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Abstract
Let G be a group and X a subset of G. Then C(G, X) is a graph with vertex set X in which
two distinct elements x, y ∈ X are joined by an edge if xy = yx. In this paper, we study
the clique number, the domination number, the diameter, the planarity, the perfection
and regularity of C(G, X) where G = GL(n, q) and X is the set of transvections.
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1. Introduction and preliminaries
We consider simple graphs which are undirected, with no loops or multiple edges. For

any graph Γ, we denote the sets of the vertices and edges of Γ by V (Γ) and E(Γ), respec-
tively. A graph Γ is regular if all the vertices of Γ have the same degree. A subset X of
V (Γ) is called a clique if the induced subgraph on X is a complete graph. The maximum
size of a clique in a graph Γ is called the clique number of Γ and is denoted by ω(Γ). A
subset X of V (Γ) is called an independent set if the induced subgraph on X has no edges.
The maximum size of an independent set in a graph Γ is called the independence number
of Γ and is denoted by α(Γ). A k-vertex colouring of a graph Γ is an assignment of k
colours to the vertices of Γ such that no two adjacent vertices have the same colour. The
vertex chromatic number χ(Γ) of a graph Γ, is the minimum k for which Γ has a k-vertex
colouring. For a graph Γ and a subset S of the vertex set V (Γ), denote by NΓ[S] the
set of vertices in Γ which are in S or adjacent to a vertex in S. If NΓ[S] = V (Γ), then
S is said to be a dominating set of vertices in Γ. The domination number of a graph Γ,
denoted by γ(Γ), is the minimum size of a dominating set of vertices in Γ. The length of
the shortest cycle in a graph Γ is called the girth of Γ and denoted by girth(Γ). If v and
w are vertices in Γ, then d(v, w) denotes the length of the shortest path between v and
w. The largest distance between all pairs of the vertices of Γ is called the diameter of Γ,
and is denoted by diam(Γ). A graph Γ is connected if there is a path between each pair
of vertices of Γ. A planar graph is a graph that can be embedded in the plane so that no
two edges intersect geometrically except at a vertex to which both are incident. A graph
Γ is called perfect if for every induced subgraph H of Γ, ω(H) = χ(H), and Γ is Berge if
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no induced subgraph of Γ is an odd cycle of length at least five or the complement of one.
The following theorems and definitions will be used repeatedly.

Theorem 1.1. [2, Theorem 1.2] A graph is perfect if and only if it is Berge.

Definition 1.2. [4, Definition and Theorem 8.5] If V is an n-dimensional vector space
over a field F , then the general linear group GL(V ) is the group of all nonsingular linear
transformations on V with respect to the composition of mappings.
Choosing an ordered basis of V gives an isomorphism GL(V ) −→ GL(n, F ), where
GL(n, F ) is the group of all invertible n × n matrices over F . If F is finite, with q
elements, this group is denoted by GL(n, q). Also

|GL(n, q)| = (qn − 1)(qn − q) . . . (qn − qn−1).

The determinant function det : GL(n, F ) −→ F ⋆ is a homomorphism which maps the
identity matrix to 1, and it is multiplicative, as desired. The special linear group, SL(n, F ),
is the kernel of this homomorphism. The center of GL(V ) is Z(GL(V )) = {λI : λ ∈ F ⋆}
and the center of SL(n, F ) is Z(SL(n, F )) = {λI : λ ∈ F ⋆, λn = 1}. Define the projective
general linear group and the projective special linear group on V to be

PGL(V ) = GL(V )
Z(GL(V ))

, PSL(V ) = SL(V )
Z(SL(V ))

.

A hyperplane W in V is a subspace of dimension n − 1. Let W be a hyperplane of V . If
I 6= T ∈ GL(V ) satisfies:

T (w) = w ∀w ∈ W, T (v) − v ∈ W ∀ v ∈ V

then T is called a transvection with respect to W and W is called the axis of the
transvection T . For each transvection T , det(T ) = 1. So T ∈ SL(V ). The inverse of
a transvection is a transvection. The set of transvections generates SL(V ). Given a
nonzero linear functional f on V and a nonzero vector a ∈ ker f , define Ta,f : V −→ V
by Ta,f : v 7−→ v − f(v)a. It is clear that Ta,f is a transvection. Moreover, for every
transvection T there exist f 6= 0 and a 6= 0 with T = Ta,f .

Theorem 1.3. Let V be an n-dimensional vector space over a field F . Then intersection
of null space of k independent linear functionals is an (n − k)-dimensional subspace of V .

Proposition 1.4. [4, Corollary 8.18 and Theorem 8.21] All transvections in GL(n, F ) are
conjugate. If n ≥ 3, then they are conjugate in SL(n, F ).

Lemma 1.5. [4, Lemma 8.19] Let V be a vector space over F . Ta,f = Tb,g if and only if
there is a scalar α ∈ F ⋆ with g = αf and a = αb.

For a hyperplane W in a vector space V , we set τ(W ) = { all transvections fixing W
} ∪ {1V }.

Lemma 1.6. [4, Lemma 8.22] Let W be a hyperplane in an n-dimensional vector space
V over F . τ(W ) is an abelian subgroup of SL(V ), and τ(W ) ∼= W .

Definition 1.7. [1] A graph Γ is vertex-transitive if the automorphism group of Γ acts
transitively on the vertex set of Γ.

Theorem 1.8. [1, Theorem 7.1] Let Γ be a k-regular, connected, vertex-transitive graph
of order n. Then

(1) If n is even, then Γ has a 1-factor.
(2) The product of the clique number and the independence number of Γ is at most n.
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2. Main result
The purpose of this note is to study certain properties of the commuting graph C(G, X) =

Γ where G = GL(n, q) and X is the set of transvections in G. Throughout this paper V
is a vector space with dim(V ) = n on a finite field F with |F | = q.

Lemma 2.1. For a proper subspace U of V , set SU = {Ta,f |a ∈ U, U ⊆ ker f}. Then
|SU | = (qi−1)(qn−i−1)

q−1 , where i = dim(U).

Proof. We have {f : V → F |U ⊆ ker f} ∼= {f̄ : V
U → F}. So there are qn−i − 1 candidates

for f , that is the number of nonzero linear functionals from V
U into F , and qi −1 candidates

for a (the zero vector is not a candidate). By Lemma 1.5, |SW | = (qi−1)(qn−i−1)
q−1 . �

Lemma 2.2. |V (Γ)| = (qn−1)(qn−1−1)
q−1 .

Proof. We consider a fixed hyperplane W . It is sufficient to calculate |{Ta,f |a ∈ W , W =
ker f}|. Since the number of hyperplanes in V is equal to qn−1

q−1 , we have |V (Γ)| =
(qn−1)(qn−1−1)

q−1 by Lemma 2.1. �

Lemma 2.3. [3, Lemma 1, part (iv)] Let Ta,f and Tb,g be two transvections on V with
fixed hyperplanes W1 and W2, respectively. Then [Ta,f , Tb,g] = 1 if and only if a ∈ ker g
and b ∈ ker f .

Lemma 2.4. Γ is k-regular with k = (q−1)(qn−1−1)+q(qn−2−1)2

q−1 − 1.

Proof. By proposition 1.4, Γ is a k-regular graph. Let Ta,f be a transvection. It is
sufficient to calculate |{(b, g)|b ∈ ker f , a ∈ ker g}|. We have

|{(b, g)|b ∈ 〈a〉 , a ∈ ker g}| = (|〈a〉| − 1) (
∣∣∣∣( V

〈a〉
)∗

∣∣∣∣ − 1)

= (q − 1)(qn−1 − 1)
and

|{(b, g)|b ∈ ker f , a ∈ ker g , 〈a〉 6= 〈b〉}| = |ker f − 〈a〉| (
∣∣∣∣( V

〈a, b〉
)∗

∣∣∣∣ − 1)

= (qn−1 − q)(qn−2 − 1),

where ( V
〈a〉)∗ is the vector space of all linear functionals from V

〈a〉 to F and ( V
〈a,b〉

)∗ is defined
similarly. It follows that

k = (q − 1)(qn−1 − 1) + q(qn−2 − 1)2

q − 1
− 1.

�
Theorem 2.5. (1) For dim(V ) = 2, Γ is disconnected.

(2) For dim(V ) = 3, diam(Γ) = 3.
(3) For dim(V ) > 3, diam(Γ) = 2.

Proof. Let Ta,f and Tb,g be two transvections on V with fixed hyperplanes W1 = ker f and
W2 = ker g, respectively. If dim(V ) = 2 then dim(ker f) = 1. Since a ∈ ker f , b ∈ ker f if
and only if 〈b〉 = 〈a〉. It follows that Γ is disconnected.
Suppose that dim(V ) = 3. If W1 = W2 then d(Ta,f , Tb,g) = 1. If W1 6= W2 then W1 ∩W2 6=
0 and there exists a nonzero element u ∈ W1 ∩ W2. Since dim(〈u, b〉) ≤ 2, there is
γ : V −→ F such that 〈u, b〉 ⊆ ker γ. It follows that [Tb,g, Tu,γ ] = 1. Also there exists
δ : V −→ F such that 〈u, a〉 ⊆ ker δ. Hence [Ta,f , Tu,δ] = 1. Also [Tu,γ , Tu,δ] = 1,
thus d(Ta,f , Tb,g) ≤ 3 and diam(Γ) ≤ 3. Now we show that diam(Γ) = 3. There exist
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transvections Tv1,f1 and Tv2,f2 , where ker f1 = W1 and ker f2 = W2, such that v1 /∈ W2 and
v2 /∈ W1. If there exists a transvection Tu,h, where ker h = W , such that [Tv1,f1 , Tu,h] = 1
and [Tv2,f2 , Tu,h] = 1 then v1, v2 ∈ W . Since 〈v1〉 6= 〈v2〉 and dim(W ) = 2, we obtain
W = 〈v1, v2〉. It follows that u = λ1v1 + λ2v2 and hence u − λ1v1 ∈ W2. This is a
contradiction. Hence diam(Γ) = 3.
Now assume that dim(V ) > 3. If W1 = W2 then d(Ta,f , Tb,g) = 1. If W1 6= W2 then
W1 ∩ W2 6= 0 and there exists a nonzero element u ∈ W1 ∩ W2. Since dim(〈u, a, b〉) ≤ 3,
there is µ : V −→ F such that 〈u, a, b〉 ⊆ ker µ. Now [Ta,f , Tu,µ] = 1 and [Tb,g, Tu,µ] = 1.
This implies that d(Ta,f , Tb,g) ≤ 2. Hence diam(Γ) ≤ 2. Now we show that diam(Γ) = 2.
Let W1, W2 be two distinct hyperplanes, v1 ∈ W1 − W2 and v2 ∈ W2 − W1. Notice that
[Tv1,f1 , Tv2,f2 ] 6= 1, where ker f1 = W1 and ker f2 = W2. Thus diam(Γ) = 2. �

Theorem 2.6. ω(Γ) = (qk−1)(qn−k−1)
q−1 where k = [n

2 ].

Proof. We have [Tai,fi
, Taj ,fj

] = 1 for all 1 ≤ i, j ≤ t if and only if a1, a2, . . . , at ∈⋂t
i=1 ker fi. So {Ta1,f1 , Ta2,f2 , . . . , Tat,ft} is a complete subgraph of Γ if and only if there

exists a subspace W of V such that a1, a2, . . . , at ∈ W and W ⊆ ker fi for all 1 ≤ i ≤ t. It
is sufficient to calculate |SW |. Let U1, U2, . . ., Un−1 be subspaces of V with dim(Ui) = i.
By Lemma 2.1, |SU1 | = |SUn−1 | < |SU2 | = |SUn−2 | < · · · . Therefore ω(Γ) = |SU[ n

2 ] |. �

Corollary 2.7. If dim(V ) ≥ 3, then the girth of Γ is equal to 3.

Theorem 2.8. For dim(V ) > 2, Γ is not planar.

Proof. Let W be a hyperplane of V . By Lemma 1.6, τ(W ) ∼= W and we have a complete
subgraph K|W |−1. Hence if qn−1 − 1 ≥ 5 then Γ is not planar. If qn−1 − 1 < 5 then
q = 2, n = 3 and V = Z2 × Z2 × Z2. Let W1 = Z2 × Z2 × 0, W2 = Z2 × 0 × Z2,
W3 = 0 × Z2 × Z2, W4 = 〈(1, 0, 0), (0, 1, 1)〉, W5 = 〈(1, 0, 1), (0, 1, 0)〉 be hyperplanes of V .
Set Ai = {Ta,f |a ∈ ker f = Wi}. For all u ∈ Wi ∩ Wj , there exist Tu,fi

∈ Ai, Tu,fj
∈ Aj .

Then, with contraction of Ai, where 1 ≤ i ≤ 5, we obtain a complete graph K5. This
completes the proof. �
Theorem 2.9. Γ is perfect if and only if dim(V ) = 3.

Proof. Let dim(V ) = 3 . Suppose that Γ has an induced cycle of length m ≥ 4. Also as-
sume that Tv1,f1 , Tv2,f2 , Tv3,f3 are three consecutive vertices of this cycle, where ker fi = Wi

for all 1 ≤ i ≤ 3. We have v1 ∈ W1 ∩W2, v2 ∈ W1 ∩W2 ∩W3, v3 ∈ W2 ∩W3. If Wi 6= Wj for
all 1 ≤ i, j ≤ 3, 1 ≤ dim(W1∩W2∩W3) ≤ dim(W1∩W2) = 1, then W1∩W2∩W3 = W1∩W2.
Similarly, W1 ∩ W2 ∩ W3 = W2 ∩ W3. Hence W1 ∩ W2 = W2 ∩ W3. Thus v1 ∈ W3 and
v3 ∈ W1, a contradiction. Hence W1 = W2 or W2 = W3. Since m ≥ 4, W1 6= W3.
Concequently we can assume W1 = W2, W3 = W4, W5 = W6, · · · . If m is odd, then
Tvm−1,fm−1 , Tvm,fm , Tv1,f1 are three consecutive vertices and, W1 = W2, Wm−1 = Wm−2.
Then Wm 6= W1 and Wm 6= Wm−1, a contradiction. Thus m is even and Γ has no odd
induced cycle of length at least five. It follows that Γ is perfect.
Now let dim(V ) = 4 and V = 〈v1, v2, v3, v4〉. Assume that W1 = 〈v1, v2, v3〉, W2 =
〈v1, v2, v4〉 and W = 〈v1, v3, v4〉. Since |V − (W1 ∪ W2 ∪ W )| = q4 − 3q3 + 3q2 − q =
q(q − 1)3 > 0, there is v5 ∈ V − (W1 ∪ W2 ∪ W ). Set W3 = 〈v2, v4, v5〉, W4 = 〈v3, v4, v5〉
and W5 = 〈v1, v3, v5〉. If v4 ∈ W5 then v4 = λ1v1 + λ3v3 + λ5v5. Since v1, v3, v4 are
independent, we have λ5 6= 0 and v5 ∈ W , which is a contradiction. Thus v4 /∈ W5. Also
v4 /∈ W1. Hence v4 /∈ W1 ∩ W5. Similarly, v3 /∈ W3 ∩ W2, v1 /∈ W3 ∩ W4, v2 /∈ W4 ∩ W5,
v5 /∈ W1 ∩ W2. Now Tv1,f1 , Tv2,f2 , Tv4,f3 , Tv5,f4 , Tv3,f5 forms an induced cycle of length
5, where ker fi = Wi for all 1 ≤ i ≤ 5. Since the complement of any induced cycle of
length 5 in Γ is an induced cycle of length 5 in Γ, Γ and Γ have induced cycles of length
5. Concequently Γ is not perfect.
Now assume that dim(V ) ≥ 5 and V = 〈v1, . . . , v5〉 ⊕ W . Suppose that Wi =
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〈{v1, v2, v3, v4, v5} − {vi}〉 ⊕ W for 1 ≤ i ≤ 5. Then Tv1,f5 , Tv4,f3 , Tv2,f1 , Tv5,f4 , Tv3,f2
forms an induced cycle of length 5, where ker fi = Wi for all 1 ≤ i ≤ 5. Concequently,
both Γ and Γ have induced cycles of length 5 and Γ is not perfect. �
Corollary 2.10. If dim(V ) = 3, then χ(Γ) = ω(Γ) = q2 − 1.

Theorem 2.11. For n ≥ 3, γ(Γ) ≤ min{(q + 1)2, qn−1
q−1 } and for q = 2 or n ≥ 5,

γ(Γ) ≥ q2.

Proof. For each hyperplane W , let aW be a nonzero element of W and fW be a linear
functional with ker fW = W . Set S = {TaW ,fW

| W is a hyperplane of V }. Let Tb,g ∈ V (Γ)
and ker g = W1. Then TaW1 ,fW1

∈ S and [Tb,g, TaW1 ,fW1
] = 1. Hence S is a dominating set

for Γ, and so γ(Γ) ≤ qn−1
q−1 . Now assume that dim(V ) ≥ 4. Let W be a subspace of V with

dim(W ) = n − 2. Observe that V has q + 1 hyperplanes W1, W2, . . ., Wq+1 containing
W . Let f1, f2, . . . , fq+1 be linear functionals with ker fj = Wj for j = 1, 2, . . . , q + 1.
Clearly, we have V = W1 ∪ W2 ∪ . . . ∪ Wq+1. Let U be a subspace of W with dim(U) = 2
and let 〈a1〉, 〈a2〉, . . . , 〈aq+1〉 be all distinct one dimensional subspaces of U . We claim
now that S = {Tai,fj

|i, j ∈ {1, 2, . . . , q + 1}} is a dominating set for Γ. For an ordinary
transvection Tb,g, there exists Wj such that b ∈ Wj . Since dim(U ∩ ker g) = 1, there exists
ai ∈ ker g. It then follows that [Tai,fj

, Tb,g] = 1, which proves the claim. Thus, we get
γ(Γ) ≤ |S| = (q + 1)2 as desired. Now suppose γ(Γ) = t. Since Γ is k-regular, we have

t ≥ |V (Γ)|
k

= (qn − 1)(qn−1 − 1)
(q − 1)(qn−1 − 1) + (qn−1 − q)(qn−2 − 1) − (q − 1)

≥ q2n−1 − qn − qn−1 + 1
q2n−3 + qn − 3qn−1 − q + 2

>
q2n−1 − qn − qn−1

q2n−3 + qn − 3qn−1

>
(qn − q − 1)

(qn−2 + q − 3)
.

But for q = 2 or n ≥ 5, (qn−q−1)
(qn−2+q−3) > q2 − 1. Hence q2 ≤ γ(Γ). This completes the

proof. �

Theorem 2.12. If q is odd, then Γ has a 1-factor and α(Γ) ≤ (qn−1)(qn−1−1)
(q−1)(q[ n

2 ]−1)(qn−[ n
2 ]−1)

.

Proof. It follows from Theorem 1.8. �
Example 2.13. Let G = GL(3, 2). Then the commuting graph Γ = C(G, X) satisfies the
following conditions:

(1) |V (Γ)| = 21.
(2) Γ is 4-regular.
(3) |E(Γ)| = 42.
(4) diam(Γ) = 3.
(5) Γ is perfect.
(6) χ(Γ) = ω(Γ) = 3.
(7) γ(Γ) = 5.

Proof. Parts (1) − (6) are clear. For part (7), by Theorem 2.11, we have 4 ≤ γ(Γ) ≤ 7.
Since
4 × 5 ≤ |V (Γ)| = 21, γ(Γ) ≥ 5. Observe that {Tv1,f1 , Tv2,f2 , Tv3,f3 , Tv5,f5 , Tv6,f6} is a
dominating set, where v1 = (1, 0, 0), v2 = (1, 0, 1), v3 = (0, 1, 1), v5 = (1, 1, 1), v6 =
(1, 1, 0) and ker f1 = Z2 × Z2 × 0, ker f2 = Z2 × 0 × Z2, ker f3 = 0 × Z2 × Z2, ker f5 =
〈(1, 0, 1), (0, 1, 0)〉, ker f6 = 〈(1, 1, 0), (0, 0, 1)〉. Thus γ(Γ) = 5. �
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