηFT α
n (t) =

n∑
k=0

βn,k,η,α tαk, t ∈ [0, η], (3.1)

where
βn,k,η,α = (−1)k n22k(n + k − 1)!

(n − k)!(2k)!ηαk
and β0,k,η,α = 1.

The GFCFs are orthogonal with respect to the weight function w(t) = t
α
2 −1

√
ηα − tα

on the

interval (0, η): ∫ η

0
ηFT α

n (t) ηFT α
m(t)w(t)dt = π

2α
cnδmn, (3.2)

where δmn is Kronecker delta, c0 = 2, and cn = 1 for n ≥ 1.
Any function y(t) ∈ C[0, η] can be expanded as follows:

y(t) =
∞∑

n=0
an ηFT α

n (t),

and using the property of orthogonality in the GFCFs:

an = 2α

πcn

∫ η

0
ηFT α

n (t)y(t)w(t)dt, n = 0, 1, 2, · · · ,

but in the numerical methods, we have to use first m-terms of the GFCFs and approximate
y(t):

y(t) ≈ ym(t) =
m−1∑
n=0

an ηFT α
n (t) = AT Φ(t), (3.3)

with
A = [a0, a1, ..., am−1]T , (3.4)

Φ(t) = [ ηFT α
0 (t), ηFT α

1 (t), ..., ηFT α
m−1(t)]T . (3.5)

The following theorem shows that by increasing m, the approximation solution fm(t) is
convergent to f(t) exponentially.
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Theorem 3.1. Suppose that Dkαf(t) ∈ C[0, η] for k = 0, 1, ..., m, and ηF α
m is the generated

subspace by {ηFT α
0 (t),η FT α

1 (t), · · · ,η FT α
m−1(t)}. If fm(t) = AT Φ(t) (in Eq. (3.3)) is the

best approximation to f(t) from ηF α
m, then the error bound is presented as follows

∥ f(t) − fm(t) ∥w≤ ηmαMα

2mΓ(mα + 1)

√
π

α m!
,

where Mα ≥ |Dmαf(t)|, t ∈ [0, η].

Proof. See [37]. �
Theorem 3.2. The generalized fractional order of the Chebyshev function ηFT α

n (t), has
precisely n real zeros on interval (0, η) in the form

tk = η

(1 − cos( (2k−1)π
2n )

2

) 1
α

, k = 1, 2, · · · , n.

Moreover, d
dt η

FT α
n (t) has precisely n − 1 real zeros on interval (0, η) in the following

points:

t′
k = η

(1 − cos(kπ
n )

2

) 1
α

, k = 1, 2, · · · , n − 1.

Proof. See [37]. �

4. Operational matrices of the GFCFs
In this section, operational matrices of the fractional derivative and the product for

the GFCFs are constructed, these matrices can be used to solve the linear and nonlinear
fractional differential equations.

4.1. The fractional derivative operational matrix of GFCFs
In the next theorem, the operational matrix of the Caputo fractional derivative of order

α > 0 for the GFCFs is generalized, which can be expressed by:

DαΦ(t) = D(α)Φ(t). (4.1)

Theorem 4.1. Let Φ(t) be GFCFs vector in Eq. (3.5) and D(α) be an m × m operational
matrix of the Caputo fractional derivatives of order α > 0, then:

D(α)
i,j =

 2√
πcj

∑i
k=1

∑j
s=0 βi,k,η,αβj,s,η,α

Γ(αk+1)Γ(s+k− 1
2 )ηα(k+s−1)

Γ(αk−α+1)Γ(s+k) , i > j

0, otherwise
(4.2)

for i, j = 0, 1, ..., m − 1.

Proof. Using Eq. (4.1):

D0,0 · · · D0,j · · · D0,m−1
...

...
...

...
...

Di,0 · · · Di,j · · · Di,m−1
...

...
...

...
...

Dm−1,0 · · · Dm−1,j · · · Dm−1,m−1





Φ0
...

Φj
...

Φm−1


=



DαΦ0
...

DαΦi
...

DαΦm−1


.

By orthogonality property of the GFCFs and Eqs. (2.1) and (3.1), for i, j = 0, 1, ..., m − 1,
we have:

D(α)
i,j = 2α

πcj

∫ η

0
Dα(ηFT α

i (t))(ηFT α
j (t))w(t)dt.
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Since DαFT α
0 (t) = 0, therefore D(α)

0,j =
∫ η

0 DαFT α
0 (t)FT α

j (t)w(t)dt = 0.
If i ≤ j then deg(Dα(ηFT α

i (t))) < deg(ηFT α
j (t)), therefore by Theorem 2.4, D(α)

i,j = 0
for any i ≤ j. Now for i > j we have:

D(α)
i,j = 2α

πcj

∫ η

0

i∑
k=1

βi,k,η,α
Γ(αk + 1)tαk−α

Γ(αk − α + 1)

j∑
s=0

βj,s,η,αtαs t
α
2 −1

√
ηα − tα

dt

= 2α

πcj

i∑
k=1

j∑
s=0

βi,k,η,αβj,s,η,α
Γ(αk + 1)

Γ(αk − α + 1)

∫ η

0

tα(k+s− 1
2 )−1

√
ηα − tα

dt,

by integration of the above equation, the theorem can be proved. �

Remark 4.2. The fractional derivative operational matrix of the GFCFs for α = η = 1
is same as the operational matrix of the shifted Chebyshev polynomials [6].

Remark 4.3. By Theorem 4.1, we can see that the fractional derivative operational
matrix of the GFCFs is a lower triangular matrix, so at least 50(1 + 1

m)% of the matrix
elements are zero, that this reduces the computational and storage costs.

4.2. The product operational matrix of GFCFs
The following property of the product of two GFCFs vectors will also be applied:

Φ(t)Φ(t)T A ≈ ÂΦ(t), (4.3)

where Â is an m × m product operational matrix for the vector A = {ai}m−1
i=0 .

Theorem 4.4. Let Φ(t) be GFCFs vector in Eq. (3.5) and A be a vector, then the elements
of Â are obtained as

Âij =
m−1∑
k=0

akĝijk, (4.4)

where

ĝijk =



ck
2cj

, i ̸= 0 and j ̸= 0 and (k = i + j or k = |i − j|)

ck
cj

, (j = 0 and k = i) or (i = 0 and k = j)

0, otherwise

Proof. Using Eq. (4.3):
Φ0
...

Φi

...
Φm−1

 [Φ0 · · · Φk · · · Φm−1]


a0
...

ak

...
am−1

 ≈


Â0,0 · · · Â0,m−1

... · · ·
...

Âi,0 · · · Âi,m−1
... · · ·

...
Âm−1,0 · · · Âm−1,m−1




Φ0
...

Φj

...
Φm−1

 .

By the orthogonal property of Eq. (3.2), the elements {Âij}m−1
i,j=0 can be calculated from

Âij = 2α

πcj

m−1∑
k=0

akgijk, (4.5)

where gijk is given by

gijk =
∫ η

0
ηFT α

i (t) ηFT α
j (t) ηFT α

k (t)w(t)dt.
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Using property: ηFT α
i (t) ηFT α

j (t) = 1
2( ηFT α

i+j(t) + ηFT α
|i−j|(t)) and substituting it in

gijk, we have:

gijk =


πck
4α , i ̸= 0 and j ̸= 0 and (k = i + j or k = |i − j|)
πck
2α , (j = 0 and k = i) or (i = 0 and k = j)
0, otherwise

Now by using Eq. (4.5), the theorem can be proved. �

Remark 4.5. The product operational matrix of GFCFs is same as the shifted Chebyshev
polynomials [6]. In whole, it can be said that the components of Â are independent of
values of α and η.

Remark 4.6. By Theorem 4.4 it can be shown that, any product operational matrix of
GFCFs can be made to the sum of two simple matrices: Â = 1

2B̂ + 1
2Ĉ where

(1) B̂ is a symmetric matrix, that the diagonals of B̂ are the elements of vector A,
and for i, j = 0, 1, ..., m − 1, matrix elements are calculated as follows:

B̂i,j =
{

2a0, i = j
ak, i ̸= j, |i − j| = k.

(2) Ĉ is a sparse matrix, that at least 50(1 + 1
m)% of the matrix elements are zero,

and for i, j = 0, 1, ..., m − 1, matrix elements are calculated as follows:

Ĉi,j =
{

ai+j , j ̸= 0, 1 ≤ i + j ≤ m − 1
0, otherwise.

For example, with m = 5, at least 60% of the elements in Ĉ are zero, and the product
operational matrix of GFCFs is as follows:

Â = 1
2


2a0 2a1 2a2 2a3 2a4
a1 2a0 + a2 a1 + a3 a2 + a4 a3
a2 a1 + a3 2a0 + a4 a1 a2
a3 a2 + a4 a1 2a0 a1
a4 a3 a2 a1 2a0



= 1
2


2a0 a1 a2 a3 a4
a1 2a0 a1 a2 a3
a2 a1 2a0 a1 a2
a3 a2 a1 2a0 a1
a4 a3 a2 a1 2a0

 + 1
2


0 a1 a2 a3 a4
0 a2 a3 a4 0
0 a3 a4 0 0
0 a4 0 0 0
0 0 0 0 0


We can see that the computational cost of production is very low.

5. Application of the GFCFs collocation method
In this section, the GFCFs collocation method to solve the Lane-Emden type equations

of fractional order for various values of f(t, y), g(t), d0, d1 and k is applied.
To apply the collocation method, the residual function by substituting ym(t) = AT Φ(t)

in Eq. (3.3) for y(t) in Lane-Emden type Eq. (1.1) is constructed:

Res(t) = AT D(γ)Φ(t) + k

tγ−β
AT D(β)Φ(t) + f(t, AT Φ(t)) − g(t), (5.1)

where D(γ), D(β) are defined in Eq. (4.1).
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We now must choose the value of α such that γ and β be multiples of α. By using the
properties of the operator Dα (Definition 2.2), we can calculate the values D(γ) and D(β):

Dγy(t) ≈
m−1∑
n=0

anDγ(ηFT α
n (t)) = AT D(γ)Φ(t),

Dβy(t) ≈
m−1∑
n=0

anDβ(ηFT α
n (t)) = AT D(β)Φ(t).

The equations for obtaining the coefficient {ai}m−1
i=0 arise from equalizing Res(t) to zero

on m − 2 collocation points:

Res(ti) = 0, i = 1, 2, ..., m − 2, (5.2)

and the initial conditions

AT Φ(0) = d0,

AT D(1)Φ(0) = d1. (5.3)

In this study, the roots of the GFCFs in the interval [0, η] (Theorem 3.2) as collocation
points are used. By solving the obtained set of equations, the approximating function
ym(t) is obtained.

Tau-Collocation algorithm
To obtain the Spectral coefficients {ai}m−1

i=0 in Eq. (3.3) and an approach of y(t), the
Tau-Collocation algorithm is employed. In this algorithm, to solve equation Ly(t) = g(t),
where L is the operator of the differential or integral equation, we do:
BEGIN

1. Calculate the operational matrix D(α) by Eq. (4.1).
2. Calculate the operational matrix Â by Eq. (4.3) (If necessary).
3. Construct a series (3.3).
4. Insert the constructed series of step 3 into the equation Ly(t) = g(t).
5. Construct the residual function as follows: Res(t; a0, a1, ..., am−1) = Lŷm(t) −

g(t). We now have m unknown coefficients {ai}m−1
i=0 . To obtain these unknown

coefficients, we need m equations.
6. Choose m points ti, i = 0, 1, ..., m − 1 in the domain of the problem as collocation

points and substituting them in Res(t; a0, a1, ..., am−1) = Lŷm(t) − g(t), and using
the initial conditions, we construct a system which contains m nonlinearly or
linearly independent equations.

7. Solve this system of equations by a suitable method (e.g. Newton’s method) to
find the {ai}m−1

i=0 .
END.

In steps 1 and 2, according to Eqs. (4.1) and (4.3), the orders of complexity are O(m4)
and O(m2), respectively. In step 4, due to the presence of the matrix multiplication
and nonlinear functions, the order of complexity is at least O(m3), it should be noted
that the order of complexity will be changed by changing the nonlinear functions. The
order of complexity in step 6 is O(m). The order of complexity in step 7 is dependent
on the method of choice. It is worthwhile to note that it is common to solve a system
of nonlinear equations, is applying Newton’s method. The main difficulty with such a
system is how we can choose an initial approximation to handle Newton’s method. We
have had reason to believe that the best way to discover the proper initial approximation
(or initial approximations) is to solve the system analytically for the very small m (by
means of symbolic software programs, such as Mathematica or Maple) and, then, we can
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find proper initial approximations, and particularly the multiplicity of solutions of such
system. This action has been done by starting from proper initial approximations with
the maximum number of ten iterations. In the present method, due to be added the
fractional power, the order of complexity increases, but in many differential equations,
the accuracy of computations increases with m less. Thus, the order of complexity in the
above algorithm is at least O(m4).

6. Illustrative examples
In this section, by using the present method we solve some well-known examples to

show efficiently and applicability GFCFs method based on Spectral methods. We apply
the present method to solve the Lane-Emden equations of fractional order, and their
outputs are compared with the corresponding analytical solutions. furthermore, consider
that all of the computations have been done by Maple 2015.

Example 6.1. We consider linear Lane-Emden equation of fractional order as follows
[1, 28]

Dγy(t) + k

tγ−β
Dβy(t) + 1

tγ−2 y(t) = g(t), (6.1)

with the initial conditions

y(0) = 0, y′(0) = 0, (6.2)
where

g(t) = t2−γ

(
6t

(
t2

6
+ Γ(4 − β) + kΓ(4 − γ)

Γ(4 − β)Γ(4 − γ)

)
− 2

(
t2

2
+ Γ(3 − β) + kΓ(3 − γ)

Γ(3 − β)Γ(3 − γ)

))
,

and γ = 3
2 , β = 1

2 , k = 2. The exact solution of Eqs. (6.1) and (6.2) is y(t) = t3 − t2

[1, 28].

By applying the technique described in the last section, the residual function is as follows:

Res(t) = AT D( 3
2 )Φ(t) + 2

t
AT D( 1

2 )Φ(t) + 1
t− 1

2
AT Φ(t) − g(t).

For α = 0.5, we have D(γ) = D(0.5)D(0.5)D(0.5) and D(β) = D(0.5).

Choosing m − 2 the roots of the GFCFs in the interval [0, η], as collocation points and
substituting them in Res(t), and using of initial conditions, a set of m algebraic equations
is generated.

With m = 7 and α = 0.50, we can obtain the exact solution with:

A =



−0.0478515625
0.05078125000
0.02294921875
−0.0449218750
0.02441406250
−0.0058593750
0.00048828125


Table 1 shows the comparison of the absolute error obtained by the present method, the
reproducing kernel method (RKM) [1] and the collocation method [28]. It can be seen
that the present method is more accurate than other methods.
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Table 1. Comparison of present method, the reproducing kernel method [1], and
the collocation method [28] of the absolute errors for example 6.1

t Akgul [1] Mechee [28] Present Akgul [1] Mechee [28] Present
m = 5 m = 10

0.25 8.7370e-4 1.3345e-3 3.9203e-3 8.4636e-6 1.3232e-5 2.742e-47
0.50 9.9000e-4 1.5000e-3 2.4963e-2 2.9000e-6 2.6000e-5 2.373e-47
0.75 7.6702e-4 5.0673e-3 1.7490e-2 8.5754e-6 1.5634e-6 1.035e-47
1.00 5.4736e-4 3.6339e-3 5.3771e-2 5.4345e-6 4.1443e-5 4.083e-48

Example 6.2. We consider linear Lane-Emden equation of fractional order as follows [26]

Dγy(t) + 2
t
y′(t) + y(t) = 0, 0 < γ ≤ 2, (6.3)

with the initial conditions

y(0) = 1, y′(0) = 0, (6.4)

The exact solution of Eqs. (6.3) and (6.4) for γ = 2 is given as [26]

y(t) = sin(t)
t

, (6.5)

and for γ = 1 is given as

y(t) = (1 + t

2
)2e−t. (6.6)

By applying the technique described in the last section, the residual function is as follows:

Res(t) = AT D(γ)Φ(t) + 2
t
AT D(1)Φ(t) + AT Φ(t).

Choosing m − 2 the roots of the GFCFs in the interval [0, η], as collocation points and
substituting them in Res(t), and using of initial conditions, a set of m nonlinear algebraic
equations is generated.

Table 2 shows the absolute errors and the residual errors by the present method, for
γ = 1 and 2 with α = 0.5, m = 30.

Table 3 shows the values obtained by the present method, for γ = 1.75, 1.25, and 0.80
with m = 20.

Fig. 1 shows the absolute errors of approximate solutions with the exact solutions and
the residual errors, for γ = 1 and 2 with α = 0.5, m = 30.

Fig. 2(a) shows the approximate solutions for the various values 1 ≤ γ ≤ 2 with m = 20,
Definitely, when γ tends to 2, the approximate solutions of y(t) will converge to the exact
solution in Eq. (6.5), and when γ tends to 1, from the right hand side, the approximate
solutions of y(t) will converge to the exact solution in Eq. (6.6).

Fig. 2(b) shows the approximate solutions for the various values 0 < γ ≤ 1 with m = 20,
Definitely, when γ tends to 1, from the left hand side, the approximate solutions of y(t)
will converge to the exact solution in Eq. (6.6).



A numerical method for solving nonlinear astrophysics equations 1611

(a) The graphs of the absolute errors (b) The graphs of the residual errors

Figure 1. Graphs of the absolute and the residual errors in Example 6.2.

(a) Approximate solutions for 1 ≤ γ ≤ 2 (b) Approximate solutions for 0 < γ ≤ 1

Figure 2. Graphs of the approximate solutions for 0 < γ ≤ 2 in Example 6.2 for
the various values γ.

Table 2. The absolute and the residual errors by the present method, for γ = 1
and 2 in Example 6.2.

t Abs. Err. Res(t) Abs. Err. Res(t)
γ = 1 γ = 2

0.25 5.621e-20 1.550e-18 3.294e-18 3.480e-19
0.50 1.423e-19 6.168e-19 9.239e-18 1.815e-19
0.75 4.109e-20 3.026e-19 1.669e-17 1.700e-19
1.00 1.271e-19 3.000e-20 2.503e-17 1.085e-19
1.25 3.119e-19 5.138e-19 3.365e-17 1.883e-19
1.50 3.494e-19 1.106e-18 4.242e-17 1.990e-19
1.75 4.512e-19 1.773e-18 5.062e-17 2.025e-19
2.00 3.941e-19 2.653e-18 5.827e-17 2.154e-19
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Table 3. Obtained values by the present method, for γ = 1.75, 1.25, and 0.80 in
Example 6.2

t Appr. Sol. Res(t) Appr. Sol. Res(t) Appr. Sol. Res(t)
γ = 0.80 γ = 1.25 γ = 1.75

0.25 0.98528225 6.791e-6 0.98634231 1.278e-9 0.98899406 7.002e-7
0.50 0.94589292 6.512e-6 0.95025175 2.171e-8 0.95802956 4.019e-7
0.75 0.88955041 6.319e-6 0.89741111 4.289e-8 0.90955493 4.767e-7
1.00 0.82330884 1.315e-6 0.83256082 3.791e-8 0.84615693 3.196e-7
1.25 0.75282676 9.875e-6 0.75980429 4.708e-8 0.77067967 3.294e-7
1.50 0.68225380 1.806e-6 0.68265934 9.033e-8 0.68615295 5.496e-7
1.75 0.61439158 1.449e-5 0.60407496 8.005e-8 0.59568399 4.359e-7
2.00 0.55095494 1.106e-5 0.52645239 1.495e-7 0.50234237 7.433e-7

Example 6.3. We consider the nonlinear Lane-Emden equation of fractional order as
follows

Dγy(t) + k

tγ−β
Dβy(t) + (y(t))p = 0, (6.7)

with the initial conditions
y(0) = 1, y′(0) = 0, (6.8)

where γ = 3
2 , β = 1

2 , k = 2 and p is real constant.
By applying the technique described in the last section, the residual function is as follows:

Res(t) = AT D( 3
2 )Φ(t) + 2

t
AT D( 1

2 )Φ(t) + (AT Φ(t))p.

Choosing m − 2 the roots of the GFCFs in the interval [0, η], as collocation points and
substituting them in Res(t), and using of initial conditions, a set of m nonlinear algebraic
equations is generated.

Table 4 shows the approximate solutions and the residual errors obtained by the present
method for m = 12, α = 0.50, and the various values t.

The approximate solutions and the residual errors with m = 12, α = 0.50 and the
various values p are displayed in Fig. 3.

(a) Graphs of the approximate solutions (b) Graphs of the residual errors

Figure 3. Graphs of the approximate solutions and the residual errors for example 6.3.
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Table 4. Obtained values of y(t) for example 6.3 by the present method.

t p =0.5 p =1.0 p =1.5

Appro. Sol. Res(t) Appro. Sol. Res(t) Appro. Sol. Res(t)

0.2 0.97769562 2.303e-11 0.97781738 2.523e-11 0.97793750 1.097e-08
0.4 0.93755231 1.922e-10 0.93850210 5.644e-10 0.93941622 8.986e-08
0.6 0.88679596 1.270e-09 0.88989715 1.668e-09 0.89279101 5.699e-07
0.8 0.82848267 1.003e-10 0.83554765 1.349e-09 0.84191184 4.528e-08
1.0 0.76469285 1.220e-08 0.77787553 7.121e-07 0.78930457 4.849e-06

Example 6.4. We consider the nonlinear Lane-Emden equation (the white-dwarf equa-
tion) as follows [32,35,49,52]

y′′(t) + k

t
y′(t) + (y2 − C)

3
2 = 0, (6.9)

with the initial conditions

y(0) = 1, y′(0) = 0, (6.10)

where C is real constant.
Eq. (6.9) has introduced by Davis [9] and Chandrasekhar [7] in their study of the

gravitational potential of the degenerate white-dwarf stars.
If C = 0, Eq. (6.9) reduces to standard Lane-Emden equation of index M = 3. For a

thorough discussion of the ”white-dwarf” formula (6.9), see [7].
For C = 0, Wazwaz [52] has obtained a series solution using ADM as follows:

y(t) = 1 − 1
6

t2 + 1
40

t4 − 19
7!

t6 + 619
3.9!

t8 − 17117
5.11!

t10 + · · · . (6.11)

Singh et al [49] have obtained a series solution using MHAM as follows:

y(t) = 1 − 1
6

ω3t2 + 1
40

ω4t4 − 1
7!

ω5[5ω2 + 14]t6 + · · · . (6.12)

where ω =
√

1 − C.
By applying the technique described in the last section, the residual function is as follows:

Res(t) = AT D(2)Φ(t) + 2
t
AT D(1)Φ(t) +

(
(AT Φ(t))2 − C

) 3
2 .

Choosing m − 2 the roots of the GFCFs in the interval [0, η], as collocation points and
substituting them in Res(t), and using of initial conditions, a set of m nonlinear algebraic
equations is generated.

The approximate solution, the analytical solution in Eq. (6.11), and the absolute error
with m = 12 and C = 0 are displayed in Fig. 4.

Graphs of the approximate solutions Eq. (6.9) for various values C with m = 10 are
displayed in Fig. 5.

Table 5 shows the approximate solution, the absolute error, and the residual error
obtained by the present method for C = 0.

Table 6 shows the comparison of the approximate solution obtained by the present
method, the modified Homotopy analysis method (HHAM) [49] and the indirect compactly
supported radial basis function (ICSRBF) [32]. We can see that, with m lesser, the same
answer is obtained.
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(a) Graph of the approximate solution (b) Graph of the absolute error

Figure 4. Graphs of the approximate solution and the analytical solution by
Wazwaz [52], and the absolute error, for Example 6.4 with m = 12 and α = 1.

Figure 5. Graphs of the approximate solutions for various values C with α = 1
for Example 6.4.

Table 5. Comparison of obtained values of y(t) for the white-dwarf equation by
the present method and the analytical solution Wazwaz [52] for Example 6.4 (with
m = 12, α = 1 and C = 0).

t Approximate solution Absolute error Residual error
0.1 0.9983358295691 2.94803e-14 8.3350e-13
0.2 0.9933730935103 2.18628e-14 2.4744e-12
0.3 0.9851997885919 6.86704e-12 9.4507e-12
0.4 0.9739582559198 2.11995e-10 6.4552e-11
0.5 0.9598390699443 3.04297e-09 1.7279e-10
0.6 0.9430731727025 2.67095e-08 2.6826e-10
0.7 0.9239228380229 1.66727e-07 1.8506e-10
0.8 0.9026720891297 8.10698e-07 3.2142e-10
0.9 0.8796171670541 3.25573e-06 2.0274e-09
1.0 0.8550575689885 1.12409e-05 6.4882e-07
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Table 6. Comparison of obtained values of y(t) for the white-dwarf equation by
the present method, Parand and Hemami [32], and Singh et al [49] for Example
6.4 (with α = 1 and various values C).

t C Present ICSRBF MHAM
(m=10) [32] (m=20) [49]

0.0001 0.1 0.99999999 0.999999 0.999999
0.01 0.99998576 0.999985 0.999985
0.1 0.99857899 0.998579 0.998578
0.2 0.99434012 0.994340 0.994340
0.4 0.97773869 0.977738 0.977738
0.6 0.95127016 0.951270 0.951263
0.7 0.93482310 0.934823 0.934801
0.9 0.89667360 0.896673 0.896522

0.0001 0.2 0.99999999 0.999999 0.999999
0.01 0.99998807 0.999988 0.999988
0.1 0.99880902 0.998809 0.998809
0.2 0.99525519 0.995255 0.995251
0.4 0.98132027 0.981320 0.981320
0.6 0.95904987 0.959049 0.959045
0.7 0.94517923 0.945179 0.945165
0.9 0.91291418 0.912913 0.912812

0.0001 0.3 0.99999999 0.999999 0.999999
0.01 0.99999023 0.999990 0.999990
0.1 0.99902512 0.999025 0.999025
0.2 0.99611509 0.996115 0.996115
0.4 0.98469022 0.984690 0.984690
0.6 0.96638409 0.966384 0.966381
0.7 0.95495358 0.954953 0.954944
0.9 0.92828056 0.928280 0.928216

Example 6.5. R.A. Van Gorder has examined the relation between Lane-Emden solutions
and radial solutions to the elliptic Heavenly equation on a disk [51]. He considered the
elliptic Heavenly equation in real variables which reads:

uxx + uyy = k(eu)tt, (6.13)

where k is a non-zero parameter, and u : D × [0, ∞), where D is an unit disk. By using
changing the variables of u = ln(v), v(x, y, t) = f(t)Ψ(x, y) where f(t) = α2

2 t2 + α1t + α0,
and Ψ(x, y) = exp(−kα2Φ(x, y)), he achieved [51]:

Φxx + Φyy + exp(−kα2Φ) = 0, (6.14)

Finally, by assuming a radial solution Φ(x, y) = ϕ(r) where r =
√

x2 + y2, he obtained

d2ϕ

dr2 + 1
r

dϕ

dr
+ exp(−kα2ϕ) = 0, (6.15)

with initial conditions

ϕ′(0) = 0, ϕ(1) = 1. (6.16)

where is a Lane-Emden type equation of the second kind in two dimensions.
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For kα2 = 1, a series solution obtained by Van Gorder [51] as follows:

ϕ(r) = 1.086204345 − 0.08437252357r2 − 0.001780496632r4 (6.17)
−0.00004958392363r6 − 0.000001740401376r8.

By applying the technique described in the last section, the residual function is as follows:

Res(r) = rD(2)ϕ + D(1)ϕ + r exp(−kα2ϕ) = 0.

For α = 2, we choose m − 1 the roots of the GFCFs in the interval [0, 1], as collocation
points and substituting them in Res(r), and using of initial condition ϕ(1) = 1 (because
α = 2 so the condition ϕ′(0) = 0 is satisfy), a set of m nonlinear algebraic equations is
generated.

Figs. 6 shows the absolute error between the approximate solution and the analytical
solution in Eq. (6.17), and the residual error with m = 20 and α = 2.

Table 7 shows the approximate solution, the absolute error, and the residual error
obtained by the present method.

(a) Graph of the absolute error (b) Graph of Log residual error

Figure 6. Graphs of the absolute error and Log residual error for Example 6.5.

Table 7. Comparison of obtained values of ϕ(r) by the present method and the
analytical solution for Example 6.5 (with m = 20, and α = 2)

t Approximate solution Absolute error Residual error
0.0 1.086205127836084 5.0836e-8 0.00e-00
0.1 1.085361212772163 5.0878e-8 9.13e-39
0.2 1.082827328896571 5.1007e-8 5.78e-39
0.3 1.078597042058229 5.1223e-8 4.28e-38
0.4 1.072659568017476 5.1521e-8 4.87e-38
0.5 1.064999680325521 5.1867e-8 4.69e-38
0.6 1.055597579042094 5.2076e-8 1.09e-37
0.7 1.044428717891840 5.1445e-8 1.80e-37
0.8 1.031463586647157 4.7786e-8 2.62e-37
0.9 1.016667444608545 3.5249e-8 4.75e-37
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7. Conclusion
In this paper, the generalized fractional order of the Chebyshev functions of the first

kind are expressed, then the operational matrices of the fractional derivative and the
product are obtained for these orthogonal functions. These matrices can be used to solve
the linear and nonlinear Lane-Emden type equations of fractional order. The fractional
derivative operational matrix of the GFCFs is a lower-triangular matrix, and the product
operational matrix of the GFCFs is a formulation matrix and has an explicit formula, so
they can reduce the costs of computation and storage. The obtained results are compared
with other results to verify the accuracy and efficiency of the scheme presented. The
obtained numerical results are better than the ones provided by other methods. Examples
show that the GFCF collocation method can use to solve ODEs such as the white-dwarf
equation.
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