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Abstract
Given a finite group G, the bipartite divisor graph, denoted by B(G), for its irreducible
character degrees is the bipartite graph with bipartition consisting of cd(G)∗, where cd(G)∗

denotes the nonidentity irreducible character degrees of G and the ρ(G) which is the set of
prime numbers that divide these degrees, and with {p, n} being an edge if gcd(p, n) ̸= 1. In
[Bipartite divisor graph for the set of irreducible character degress, Int. J. Group Theory,
2017], the author considered the cases where B(G) is a path or a cycle and discussed
some properties of G. In particular she proved that B(G) is a cycle if and only if G is
solvable and B(G) is either a cycle of length four or six. Inspired by 2-regularity of cycles,
in this paper we consider the case where B(G) is an n-regular graph for n ∈ {1, 2, 3}.
In particular we prove that there is no solvable group whose bipartite divisor graph is
C4 + C6.
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1. Introduction
Given a finite group G, it is an area of research to convey nontrivial information about

the structure of G through some sets of invariants associated to G such as the set of
degrees of the irreducible complex characters of G and would be interesting to distinguish
the group structure of G influenced by these sets.

It is well known that the set of irreducible characters of G, denoted by Irr(G), can
be used to obtain information about the structure of the group G. In this paper we are
interested in the set of irreducible character degrees of G, that is, cd(G) = {χ(1) : χ ∈
Irr(G)}. When studying problems on character degrees, it is useful to attach the following
graphs, which have been widely studied, to the sets ρ(G) and cd(G) \ {1}.

(i) Prime degree graph, namely ∆(G), which is an undirected graph whose set of
vertices is ρ(G); there is an edge between two different vertices p and q if pq
divides some degree in cd(G).

(ii) Common divisor degree graph, namely Γ(G), which is an undirected graph whose
set of vertices is cd(G) \ {1}; there is an edge between two different vertices m and
k if gcd(m, k) ̸= 1.
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We refer the reader to the overview [8] in which the author discussed many remarkable
connections among these graphs by analysing properties of these graphs for arbitrary
positive integer subsets. Inspired by the survey of Lewis, Praeger and Iranmanesh in [3]
introduced the notion of bipartite divisor graph B(X) for a finite set X of positive integers
as an undirected bipartite graph with vertex set ρ(X) ∪ (cd(X) \ {1}); there is an edge
between vertices p of ρ(G) and m of cd(G) \ {1} if p divides m. Furthermore, they studied
some basic invariants of this graph such as the diameter, girth, number of connected
components and clique number.

One of the main questions in this area of research is classifying the groups whose bi-
partite divisor graphs have special graphical shapes. For instance, in [1], the author of
this paper has considered the cases where the bipartite divisor graph is a path, a union
of paths and a cycle. In particular she proved that for a finite group G, bipartite divisor
graph for the set of irreducible character degrees is a cycle if and only if G is solvable and
B(G) is either a cycle of length four or six. Since cycles are 2-regular connected graphs,
inspired by the results in [1], in this paper we consider the cases where B(G) is k-regular
for k ∈ {1, 2, 3} and obtain some classification on G.

Notation 1.1. For positive integers m and n, we denote the greatest common divisor of
m and n by gcd(m, n); the number of connected components of a graph G by n(G); the
diameter of a graph G by diam(G) (where by the diameter we mean the maximum distance
between vertices in the same connected component of the graph). If G is a disconnected
graph with G1 and G2 as its connected components, then we denote G by G1 + G2. If α is
a vertex of the graph G, then degG(α) is the number of vertices adjacent to α in G. If the
graph is well-understood, then we denote it by deg(α). By length of a path or a cycle,
we mean the number of edges in the path or in the cycle. Also, by Pn and Cn we mean
a path of length n and a cycle of length n, respectively. Let G be a finite solvable group.
We denote the first and second Fitting subgroups of G by F = F (G) and E = E(G),
respectively. As usual we write dl(G) and h(G) to denote the derived length and Fitting
height of G, respectively. Also in a finite group G, cd(G)∗ denotes cd(G) \ {1}. Other
notations throughout the paper are standard.

2. 1-regular bipartite divisor graph
Considering the structure of the bipartite divisor graph of a finite group, it is clear that

0-regularity makes no sense. So we may start by discussing the influence of 1-regularity
of this graph on the group structure.

Theorem 2.1. Suppose G is a finite group and B(G) is 1-regular. Then one of the
following cases occurs:

(1) If G is nonsolvable, then n(B(G)) = 3, G ≃ A × PSL(2, 2n), where A is abelian
and n ∈ {2, 3}.

(2) If G is solvable, then one of the following properties holds:
(i) for a prime p either G ≃ P × A, where P is a non-abelian p-group with

cd(P ) = {1, pα} for some α ≥ 1 and A is abelian, or F (G) is the only abelian
subgroup of G with [G : F (G)] = pα ∈ cd(G), for some α ≥ 1. In particular
cd(G) = {1, pα}.

(ii) h(G) ∈ {2, 3} and G, with respect to its Fitting height, has one of the two
structures mentioned in [6, Lemma 4.1]. In particular:

(a) If h(G) = 3, then cd(G) = {1, [G : E], [E : F ]}, where [G : E] is a prime
s and E

F is a cyclic t-group for a prime t ̸= s.
(b) If h(G) = 2, we have cd(G) = {[G : F ]} ∪ cd(F ), where G

F is a cyclic
t-group for a prime t and |cd(F )| = 2.
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Proof. 1-regularity of B(G) implies that each connected component is a path of length
one. First suppose that G is nonsolvable. As, in this case, |cd(G)| > 3 and n(B(G)) ≤ 3 by
[8, Theorem 6.4(1)], 1-regularity of B(G) implies that B(G), (so does ∆(G)), has exactly
three connected components. Now [8, Theorem 6.4(2)] verifies that G ≃ A × PSL(2, 2n),
where A is abelian and n ≥ 2. As |ρ(PSL(2, 2n))| = |ρ(G)| = 3, by [2] we conclude that
n ∈ {2, 3}.

Now suppose that G is solvable. Then B(G) has at most two connected components.
If B(G) is connected, then we have cd(G) = {1, pα}, for a prime p and a positive integer
α ≥ 1. This implies that either G ≃ P × A, where P is a non-abelian p-group and A is
abelian, or F (G) is the only abelian subgroup of G with [G : F (G)] = pα ∈ cd(G), by
[11, Lemma 1.6].

Consider the case where n(B(G)) = 2; then by the structure of B(G) we can see that
cd(G) = {1, pα, qβ} for distinct primes p and q and for some positive integers α and β. Since
pαqβ /∈ cd(G), G is not nilpotent, so h(G) ≥ 2. On the other hand, by [4, Corollary 12.21],
we have h(G) ≤ |cd(G)| = 3. Hence h(G) ∈ {2, 3} and G, with respect to its Fitting height,
has one of the two structures mentioned in [6, Lemma 4.1]. In particular if h(G) = 3, then
cd(G) = {1, [G : E], [E : F ]}, where [G : E] is a prime s ∈ {p, q} and E

F is a cyclic t-group
for some t ∈ {p, q}, where t ̸= s. While h(G) = 2, we have cd(G) = {[G : F ]} ∪ cd(F ),
where G

F is a cyclic t-group for some t ∈ {p, q} and |cd(F )| = 2. �

3. 2-regular and 3-regular bipartite divisor graph
Lemma 3.1. Let G be a finite group whose B(G) is a connected 2-regular graph. Then
G is solvable with dl(G) ≤ 4 and B(G) is either a cycle of length four or six.

Proof. As a connected 2-regular graph is a cycle, by [1, Theorem 8, Corollary 9] the
proof is complete. �
Theorem 3.2. Suppose that G is a finite group whose B(G) is 2-regular. Then G is
solvable and B(G) is a cycle of length four or six.

Proof. Assume that B(G) is a 2-regular disconnected graph. As 2n is a vertex of degree
one in B(PSL(2, 2n)) and n(∆(G)) = n(B(G)), by [8, Theorem 6.4] we conclude that
n(B(G)) ̸= 3. Hence B(G) has two connected components and each component is a cycle.
Since n(∆(G)) = n(B(G)) = 2, [8, Theorem 6.4] implies that while G is nonsolvable, there
is a prime p ∈ ρ(G) which is an isolated vertex of ∆(G), which contradicts the structure of
B(G). Therefore G is solvable. [8, Corollary 4.2] verifies that each connected component
of ∆(G) is a complete graph. As B(G) is 2-regular, the connected components of ∆(G)
belongs to {K2, K3}. Thus we have the following cases for B(G):

{C4 + C4, C4 + C6, C6 + C6}
By [8, Theorem 4.3, Theorem 7.1], none of the cases C4 + C4 and C6 + C6 is possible.
Suppose that G is a solvable group whose B(G) is C4 + C6. Hence G is one of the six-type
groups mentioned in [7]. Using the lemmas in the third chapter of [7], we can see that for
groups of types 1, 2, 3 and 5, ∆(G) has an isolated vertex which is impossible. Suppose
that G is a group of type 4. This implies that G is a semi-direct product of a subgroup H
acting on an elementary abelian p-group for some prime p. Let K be the Fitting subgroup
of H, m = [H : K] > 1, F = F (G), and E/F = F (G/F ). Then [7, Lemma 3.4] verifies
that {1, m, [E : F ]} ⊆ cd(G), where π(m) and π([E : F ]) are the connected components
of ∆(G). Hence either m or [E : F ] is divisible by three primes which contradicts the
structure of B(G). So G is not a group of type 4. Now assume that G is a group of
type 6; where G is a semi-direct product of an abelian subgroup D acting coprimely on a
subgroup T so that [T, D] is a Frobenius group with a Frobenius kernel A = T

′ = [T, D]′ ,
where A is a non-abelian p-group for a prime p and a Frobenius complement B with
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[B, D] ⊆ B. Let m = [D : CD(A)] and q is a power of p so that [A : A
′ ] = qm. Then by

[7, Lemma 3.6], G/A
′ has the properties of groups of type 4 and F

A′ is the Fitting subgroup

of G
A′ . As E

F = F (G
F ) ≃ F (G/A

′

F/A′ ) and G
A′ has the properties of groups of type 4, applying

[7, Lemma 3.4 (vi)] we can see that {1, m, [E : F ]} ⊆ cd(G/A
′) ⊆ cd(G), where π(m)

and π([E : F ]) ∪ {p} are the connected components of ∆(G). Now 2-regularity of B(G)
implies that |π(m)| = |π([E : F ])| = 2. Without loss of generality we may assume that
π(m) = {r, s} and π([E : F ]) = {q, t}. Let η ∈ Irr(G|A′) be nonlinear. [7, Lemma 3.6
(vi)] implies that p|B| divides η(1) and η(1) divides |P |[E : F ]. Since B(G) is 2-regular,
we deduce that that |B| is divisible by either q or t. Without loss of generality, assume
that |B| = qγ , for a nonzero positive integer γ. Now we have η(1) = pαqβ, for some
positive integers α, β ≥ 1. As cd(G) = cd(G/A

′) ∪ cd(G|A′), we conclude that there is no
irreducible character degree of G which is divisible by the primes p and t, a contradiction.
Hence there exists no solvable group G whose B(G) is C4 + C6.

At last we conclude that B(G) is a connected 2-regular graph. Now Lemma 3.1 verifies
that G is solvable with dl(G) ≤ 4 and B(G) is either a cycle of length four or six. �
Corollary 3.3. Suppose that G is a finite group whose B(G) is a 2-regular graph. Then
its diameter is at most 3. In particular, if diam(B(G)) = 2, then there exists a normal
abelian Hall subgroup N of G such that cd(G) = {[G : IG(λ)] : λ ∈ Irr(N)}.

Proof. The proof is clear by Theorem 3.2 and [1, Theorem 11]. �
Theorem 3.4. Suppose that B(G) is 3-regular for a finite group G. Then B(G) is
connected.

Proof. Let G be a finite group whose B(G) is 3-regular. Neither ∆(G) nor Γ(G) have
an isolated vertex which implies that n(B(G)) is neither 3 nor 2 while G is nonsolvable.
Suppose that n(B(G)) = 2 and G is solvable. Since n(∆(G)) = n(B(G)), [7] implies that
G is one the groups of types one to six with respect to the notations of [7]. As for any
group of types 1, 2, 3 and 5, ∆(G) has an isolated vertex, we deduce that G is either a
group of type four or six. G is not a group of type four, since [7] implies that Γ(G) has
an isolated vertex, which contradicts the structure of B(G). Suppose that G is a group
of type six. By [7, Lemma 3.4, Lemma 3.6], with respect to the notations there, and
similar to the proof of Theorem 3.2, we deduce that {1, m, [E : F ]} ⊆ cd(G), where π(m)
and π([E : F ]) ∪ {p} are the connected components of ∆(G). Since B(G) is 3-regular,
we conclude that |π(m)| = |π([E : F ])| = 3. Thus one of the components of ∆(G) has
3 vertices, while the other one has 4 vertices, which contradicts [8, Theorem 4.3]. All
together, we conclude that n(B(G)) ̸= 2 which implies that B(G) is connected. �
Theorem 3.5. Let G be a group whose B(G) is a 3-regular graph. If ∆(G) is n-regular
for n ∈ {2, 3}, then G is solvable and ∆(G) ≃ Kn+1 ≃ Γ(G) .

Proof. As B(G) is 3-regular, Theorem 3.4 implies that n(B(G)) = 1.
Let G be a solvable group. Suppose ∆(G) is a 2-regular graph. Since a connected

2-regular graph is a cycle, [12, Theorem C] implies that |ρ(G)| ≤ 4, therefore ∆(G)
is either a triangle or a square. First suppose that ∆(G) is a square; [9] verifies that
G ≃ H × K, where both ∆(H) and ∆(K) are disconnected graphs with two isolated
vertices, furthermore ρ(H) ∩ ρ(K) = ∅. This contradicts 3-regularity of B(G), so ∆(G) is
a triangle. It is easy to see that 3-regularity of B(G), forces Γ(G) to be a triangle. Now
suppose that ∆(G) is 3-regular. [13, Theorem 3.2] implies that ∆(G) is isomorphic with
K4, in particular |ρ(G)| = 4. We may assume that ρ(G) = {p, q, r, s}. As degB(G)(p) = 3,
there exists {m1, m2, m3} ⊆ cd(G) with a common prime divisor p. Since the number
of odd vertices in a graph is even, |cd(G) \ {1}| ≥ 4. By the structure of B(G) we can
see that |cd(G) \ {1}| = 4 which implies that there exists m4 ∈ cd(G) \ {1} such that
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cd(G) = {1, m1, m2, m3, m4}. We can see that π(m4) = {q, r, s}. By symmetry we may
assume that π(m1) = {p, q, r}. The case π(m2) = {p, q, r} is impossible. Now it is easy to
see that Γ(G) ≃ K4.

Let G be a nonsolvable group. First suppose that ∆(G) is 2-regular. By [12, Theorem
C] we conclude that ∆(G) is either a triangle or a square. Now [10, Theorem B] verifies
that square is not the prime degree graph of a nonsolvable group, hence ∆(G) is a triangle.
Similar to the previous part, one can see that 2-regularity of ∆(G) forces Γ(G) to be a
triangle. Now [8] implies that G is solvable, a contradiction. Thus ∆(G) is not 2-regular.
If ∆(G) is 3-regular, then [13] implies that ∆(G) is isomorphic with K4. Now similar
to the solvable case, we can see that Γ(G) is complete, hence G is solvable which is a
contradiction. Thus if G is a nonsolvable group whose B(G) is 3-regular, then ∆(G) is
neither 2-regular, nor 3-regular. �
Corollary 3.6. Let G be a solvable group whose B(G) is a 3-regular graph. If at least
one of ∆(G) or Γ(G) is not complete, then ∆(G) is neither 2-regular, nor 3-regular.

Proof. The proof is clear by Theorem 3.5. �
Corollary 3.7. Let G be a solvable group whose B(G) is a 3-regular graph. If ∆(G) is
regular, then it is a complete graph. Furthermore, if Γ(G) is not complete, then ∆(G) is
isomorphic with Kn, for n ≥ 5.

Proof. As B(G) is 3-regular, Theorem 3.4 implies that n(B(G)) = 1. If ∆(G) is a regular
graph which is not complete, then it has no complete vertices. Now the main theorem of
[5] implies that G ≃

∏
Mi, where for each i, Mi = PiQi with Pi ∈ Sylpi(G) is normal non-

abelian, and Qi ∈ Sylqi(G) is not normal in G. This contradicts three regularity of B(G),
hence ∆(G) is a complete graph. In particular, if Γ(G) is not complete, by Corollary 3.6,
we deduce that ∆(G) isomorphic with Kn, for n ≥ 5. �
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