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Abstract
In this paper, we show how there are tight relationships between algebraic properties of a
commutative ring R and topological properties of open subsets of Zariski topology on the
prime spectrum of R. We investigate some algebraic conditions for open subsets of Zariski
topology to become quasi-compact, dense and irreducible. We also give a characterization
for the radical of an ideal in R by using topological properties.
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1. Introduction
The notion of prime ideal has led to the development of topologies on the spectrum of the

prime ideals and so many useful connections between topologies and algebraic properties
have been proved. Mainly, the nilradical of a commutative ring, which has an important
place in the ring theory, was characterized by using topological concepts. After that, the
Zariski topology on modules has also attracted considerable attention of many authors
([1–3, 6–11, 13]). In 2011, J. Abuhlail showed that there were tight relationships between
algebraic properties of modules or rings and topological properties such as ultraconnected,
compact or sober.

In this paper, all rings are commutative with identity. Throughout R will denote an
arbitrary ring. For an ideal I of R, we study an open subset XI of the Zariski topology on
the set of all prime ideals of R denoted by Spec(R). We also find the relationships between
open subsets of the Zariski topology and ideals. Then we obtain some characterizations
for the radical of an ideal and rings by using some topological properties. For an open
subset of the Zariski topology to become quasi-compact, dense, an irreducible subset or a
Noetherian spectrum, some algebraic conditions have been investigated.

In Section 2, we deal with the connections between the notions of quasi-compact space
and the generating set of an ideal. Then for an ideal I of R, we prove that there are
elements r1, r2, ..., rn of R such that

√
I =

√
Rr1 + Rr2 + ... + Rrn if XI is quasi-compact.

In Theorem 2.2, we state a necessary and sufficient algebraic condition for XI to be a
quasi-compact space. Then we define the ideal NI(0) in R, which is a generalization of
a radical ideal (Definition 2.3). Here we focus on its topological properties rather than
algebraic ones in order to find a characterization of irreducibility. For an ideal I of R,
Theorem 2.6 points out that NI(0) is a prime ideal of R if and only if XI is irreducible.
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Moreover in Theorem 2.8, we find some necessary and sufficient algebraic conditions for
XI to be Noetherian.

In Section 3, we concentrate on the relationships between open subsets of the Zariski
topology on Spec(R) and ideals of R. Then in Theorem 3.4, we focus on the irreducibility
of Spec(R) and verify that Spec(R) is irreducible if and only if every ideal of R/

√
0 is

essential. Thus in Corollary 3.8, we obtain a sufficient algebraic condition for an open
subset to be quasi-compact. Finally, we close this paper with Theorem 3.10, which is
that Spec(R) =

n∪
i=1

XIi , where XIi is irreducible and Ii is an ideal of R, if and only if

R =
n∑

i=1
Ii and NIi(0) is a prime ideal of R. As a result of Theorem 3.10, we remark on

the connections between the irreducible components and ideals at the end of this paper.
Now we recall some definitions from [4,9, 11] as follows:

• The Zariski topology is a topology on Spec(R) in which closed sets are V (I) =
{P ∈ Spec(R) : I ⊆ P} of all ideals I of R.

• Let D be a subset of a topological space X.

(i) If every open cover of X has a finite subcover, X is said to be quasi-compact.
(ii) If X ̸= ∅ and for every decomposition X = X1 ∪ X2 with closed subsets X1,

X2 ⊆ X, either X = X1 or X = X2 holds, then X is said to be irreducible.
(iii) If for every nonempty open set U ⊆ X, U ∩ D ̸= ∅, then D is said to be dense in

X.
(iv) If the closed subsets of X satisfy the descending chain condition, then X is said

to be Noetherian.

2. The subspace on an ideal
Let I be an ideal of a ring R, XI = Spec(R)\V (I) and Ṽ (B) = V (B)\V (I), where B is

an ideal of R. Then it is clear that

ΓI =
{

Ṽ (B) : B is an ideal of R
}

satisfies the axioms for closed sets of a topological space on XI , called the complement
Zariski topology of I in R.

It is clear that the open subset XI is equal to Spec(R) when I = R and also XI = ∅
when I = 0.

We start with the following proposition revealing some connections between XI and the
ideal I.

Proposition 2.1. Let I be an ideal of a ring R. The following hold:
(i) For r ∈ R, (XI)r = XI\Ṽ (r) = Spec(R)\(V (rI)) forms a base for XI .
(ii) (XI)r ∩ (XI)s = (XI)rs for every element r,s ∈ R.
(iii) (XI)r = ∅ if and only if rI ⊆

√
0.

(iv) If r is unit, then (XI)r = XI .
(v) (XI)r = (XI)s if and only if

√
rI =

√
sI.

(vi) If (XI)r = XI , then we have
√

rI =
√

I ⊆
√

⟨r⟩.

By the standard argument, Proposition 2.1 can be proved.
Let I be a proper ideal of a ring R. I is said to satisfy the condition (∗) if there is a

finite subset ∆ of an index set Λ such that√
⟨{ri ∈ R : i ∈ Λ}⟩ =

√
⟨{rj ∈ R : j ∈ ∆}⟩

whenever
√

I ⊆
√

⟨{ri ∈ R : i ∈ Λ}⟩.
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If R is a Noetherian ring, then every ideal of R satisfies the condition (∗). More
specifically, if R/

√
I is a Noetherian ring, then I satisfies the condition (∗) but it is clear

that the converse is not true.
In this paper, let us denote the finite set ∆ = {1, 2, ..., n} for a positive integer n.
The following theorem gives some connections between algebraic properties and topo-

logical properties.

Theorem 2.2. Let I be a proper ideal of a ring R. Then the following hold:
(i) (XI)r is quasi-compact for every r ∈ R.
(ii) If XI is quasi-compact, then there is a finite subset {r1, r2, ..., rn} of R such that√

I =
√

Rr1 + ... + Rrn.
(iii) If I satisfies the condition (∗), then XI is quasi-compact.

Proof. (i) By the standard argument, it can easily be proved.
(ii) Let XI be quasi-compact.

Let I = ⟨{ri ∈ R : i ∈ Λ}⟩. Since V (⟨{ri : i ∈ Λ}⟩) = V (I), it follows that
Ṽ (⟨{ri : i ∈ Λ}⟩) = ∅. Thus

XI = XI\∅ = X\V

∪
i∈Λ

riI

 = X\

∩
i∈Λ

V (riI)


=

∪
i∈Λ

(X\V (riI)) =
∪
i∈Λ

(XI)ri .

Thus XI has an open cover and since XI is quasi-compact, there is a finite set
∆ = {1, 2, ..., n} ⊆ Λ such that XI =

∪
i∈∆

(XI)ri = XI\Ṽ (⟨r1, r2, ..., rn⟩). Thus

Ṽ (⟨r1, r2, ..., rn⟩) = ∅ , which means that V (⟨r1, r2, ..., rn⟩) ⊆ V (I). Hence
it follows that

√
I ⊆

√
Rr1 + Rr2 + ... + Rrn and we have the equality since

r1, r2, ..., rn ∈ I.
(iii) Let I satisfy the condition (∗).

Let {Ai : i ∈ Λ} be an open cover of XI . Since Ai can be expressed as a union
of the sets of (XI)r, we may assume that Ai = (XI)ri for every i ∈ Λ. Then

XI =
∪
i∈Λ

(XI)ri =
∪
i∈Λ

(
XI\Ṽ (ri)

)
= XI\

∩
i∈Λ

Ṽ (ri)

= XI\Ṽ ({ri : i ∈ Λ}).
Thus Ṽ (⟨{ri : i ∈ Λ}⟩) = ∅ and so V (⟨{ri : i ∈ Λ}⟩) ⊆ V (I).

In this case,
√

I ⊆
√

⟨{ri : i ∈ Λ}⟩. By the condition (∗), there is a finite subset
∆ ⊆ Λ such that

√
I =

√
⟨{rj : j ∈ ∆}⟩. Then V (I) = V (⟨{rj : j ∈ ∆}⟩) and so

Ṽ (⟨{rj : j ∈ ∆}⟩) = ∅. Then

XI = XI\Ṽ (⟨{rj : j ∈ ∆}⟩)) = XI\
∩

j∈∆
Ṽ (rj)

=
∪

j∈∆

(
XI\Ṽ (rj)

)
=
∪

j∈∆
(XI)rj .

Since XI is covered by a finite number of open subsets (XI)rj , XI is quasi-compact.
�

For an ideal I of R, we recall the definition of a radical ideal from [12] as follows:
√

I = {r ∈ R : rn ∈ I for a positive integer n} .
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If I = 0, then
√

0 is called the nilradical. It is well known that the nilradical ideal is prime
if and only if Spec(R) is irreducible. To obtain similar results for open subsets, we define
a new class of ideals as follows:

Definition 2.3. Let I be an ideal of a ring R. The set NI(T ) is defined as the intersection
of all prime ideals containing T which does not contain I. In other words, NI(T ) =
∩ {P ∈ Spec(R) : T ⊆ P and I * P}.

We show that this generalization is different from the radical of an ideal with the
following example.

Example 2.4. Let I = 6Z and T = 10Z be ideals of the ring of integers R = Z. Then
NI(T ) = 5Z but

√
T = 10Z = T .

We also give some algebraic properties of the ideal NI(T ) without proof as follows:

Lemma 2.5. Let I be a proper ideal of a ring R. The following statements hold:
(i) For the ideal T of R, NI(T ) =

√
T when I = R.

(ii) NI(T ) is an ideal of R.
(iii) NI/K(T/K) = NI(T )/K, where K ⊆ T is an ideal of R.
(iv) NI(0) = N√

I(0).

We obtain a connection between topological property of XI and algebraic property of
NI(0) as follows:

Theorem 2.6. Let I be a proper ideal of a ring R and
√

I ̸=
√

0. Then XI is irreducible
if and only if NI(0) is a prime ideal of R.

Proof. Let NI(0) be a prime ideal of R and K be a nonempty open subset of XI . Then
K = XI\Ṽ (E) = Spec(R)\ (V (I) ∪ V (E)), where E is an ideal of R. Take P ∈ K. Then
we have P /∈ V (E) ∪ V (I), which means that I ̸⊆ P and E ̸⊆ P . Thus NI(0) ⊆ P , so
E ̸⊆ NI(0) ⊆ P . This implies that NI(0) /∈ V (E) and by the definition of NI(0), we get
NI(0) /∈ V (I). Thus NI(0) ∈ K . Therefore any nonempty open subset of XI contains
NI(0) . This means that XI is irreducible.

Let XI be irreducible. Suppose that NI(0) is not a prime ideal of R. Then there exist
elements a, b ∈ R such that ab ∈ NI(0) and a, b ∈ R\NI(0).

Since
√

I ̸=
√

0 and a ∈ R\NI(0), it follows that Ṽ (a) ̸= ∅ and Ṽ (a) ̸= XI , which
implies (XI)a ̸= ∅. By the same argument, (XI)b is a nonempty open subset. Therefore,
we get

(XI)a ∩ (XI)b = (XI)ab = XI\Ṽ (ab)
⊆ XI\Ṽ (NI(0))
= Spec(R)\ (V (NI(0)) ∪ V (I)) = ∅.

This contradicts with the hypothesis. Thus NI(0) is a prime ideal of R. �
As an application of Theorem 2.6, we can deduce that open subsets XaZ of the Zariski

topology on Spec(Z) are not irreducible for any positive integer a since NaZ(0) is not
prime.

We find more connections between a topological space and a ring under the following
condition.

A ring R is said to satisfy TN -condition for an ideal I, if for any chain NI(U1) ⊆
NI(U2) ⊆ NI(U3) ⊆ ..., there is a positive integer m such that NI(Um) = NI(Um+i) for
all positive integers i.

Theorem 2.7. Let I be a proper ideal of a ring R. Then the following statements are
equivalent:
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(i) R satisfies the TN -condition.
(ii) XI is a Noetherian topological space.

Proof. (i) ⇒ (ii) Assume that R satisfies the TN -condition. Take the sequence Ṽ (U1) ⊇
Ṽ (U2) ⊇ Ṽ (U3) ⊇ ..., where Ui is an ideal of R. Then we have the sequence NI(U1) ⊆
NI(U2) ⊆ NI(U3) ⊆ ... and there exists an integer m such that NI(Um) = NI(Um+i) for
all positive integers i since R satisfies the TN -condition. Therefore we have Ṽ (Um) =
Ṽ (Um+i) for all positive integers i. Thus XI is Noetherian.

(ii) ⇒ (i) Let XI be a Noetherian topological space. Take the sequence NI(U1) ⊆
NI(U2) ⊆ NI(U3)..., where Ui is an ideal of R. Then this yields the sequence Ṽ (U1) ⊇
Ṽ (U2) ⊇ Ṽ (U3) ⊇ .... Since XI is Noetherian, there exits an integer m such that Ṽ (Um) =
Ṽ (Um+i) for all positive integers i. This implies NI(Um) = NI(Um+i) for all positive
integers i. Therefore R satisfies TN -condition. �

We close this section with the following theorem, which shows tight relationships be-
tween algebraic and topological properties.
Theorem 2.8. Let R be a ring. Then the following are equivalent:

(i) X is a Noetherian topological space.
(ii) XI is a Noetherian topological space for every ideal I of R.
(iii) R satisfies the TN -condition.
(iv) R satisfies ascending chain condition on the radical ideals of R.

Proof. (i) ⇒ (ii), (iv) ⇔ (i) It is clear.
(ii) ⇒ (i) Take the sequence V (U1) ⊇ V (U2) ⊇ V (U3) ⊇ ..., where Ui is an ideal of R.

Let I = ∩Ui be an ideal of R. Consider the Zariski topology on XI . Then we have the
sequence Ṽ (U1) ⊇ Ṽ (U2) ⊇ Ṽ (U3) ⊇ .... Since XI is Noetherian, there exists an integer m
such that Ṽ (Um) = Ṽ (Um+i) for all positive integers i. Thus we have V (Um) = V (Um+i)
for all positive integers i. Thus X is Noetherian.

(ii) ⇔ (iii) It is Theorem 2.7. �

3. The relationships between ideals and subspaces
In this section we find some algebraic and topological tools for ideals and some charac-

terizations for rings.
Theorem 3.1. Let I, J and K be proper ideals of a ring R. Then we have the following
properties:

(i) Any open set of X is of the form XI .
(ii) XI = XJ if and only if

√
I =

√
J .

(iii) XI ∩ XJ = XK if and only if
√

I ∩
√

J =
√

IJ =
√

K.
(iv) XI ⊆ XJ if and only if

√
I ⊆

√
J .

The proof of Theorem 3.1 is straightforward, hence we omit it. The following corollary
is an immediate consequence of Theorem 3.1.
Corollary 3.2. Let I and J be proper ideals of a ring R. Then XI ∩ XJ = ∅ if and only
if

√
I ∩

√
J =

√
IJ =

√
0.

Theorem 3.3. Let I be a proper ideal of a ring R. Then XI is dense in X if and only if√
IJ ̸=

√
0 for every proper ideal J not in

√
0.

Proof. Let XI be dense in X and let J be a proper ideal of R not in
√

0. Then XJ =
Spec(R)\V (J) is a nonempty open set in the Zariski topology and by the hypothesis, the
intersection of XI and XJ is nonempty. Then by Corollary 3.2,

√
IJ ̸=

√
0.

Let
√

IJ ̸=
√

0 for every proper ideal J of R not in
√

0. By Corollary 3.2, since
XI ∩ XJ ̸= ∅, it follows that XI is dense in X. �
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The following theorem gives a characterization for the ring R/
√

0 by using topological
properties.

Theorem 3.4. Let R be a ring. The following statements are equivalent:
(i)

√
0 is a prime ideal of R.

(ii) Spec(R) is irreducible.
(iii) Every ideal of R/

√
0 is essential.

(iv) Every open subset of Spec(R) is dense.

Proof. (i) ⇔ (ii) This part is already a well known fact.
(iii) ⇒ (iv) Let XI and XJ be open subsets for ideals I, J . Then

(
J +

√
0
)

/
√

0 and(
I +

√
0
)

/
√

0 are ideals of R/
√

0. Then

√
0 ̸=

√(
J +

√
0
)

∩
(
I +

√
0
)

=
√(

J +
√

0
) (

I +
√

0
)

=
√(

JI +
√

0
)

and so
√

IJ ̸=
√

0. This means that XI is dense.
(iv) ⇒ (ii) ⇒ (iii) By using the same argument, it is proved. �

Theorem 3.5. Let Ii be a proper ideal of a ring R for all i ∈ Λ. Then
∪

i∈Λ
XIi = XD for

any ideal D of R if and only if
√

D =
√∑

i∈Λ
Ii.

Proof. Indeed,
∪

i∈Λ
XIi = XD ⇔

∪
i∈Λ

(X\V (Ii)) = XD ⇔

X\
( ∩

i∈Λ
V (Ii)

)
= X\V (D) ⇔

∩
i∈Λ

V (Ii) = V (D) ⇔

V

( ∪
i∈Λ

Ii

)
= V (D) ⇔ V

(∑
i∈Λ

Ii

)
= V (D) ⇔

√∑
i∈Λ

Ii =
√

D. �

Theorem 3.6. Let Ii be a proper ideal of a ring R for all i ∈ Λ and let D be a finitely
generated ideal of R. Then the following statements are equivalent:

(i)
∪

i∈Λ
XIi = XD.

(ii) There is a finite subset ∆ of Λ such that
∪

i∈∆
XIi = XD.

(iii) There is a finite subset ∆ of Λ such that
√∑

i∈∆
Ii =

√
D.

Proof. (i) ⇒ (iii) Let
√∑

i∈Λ
Ii =

√
D and let D be an ideal generated by the set {d1, ..., dt}.

For each di, there is a positive number ni such that dni
i ∈

∑
i∈Λ

Ii and so there is a finite

subset ∆i of Λ such that dni
i ∈

∑
i∈∆i

Ii . If n = max{n1, ...nt} and ∆ =
n∪

i=1
∆i then√∑

i∈∆
Ii =

√
D.

(iii) ⇒ (ii) Theorem 3.5.
(ii) ⇒ (i) It is clear. �
The following corollary is a special case of Theorem 3.6.

Corollary 3.7. Let Ii be a proper ideal of a ring R for all i ∈ Λ. Then the following
statements are equivalent:
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(i)
∪

i∈Λ
XIi = Spec(R).

(ii) There is a finite subset ∆ of Λ such that
∪

i∈∆
XIi = Spec(R).

(iii) There is a finite subset ∆ of Λ such that
∑

i∈∆
Ii = R.

We also state a generalization of a well known result as follows:

Corollary 3.8. Let D be a finitely generated ideal of a ring R. Then XD is quasi-compact.

Using topological properties, we are now ready to prove a characterization of the nil-
radical ideal

√
0.

Theorem 3.9. Let R be a ring satisfying the TN -condition for every ideal. Then there
are proper ideals I1, ..., In of R such that

√
0 =

√
I1...In.

Proof. Let X = Spec(R) be a Noetherian topological space. By [5], X has only a finite
number of distinct irreducible components Ui such that

n∪
i=1

Ui = X. It is well known that

any irreducible component in a topology space is closed and so for each i, there is an ideal
Ii such that Ui = V (Ii). Then

∅ = X\
n∪

i=1
V (Ii) =

n∩
i=1

(X\V (Ii)) =
n∩

i=1
XIi .

Thus, by Theorem 3.1,
√

0 =
n∩

i=1

√
Ii =

√
I1...In. �

By combining Theorem 2.6 and Theorem 3.5, we close this paper with the following
theorem.

Theorem 3.10. Let Ii be an ideal of a ring R for all i ∈ {1, ..., n}. Then X =
n∪

i=1
XIi,

where XIi is irreducible if and only if R =
n∑

i=1
Ii and NIi(0) is a prime ideal of R.

We think that Theorem 2.6 gives a lead to characterize the irreducible components of
the Zariski topology on Spec(R). We also wonder if the irreducible components of the
Zariski topology on Spec(R) are characterized by the ideal NI(0).
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