A note on commuting graphs for general linear groups

Maryam Nasiri ${ }^{(D)}$, Sayyed Heidar Jafari* ${ }^{\text {(D) }}$
Department of Mathematics, Shahrood University of Technology, Shahrood, P.O. Box: 316-3619995161, Iran

Abstract

Let G be a group and X a subset of G. Then $\mathcal{C}(G, X)$ is a graph with vertex set X in which two distinct elements $x, y \in X$ are joined by an edge if $x y=y x$. In this paper, we study the clique number, the domination number, the diameter, the planarity, the perfection and regularity of $\mathcal{C}(G, X)$ where $G=G L(n, q)$ and X is the set of transvections.

Mathematics Subject Classification (2010). 20D99, 05C69, 05C25, 20G40
Keywords. commuting graph, transvections, clique, domination, perfection, planarity

1. Introduction and preliminaries

We consider simple graphs which are undirected, with no loops or multiple edges. For any graph Γ, we denote the sets of the vertices and edges of Γ by $V(\Gamma)$ and $E(\Gamma)$, respectively. A graph Γ is regular if all the vertices of Γ have the same degree. A subset X of $V(\Gamma)$ is called a clique if the induced subgraph on X is a complete graph. The maximum size of a clique in a graph Γ is called the clique number of Γ and is denoted by $\omega(\Gamma)$. A subset X of $V(\Gamma)$ is called an independent set if the induced subgraph on X has no edges. The maximum size of an independent set in a graph Γ is called the independence number of Γ and is denoted by $\alpha(\Gamma)$. A k-vertex colouring of a graph Γ is an assignment of k colours to the vertices of Γ such that no two adjacent vertices have the same colour. The vertex chromatic number $\chi(\Gamma)$ of a graph Γ, is the minimum k for which Γ has a k-vertex colouring. For a graph Γ and a subset S of the vertex set $V(\Gamma)$, denote by $N_{\Gamma}[S]$ the set of vertices in Γ which are in S or adjacent to a vertex in S. If $N_{\Gamma}[S]=V(\Gamma)$, then S is said to be a dominating set of vertices in Γ. The domination number of a graph Γ, denoted by $\gamma(\Gamma)$, is the minimum size of a dominating set of vertices in Γ. The length of the shortest cycle in a graph Γ is called the girth of Γ and denoted by girth (Γ). If v and w are vertices in Γ, then $d(v, w)$ denotes the length of the shortest path between v and w. The largest distance between all pairs of the vertices of Γ is called the diameter of Γ, and is denoted by $\operatorname{diam}(\Gamma)$. A graph Γ is connected if there is a path between each pair of vertices of Γ. A planar graph is a graph that can be embedded in the plane so that no two edges intersect geometrically except at a vertex to which both are incident. A graph Γ is called perfect if for every induced subgraph H of $\Gamma, \omega(H)=\chi(H)$, and Γ is Berge if

[^0]no induced subgraph of Γ is an odd cycle of length at least five or the complement of one. The following theorems and definitions will be used repeatedly.
Theorem 1.1. [2, Theorem 1.2] A graph is perfect if and only if it is Berge.
Definition 1.2. [4, Definition and Theorem 8.5] If V is an n-dimensional vector space over a field F, then the general linear group $G L(V)$ is the group of all nonsingular linear transformations on V with respect to the composition of mappings.
Choosing an ordered basis of V gives an isomorphism $G L(V) \longrightarrow G L(n, F)$, where $G L(n, F)$ is the group of all invertible $n \times n$ matrices over F. If F is finite, with q elements, this group is denoted by $G L(n, q)$. Also
$$
|G L(n, q)|=\left(q^{n}-1\right)\left(q^{n}-q\right) \ldots\left(q^{n}-q^{n-1}\right) .
$$

The determinant function det : $G L(n, F) \longrightarrow F^{\star}$ is a homomorphism which maps the identity matrix to 1 , and it is multiplicative, as desired. The special linear group, $S L(n, F)$, is the kernel of this homomorphism. The center of $G L(V)$ is $Z(G L(V))=\left\{\lambda I: \lambda \in F^{\star}\right\}$ and the center of $S L(n, F)$ is $Z(S L(n, F))=\left\{\lambda I: \lambda \in F^{\star}, \lambda^{n}=1\right\}$. Define the projective general linear group and the projective special linear group on V to be

$$
P G L(V)=\frac{G L(V)}{Z(G L(V))}, \quad P S L(V)=\frac{S L(V)}{Z(S L(V))} .
$$

A hyperplane W in V is a subspace of dimension $n-1$. Let W be a hyperplane of V. If $I \neq T \in G L(V)$ satisfies:

$$
T(w)=w \quad \forall w \in W, T(v)-v \in W \quad \forall v \in V
$$

then T is called a transvection with respect to W and W is called the axis of the transvection T. For each transvection $T, \operatorname{det}(T)=1$. So $T \in S L(V)$. The inverse of a transvection is a transvection. The set of transvections generates $S L(V)$. Given a nonzero linear functional f on V and a nonzero vector $a \in \operatorname{ker} f$, define $T_{a, f}: V \longrightarrow V$ by $T_{a, f}: v \longmapsto v-f(v) a$. It is clear that $T_{a, f}$ is a transvection. Moreover, for every transvection T there exist $f \neq 0$ and $a \neq 0$ with $T=T_{a, f}$.
Theorem 1.3. Let V be an n-dimensional vector space over a field F. Then intersection of null space of k independent linear functionals is an $(n-k)$-dimensional subspace of V.

Proposition 1.4. [4, Corollary 8.18 and Theorem 8.21] All transvections in $G L(n, F)$ are conjugate. If $n \geq 3$, then they are conjugate in $S L(n, F)$.

Lemma 1.5. [4, Lemma 8.19] Let V be a vector space over $F . T_{a, f}=T_{b, g}$ if and only if there is a scalar $\alpha \in F^{\star}$ with $g=\alpha f$ and $a=\alpha b$.

For a hyperplane W in a vector space V, we set $\tau(W)=\{$ all transvections fixing W $\} \cup\left\{1_{V}\right\}$.

Lemma 1.6. [4, Lemma 8.22] Let W be a hyperplane in an n-dimensional vector space V over $F . \tau(W)$ is an abelian subgroup of $S L(V)$, and $\tau(W) \cong W$.

Definition 1.7. [1] A graph Γ is vertex-transitive if the automorphism group of Γ acts transitively on the vertex set of Γ.

Theorem 1.8. [1, Theorem 7.1] Let Γ be a k-regular, connected, vertex-transitive graph of order n. Then
(1) If n is even, then Γ has a 1 -factor.
(2) The product of the clique number and the independence number of Γ is at most n.

2. Main result

The purpose of this note is to study certain properties of the commuting graph $\mathcal{C}(G, X)=$ Γ where $G=G L(n, q)$ and X is the set of transvections in G. Throughout this paper V is a vector space with $\operatorname{dim}(V)=n$ on a finite field F with $|F|=q$.
Lemma 2.1. For a proper subspace U of V, set $S_{U}=\left\{T_{a, f} \mid a \in U, U \subseteq \operatorname{ker} f\right\}$. Then $\left|S_{U}\right|=\frac{\left(q^{i}-1\right)\left(q^{n-i}-1\right)}{q-1}$, where $i=\operatorname{dim}(U)$.
Proof. We have $\{f: V \rightarrow F \mid U \subseteq \operatorname{ker} f\} \cong\left\{\bar{f}: \frac{V}{U} \rightarrow F\right\}$. So there are $q^{n-i}-1$ candidates for f, that is the number of nonzero linear functionals from $\frac{V}{U}$ into F, and $q^{i}-1$ candidates for a (the zero vector is not a candidate). By Lemma 1.5, $\left|S_{W}\right|=\frac{\left(q^{i}-1\right)\left(q^{n-i}-1\right)}{q-1}$.
Lemma 2.2. $|V(\Gamma)|=\frac{\left(q^{n}-1\right)\left(q^{n-1}-1\right)}{q-1}$.
Proof. We consider a fixed hyperplane W. It is sufficient to calculate $\mid\left\{T_{a, f} \mid a \in W, W=\right.$ ker $f\} \mid$. Since the number of hyperplanes in V is equal to $\frac{q^{n}-1}{q-1}$, we have $|V(\Gamma)|=$ $\frac{\left(q^{n}-1\right)\left(q^{n-1}-1\right)}{q-1}$ by Lemma 2.1.
Lemma 2.3. [3, Lemma 1, part (iv)] Let $T_{a, f}$ and $T_{b, g}$ be two transvections on V with fixed hyperplanes W_{1} and W_{2}, respectively. Then $\left[T_{a, f}, T_{b, g}\right]=1$ if and only if $a \in \operatorname{ker} g$ and $b \in \operatorname{ker} f$.
Lemma 2.4. Γ is k-regular with $k=\frac{(q-1)\left(q^{n-1}-1\right)+q\left(q^{n-2}-1\right)^{2}}{q-1}-1$.
Proof. By proposition 1.4, Γ is a k-regular graph. Let $T_{a, f}$ be a transvection. It is sufficient to calculate $|\{(b, g) \mid b \in \operatorname{ker} f, a \in \operatorname{ker} g\}|$. We have

$$
\begin{aligned}
|\{(b, g) \mid b \in\langle a\rangle, a \in \operatorname{ker} g\}| & =(|\langle a\rangle|-1)\left(\left|\left(\frac{V}{\langle a\rangle}\right)^{*}\right|-1\right) \\
& =(q-1)\left(q^{n-1}-1\right)
\end{aligned}
$$

and

$$
\begin{aligned}
|\{(b, g) \mid b \in \operatorname{ker} f, a \in \operatorname{ker} g,\langle a\rangle \neq\langle b\rangle\}| & =|\operatorname{ker} f-\langle a\rangle|\left(\left|\left(\frac{V}{\langle a, b\rangle}\right)^{*}\right|-1\right) \\
& =\left(q^{n-1}-q\right)\left(q^{n-2}-1\right),
\end{aligned}
$$

where $\left(\frac{V}{\langle a\rangle}\right)^{*}$ is the vector space of all linear functionals from $\frac{V}{\langle a\rangle}$ to F and $\left(\frac{V}{\langle a, b\rangle}\right)^{*}$ is defined similarly. It follows that

$$
k=\frac{(q-1)\left(q^{n-1}-1\right)+q\left(q^{n-2}-1\right)^{2}}{q-1}-1 .
$$

Theorem 2.5. (1) For $\operatorname{dim}(V)=2, \Gamma$ is disconnected.
(2) $\operatorname{For} \operatorname{dim}(V)=3, \operatorname{diam}(\Gamma)=3$.
(3) For $\operatorname{dim}(V)>3$, $\operatorname{diam}(\Gamma)=2$.

Proof. Let $T_{a, f}$ and $T_{b, g}$ be two transvections on V with fixed hyperplanes $W_{1}=\operatorname{ker} f$ and $W_{2}=\operatorname{ker} g$, respectively. If $\operatorname{dim}(V)=2$ then $\operatorname{dim}(\operatorname{ker} f)=1$. Since $a \in \operatorname{ker} f, b \in \operatorname{ker} f$ if and only if $\langle b\rangle=\langle a\rangle$. It follows that Γ is disconnected.
Suppose that $\operatorname{dim}(V)=3$. If $W_{1}=W_{2}$ then $d\left(T_{a, f}, T_{b, g}\right)=1$. If $W_{1} \neq W_{2}$ then $W_{1} \cap W_{2} \neq$ 0 and there exists a nonzero element $u \in W_{1} \cap W_{2}$. Since $\operatorname{dim}(\langle u, b\rangle) \leq 2$, there is $\gamma: V \longrightarrow F$ such that $\langle u, b\rangle \subseteq \operatorname{ker} \gamma$. It follows that $\left[T_{b, g}, T_{u, \gamma}\right]=1$. Also there exists $\delta: V \longrightarrow F$ such that $\langle u, a\rangle \subseteq \operatorname{ker} \delta$. Hence $\left[T_{a, f}, T_{u, \delta}\right]=1$. Also $\left[T_{u, \gamma}, T_{u, \delta}\right]=1$, thus $d\left(T_{a, f}, T_{b, g}\right) \leq 3$ and $\operatorname{diam}(\Gamma) \leq 3$. Now we show that $\operatorname{diam}(\Gamma)=3$. There exist
transvections $T_{v_{1}, f_{1}}$ and $T_{v_{2}, f_{2}}$, where ker $f_{1}=W_{1}$ and ker $f_{2}=W_{2}$, such that $v_{1} \notin W_{2}$ and $v_{2} \notin W_{1}$. If there exists a transvection $T_{u, h}$, where $\operatorname{ker} h=W$, such that $\left[T_{v_{1}, f_{1}}, T_{u, h}\right]=1$ and $\left[T_{v_{2}, f_{2}}, T_{u, h}\right]=1$ then $v_{1}, v_{2} \in W$. Since $\left\langle v_{1}\right\rangle \neq\left\langle v_{2}\right\rangle$ and $\operatorname{dim}(W)=2$, we obtain $W=\left\langle v_{1}, v_{2}\right\rangle$. It follows that $u=\lambda_{1} v_{1}+\lambda_{2} v_{2}$ and hence $u-\lambda_{1} v_{1} \in W_{2}$. This is a contradiction. Hence $\operatorname{diam}(\Gamma)=3$.
Now assume that $\operatorname{dim}(V)>3$. If $W_{1}=W_{2}$ then $d\left(T_{a, f}, T_{b, g}\right)=1$. If $W_{1} \neq W_{2}$ then $W_{1} \cap W_{2} \neq 0$ and there exists a nonzero element $u \in W_{1} \cap W_{2}$. Since $\operatorname{dim}(\langle u, a, b\rangle) \leq 3$, there is $\mu: V \longrightarrow F$ such that $\langle u, a, b\rangle \subseteq \operatorname{ker} \mu$. Now $\left[T_{a, f}, T_{u, \mu}\right]=1$ and $\left[T_{b, g}, T_{u, \mu}\right]=1$. This implies that $d\left(T_{a, f}, T_{b, g}\right) \leq 2$. Hence $\operatorname{diam}(\Gamma) \leq 2$. Now we show that $\operatorname{diam}(\Gamma)=2$. Let W_{1}, W_{2} be two distinct hyperplanes, $v_{1} \in W_{1}-W_{2}$ and $v_{2} \in W_{2}-W_{1}$. Notice that $\left[T_{v_{1}, f_{1}}, T_{v_{2}, f_{2}}\right] \neq 1$, where ker $f_{1}=W_{1}$ and ker $f_{2}=W_{2}$. Thus $\operatorname{diam}(\Gamma)=2$.
Theorem 2.6. $\omega(\Gamma)=\frac{\left(q^{k}-1\right)\left(q^{n-k}-1\right)}{q-1}$ where $k=\left[\frac{n}{2}\right]$.
Proof. We have $\left[T_{a_{i}, f_{i}}, T_{a_{j}, f_{j}}\right]=1$ for all $1 \leq i, j \leq t$ if and only if $a_{1}, a_{2}, \ldots, a_{t} \in$ $\bigcap_{i=1}^{t} \operatorname{ker} f_{i}$. So $\left\{T_{a_{1}, f_{1}}, T_{a_{2}, f_{2}}, \ldots, T_{a_{t}, f_{t}}\right\}$ is a complete subgraph of Γ if and only if there exists a subspace W of V such that $a_{1}, a_{2}, \ldots, a_{t} \in W$ and $W \subseteq \operatorname{ker} f_{i}$ for all $1 \leq i \leq t$. It is sufficient to calculate $\left|S_{W}\right|$. Let $U_{1}, U_{2}, \ldots, U_{n-1}$ be subspaces of V with $\operatorname{dim}\left(U_{i}\right)=i$. By Lemma 2.1, $\left|S_{U_{1}}\right|=\left|S_{U_{n-1}}\right|<\left|S_{U_{2}}\right|=\left|S_{U_{n-2}}\right|<\cdots$. Therefore $\omega(\Gamma)=\left\lvert\, S_{\left.U_{\left[\frac{n}{2}\right.}\right]}\right.$.
Corollary 2.7. If $\operatorname{dim}(V) \geq 3$, then the girth of Γ is equal to 3 .
Theorem 2.8. For $\operatorname{dim}(V)>2, \Gamma$ is not planar.
Proof. Let W be a hyperplane of V. By Lemma 1.6, $\tau(W) \cong W$ and we have a complete subgraph $K_{|W|-1}$. Hence if $q^{n-1}-1 \geq 5$ then Γ is not planar. If $q^{n-1}-1<5$ then $q=2, n=3$ and $V=\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$. Let $W_{1}=\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times 0, W_{2}=\mathbb{Z}_{2} \times 0 \times \mathbb{Z}_{2}$, $W_{3}=0 \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}, W_{4}=\langle(1,0,0),(0,1,1)\rangle, W_{5}=\langle(1,0,1),(0,1,0)\rangle$ be hyperplanes of V. Set $A_{i}=\left\{T_{a, f} \mid a \in \operatorname{ker} f=W_{i}\right\}$. For all $u \in W_{i} \cap W_{j}$, there exist $T_{u, f_{i}} \in A_{i}, T_{u, f_{j}} \in A_{j}$. Then, with contraction of A_{i}, where $1 \leq i \leq 5$, we obtain a complete graph K_{5}. This completes the proof.
Theorem 2.9. Γ is perfect if and only if $\operatorname{dim}(V)=3$.
Proof. Let $\operatorname{dim}(V)=3$. Suppose that Γ has an induced cycle of length $m \geq 4$. Also assume that $T_{v_{1}, f_{1}}, T_{v_{2}, f_{2}}, T_{v_{3}, f_{3}}$ are three consecutive vertices of this cycle, where ker $f_{i}=W_{i}$ for all $1 \leq i \leq 3$. We have $v_{1} \in W_{1} \cap W_{2}, v_{2} \in W_{1} \cap W_{2} \cap W_{3}, v_{3} \in W_{2} \cap W_{3}$. If $W_{i} \neq W_{j}$ for all $1 \leq i, j \leq 3,1 \leq \operatorname{dim}\left(W_{1} \cap W_{2} \cap W_{3}\right) \leq \operatorname{dim}\left(W_{1} \cap W_{2}\right)=1$, then $W_{1} \cap W_{2} \cap W_{3}=W_{1} \cap W_{2}$. Similarly, $W_{1} \cap W_{2} \cap W_{3}=W_{2} \cap W_{3}$. Hence $W_{1} \cap W_{2}=W_{2} \cap W_{3}$. Thus $v_{1} \in W_{3}$ and $v_{3} \in W_{1}$, a contradiction. Hence $W_{1}=W_{2}$ or $W_{2}=W_{3}$. Since $m \geq 4, W_{1} \neq W_{3}$. Concequently we can assume $W_{1}=W_{2}, W_{3}=W_{4}, W_{5}=W_{6}, \cdots$. If m is odd, then $T_{v_{m-1}, f_{m-1}}, T_{v_{m}, f_{m}}, T_{v_{1}, f_{1}}$ are three consecutive vertices and, $W_{1}=W_{2}, W_{m-1}=W_{m-2}$. Then $W_{m} \neq W_{1}$ and $W_{m} \neq W_{m-1}$, a contradiction. Thus m is even and Γ has no odd induced cycle of length at least five. It follows that Γ is perfect.
Now let $\operatorname{dim}(V)=4$ and $V=\left\langle v_{1}, v_{2}, v_{3}, v_{4}\right\rangle$. Assume that $W_{1}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle, W_{2}=$ $\left\langle v_{1}, v_{2}, v_{4}\right\rangle$ and $\bar{W}=\left\langle v_{1}, v_{3}, v_{4}\right\rangle$. Since $\left|V-\left(W_{1} \cup W_{2} \cup \bar{W}\right)\right|=q^{4}-3 q^{3}+3 q^{2}-q=$ $q(q-1)^{3}>0$, there is $v_{5} \in V-\left(W_{1} \cup W_{2} \cup \bar{W}\right)$. Set $W_{3}=\left\langle v_{2}, v_{4}, v_{5}\right\rangle, W_{4}=\left\langle v_{3}, v_{4}, v_{5}\right\rangle$ and $W_{5}=\left\langle v_{1}, v_{3}, v_{5}\right\rangle$. If $v_{4} \in W_{5}$ then $v_{4}=\lambda_{1} v_{1}+\lambda_{3} v_{3}+\lambda_{5} v_{5}$. Since v_{1}, v_{3}, v_{4} are independent, we have $\lambda_{5} \neq 0$ and $v_{5} \in \bar{W}$, which is a contradiction. Thus $v_{4} \notin W_{5}$. Also $v_{4} \notin W_{1}$. Hence $v_{4} \notin W_{1} \cap W_{5}$. Similarly, $v_{3} \notin W_{3} \cap W_{2}, v_{1} \notin W_{3} \cap W_{4}, v_{2} \notin W_{4} \cap W_{5}$, $v_{5} \notin W_{1} \cap W_{2}$. Now $T_{v_{1}, f_{1}}, T_{v_{2}, f_{2}}, T_{v_{4}, f_{3}}, T_{v_{5}, f_{4}}, T_{v_{3}, f_{5}}$ forms an induced cycle of length 5 , where ker $f_{i}=W_{i}$ for all $1 \leq i \leq 5$. Since the complement of any induced cycle of length 5 in Γ is an induced cycle of length 5 in $\bar{\Gamma}, \Gamma$ and $\bar{\Gamma}$ have induced cycles of length 5. Concequently Γ is not perfect.

Now assume that $\operatorname{dim}(V) \geq 5$ and $V=\left\langle v_{1}, \ldots, v_{5}\right\rangle \oplus W$. Suppose that $W_{i}=$
$\left\langle\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}-\left\{v_{i}\right\}\right\rangle \oplus W$ for $1 \leq i \leq 5$. Then $T_{v_{1}, f_{5}}, T_{v_{4}, f_{3}}, T_{v_{2}, f_{1}}, T_{v_{5}, f_{4}}, T_{v_{3}, f_{2}}$ forms an induced cycle of length 5 , where ker $f_{i}=W_{i}$ for all $1 \leq i \leq 5$. Concequently, both Γ and $\bar{\Gamma}$ have induced cycles of length 5 and Γ is not perfect.
Corollary 2.10. If $\operatorname{dim}(V)=3$, then $\chi(\Gamma)=\omega(\Gamma)=q^{2}-1$.
Theorem 2.11. For $n \geq 3, \gamma(\Gamma) \leq \min \left\{(q+1)^{2}, \frac{q^{n}-1}{q-1}\right\}$ and for $q=2$ or $n \geq 5$, $\gamma(\Gamma) \geq q^{2}$.
Proof. For each hyperplane W, let a_{W} be a nonzero element of W and f_{W} be a linear functional with ker $f_{W}=W$. Set $S=\left\{T_{a_{W}, f_{W}} \mid \mathrm{W}\right.$ is a hyperplane of $\left.V\right\}$. Let $T_{b, g} \in V(\Gamma)$ and ker $g=W_{1}$. Then $T_{a_{W_{1}}, f_{W_{1}}} \in S$ and $\left[T_{b, g}, T_{a_{W_{1}}, f_{W_{1}}}\right]=1$. Hence S is a dominating set for Γ, and so $\gamma(\Gamma) \leq \frac{q^{n}-1}{q-1}$. Now assume that $\operatorname{dim}(V) \geq 4$. Let W be a subspace of V with $\operatorname{dim}(W)=n-2$. Observe that V has $q+1$ hyperplanes $W_{1}, W_{2}, \ldots, W_{q+1}$ containing W. Let $f_{1}, f_{2}, \ldots, f_{q+1}$ be linear functionals with ker $f_{j}=W_{j}$ for $j=1,2, \ldots, q+1$. Clearly, we have $V=W_{1} \cup W_{2} \cup \ldots \cup W_{q+1}$. Let U be a subspace of W with $\operatorname{dim}(U)=2$ and let $\left\langle a_{1}\right\rangle,\left\langle a_{2}\right\rangle, \ldots,\left\langle a_{q+1}\right\rangle$ be all distinct one dimensional subspaces of U. We claim now that $S=\left\{T_{a_{i}, f_{j}} \mid i, j \in\{1,2, \ldots, q+1\}\right\}$ is a dominating set for Γ. For an ordinary transvection $T_{b, g}$, there exists W_{j} such that $b \in W_{j}$. Since $\operatorname{dim}(U \cap \operatorname{ker} g)=1$, there exists $a_{i} \in \operatorname{ker} g$. It then follows that $\left[T_{a_{i}, f_{j}}, T_{b, g}\right]=1$, which proves the claim. Thus, we get $\gamma(\Gamma) \leq|S|=(q+1)^{2}$ as desired. Now suppose $\gamma(\Gamma)=t$. Since Γ is k-regular, we have

$$
\begin{aligned}
t & \geq \frac{|V(\Gamma)|}{k}=\frac{\left(q^{n}-1\right)\left(q^{n-1}-1\right)}{(q-1)\left(q^{n-1}-1\right)+\left(q^{n-1}-q\right)\left(q^{n-2}-1\right)-(q-1)} \\
& \geq \frac{q^{2 n-1}-q^{n}-q^{n-1}+1}{q^{2 n-3}+q^{n}-3 q^{n-1}-q+2} \\
& >\frac{q^{2 n-1}-q^{n}-q^{n-1}}{q^{2 n-3}+q^{n}-3 q^{n-1}} \\
& >\frac{\left(q^{n}-q-1\right)}{\left(q^{n-2}+q-3\right)}
\end{aligned}
$$

But for $q=2$ or $n \geq 5, \frac{\left(q^{n}-q-1\right)}{\left(q^{n-2}+q-3\right)}>q^{2}-1$. Hence $q^{2} \leq \gamma(\Gamma)$. This completes the proof.
Theorem 2.12. If q is odd, then Γ has a 1 -factor and $\alpha(\Gamma) \leq \frac{\left(q^{n}-1\right)\left(q^{n-1}-1\right)}{(q-1)\left(q^{\left[\frac{n}{2}\right]}-1\right)\left(q^{n-\left[\frac{n}{2}\right]}-1\right)}$.
Proof. It follows from Theorem 1.8.
Example 2.13. Let $G=G L(3,2)$. Then the commuting graph $\Gamma=\mathcal{C}(G, X)$ satisfies the following conditions:
(1) $|V(\Gamma)|=21$.
(2) Γ is 4-regular.
(3) $|E(\Gamma)|=42$.
(4) $\operatorname{diam}(\Gamma)=3$.
(5) Γ is perfect.
(6) $\chi(\Gamma)=\omega(\Gamma)=3$.
(7) $\gamma(\Gamma)=5$.

Proof. Parts (1) - (6) are clear. For part (7), by Theorem 2.11, we have $4 \leq \gamma(\Gamma) \leq 7$. Since
$4 \times 5 \leq|V(\Gamma)|=21, \gamma(\Gamma) \geq 5$. Observe that $\left\{T_{v_{1}, f_{1}}, T_{v_{2}, f_{2}}, T_{v_{3}, f_{3}}, T_{v_{5}, f_{5}}, T_{v_{6}, f_{6}}\right\}$ is a dominating set, where $v_{1}=(1,0,0), v_{2}=(1,0,1), v_{3}=(0,1,1), v_{5}=(1,1,1), v_{6}=$ $(1,1,0)$ and ker $f_{1}=\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times 0, \operatorname{ker} f_{2}=\mathbb{Z}_{2} \times 0 \times \mathbb{Z}_{2}, \operatorname{ker} f_{3}=0 \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$, ker $f_{5}=$ $\langle(1,0,1),(0,1,0)\rangle$, ker $f_{6}=\langle(1,1,0),(0,0,1)\rangle$. Thus $\gamma(\Gamma)=5$.

Acknowledgment. The authors are deeply grateful to the referee for his/her valuable comments and suggestions, which helped us to improve the paper.

References

[1] P.J. Cameron and Q. Mary, Automorphisms of graphs, London E14Ns, U.K. Draft, 2001.
[2] M. Chudnovsky, N. Robertson, P. Seymour and R. Thomas, The strong perfect graph theorem, Ann. of Math. (2), 164 (1), 51-229, 2006.
[3] H. Poliatsek, Irreducible Groups Generated by Transvections over Finite Fields of Characteristic Two, J. Algebra, 39, 328-333, 1976.
[4] J.J. Rotman, An Introduction to the Theory of groups, Springer-Verlag Newyork, Inc. 1995.

[^0]: *Corresponding Author.
 Email addresses: nasirimaryam.63@gmail.com (M. Nasiri), shjafari55@gmail.com (S.H. Jafari)
 Received: 18.09.2017; Accepted: 23.05.2018

