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The aim of this study was to determine the availability of canola oil methyl ester
as an alternative fuel in diesel engines and by adding canola oil methyl ester and
hydrogen to diesel fuel. This study was carried out experimentally and
numerically. The engine was studied at 2000 rpm speed and full load. The
analyzes carried out in the AVL-FIRE ESE Diesel part.

In-cylinder combustion and emission analyzes were examined experimentally by
adding 10% (B10) and 20% (B20) of the canola oil methyl ester to the diesel
(D100) fuel. Also, hydrogen fuel by the amount of 3% and 6% of the mass were
added to diesel and biodiesel mixture fuels to eliminate some disadvantages of
biodiesel fuels. The obtained findings in experimental and numerical studies were
similar to each other. The similarity of these results was also validated by
numerical studies using hydrogen.

The boundary conditions obtained in experimental studies were determined, and
the effect of hydrogen fuel on temperature, in-cylinder pressure, spray distribution
and CO formation were examined numerically. In the experimental studies
conducted with D100, B10 and B20 fuels, the maximum pressures in-cylinder
were measured as 87 bar, 88 bar and 89.09 bar respectively. In numerical results,
these values were recorded as 90.02, 90 and 93.8 bar respectively. Addition of 3%
and 6% hydrogen to these three different fuel mixtures increased in-cylinder
pressures and temperatures. Also, in-cylinder droplet diameters with the addition
of hydrogen decreased in all test fuels. This situation led to a reduction in CO

emissions.
Keywords: Diesel Engine; Hydrogen; Canola oil methyl ester: CO emission; AVL Fire.

1. Introduction

is one of the most controversial issues. Energy

The oil sector has an important place in the
world. Oil and petroleum products; It meets
energy needs in many areas such as
transportation, industrial manufacturing and
small scale consumption. Today, because of the
increasing number of vehicles and global
climate changes, the consumption of fossil fuels

is supplied from petroleum products worldwide,
especially for internal combustion engines used
for transportation and energy production.

Diesel engines in the class of internal
combustion engines; is advantageous in terms of
high efficiency, power, better fuel economy and
emissions. Diesel engines are used in many
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areas such as truck, tractor, earth mover and
passenger vehicles, all marine vehicles,
locomotives, stationary power machines and
generators. For this reason, it is very important
to improve the combustion efficiency of diesel
engines and to reduce emissions.

Various studies have been carried out on the
efficient use of fuel in engines and the reduction
of pollutant emissions in exhaust gases.
Researches on the structural properties of the
engines and the engine fuels are concentrated in
these studies.

Alternative fuels have highlighted issues such as
the increase of combustion efficiency, energy
shortage, measures taken to protect the
environment due to emission values and lower
fuel consumption [1]. In diesel engines have
been the subject of research many alternative
fuels such as Bio-diesel, Biogas, Hydrogen,
compressed natural gas (CNG), Hydrogen
enriched natural gas (HCNG), Ethanol and
Liquefied Petroleum Gas (LPG).

Hydrogen is an alternative fuel that can be used
as automobile fuel. Hydrogen; is an alternative
to hydrocarbon based fuels producing
hydrocarbon (HC) and carbon monoxide (CO)
[2]. However, Specific oxides of nitrogen (NOx)
emissions increase due to increased combustion
chamber temperature [3]. Hydrogen has some
properties such as high flame speed and high
thermal value [4]. Hydrogen is a renewable,
highly efficient and clean fuel that has a great
importance for the future of diesel engines [5].
The spontaneous ignition temperature of the
hydrogen / air mixture is higher than for other
fuels. Hydrogen is a clean fuel without carbon
emissions. The combustion of hydrogen
produces only water and some nitrogen oxides.
It helps to reduce carbon dioxide (COy)
emissions when wused with fossil fuels.
Hydrogen with these emission properties is the
ideal fuel to meet the more stringent
environmental  controls  associated  with
greenhouse gases and emissions [6]. Hydrogen
has the ability to ignite in a large area long-term
renewable and less polluting, non-toxic and
odorless [7]. It is not possible to use hydrogen
widely in vehicles in the near future due to the
lack of hydrogen as a fuel substructure and lack
of fuel supply stations [8]. In other respects,
early ignition and early combustion occurs due
to low ignition energy in the case of hydrogen-

fueled engines. Also, water vapor in the
hydrogen-air mixture causes a decrease in
power as it reduces the combustion temperature.
Furthermore, due to the low combustion rates in
very poor mixtures, the contact of the new
mixture with the combustion gases as a result of
the increase in combustion time, hot particles
from the engine oil can initiate the combustion
before the desired. Therefore, it can be used with
fuel types such as diesel and bio-diesel. Several
studies have been conducted on the impact of
the engine on performance and emissions.
Four-cylinder diesel engine is operated at full
load and different speeds. 2.5%, 5% and 7.5%
hydrogen are added inside diesel fuel. The
torque, power, thermal efficiency, exhaust gas
temperature and NOx are increased with the
increase of hydrogen fuel in the engine. HC, CO
and O2 emissions are decreased [9].

Another study is a review study on the use of
hydrogen-CNG mixture (HCNG) in internal
combustion engines. Hydrogen fuel has
decreased HC and COz emissions due to carbon
deficiency compared to CNG fuel, while NOx
emissions have increased due to chamber
temperature rise. Also, the speed of laminar
flame has increased with hydrogen [10]. The
increase in laminar flame velocity with the
addition of different amounts of hydrogen into
natural gas is more clearly indicated by an
experimental setup. The experimental setup
consists of a spherical combustion chamber
coupled to a classical shadowgraph system [11].
In addition, the speed of flame propagation
increases as hydrogen fuel is added into the
CNG [12]. As a result of the reaction of CNG
fuel with hydrogen fuel, the stability of
combustion has increased [13].

HCNG fuel can be used with fossil fuels. Thus,
the efficiency and emission values reduces. In
any case, if the advance is well adjusted, the
engine torque increases [14]. The effect of the
compression ratio is emphasized on torque,
brake specific fuel consumption and emission
parameters in a single cylinder diesel engine
tested at different HCNG ratios [15]. Generally,
when hydrogen is added into CNG fuel in the
diesel engine, it is observed to reduce HC, CO-
and CO emissions due to the absence of carbon
in the hydrogen [16]. Also, NOx emissions
increases due to the increase in combustion
chamber temperature as well as combustion
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chamber pressure. In addition, hydrogen fuel
has increased flame speed and thermal
efficiency and reduced combustion duration.
Maximum cylinder pressure and maximum heat
release increases. Bsfc (Brake-specific fuel
consumption) parameter is also reduced have
been determined in different studies [1, 16-20].
One of the alternative fuels whose research
extends to this day is the fuel (biodiesel), which
is obtained from vegetable or animal oil.
Biodiesel fuel is a fuel that has a lower CO:
emission and similar combustion characteristics
as diesel fuel.

Many biodiesel fuels have been used to improve
performance and emissions in diesel engines.
Kumar and his friend, maduca longifolia oil
(MO), ethanol, hydrogen and water injection
fuels are operated in different ratios of single-
cylinder diesel engine at 1500 rpm, 3.7 kW
power and full load. Ethanol is showed a higher
ignition delay than hydrogen fuel. It has been
seen that engine performance improves when
ethanol, hydrogen and MO fuels are used
together [21]. In another study, Pomegranate
seed oil biodiesel (POB), hydrogen and diesel
fuels are used in different ratios. Adding POB
fuel to the diesel fuel in the engine has a positive
effect on the engine power and bsfc parameters.
Engine performance and emissions are
improved with the addition of hydrogen fuel to
these fuels [22]. Serin et. al, tea seed oil
biodiesel, hydrogen and diesel fuels are
investigated the effect on engine performance
and emissions by using different ratios in a
single cylinder diesel engine. Biodiesel is
showed a positive effect on engine performance
and bsfc parameters. While biodiesel reduced
CO emissions, it has increased CO2 and NOx
emissions [23]. In a single cylinder diesel
engine, Waste oil biodiesel (WOB), hydrogen
and diesel fuels are tested no-load at 1500 rpm.
The addition of WOB fuel reduces thermal
efficiency. WOB  fuel increases fuel
consumption and CO: parameters. While
thermal efficiency is increased by the addition
of hydrogen fuel, fuel consumption, CO and
CO2 emissions are decreased [24]. Tamanu
methyl ester (TME), ethanol, diesel and
hydrogen fuel are used as fuel in a diesel engine.
Hydrogen fuel is provided high NOx emission
and this NOx value is reduced by using TME +
Ethanol fuel mixture [25]. When jatropha oil is

used as a biodiesel in a diesel engine, it is seen
that the thermal efficiency increased, while the
soot, HC and CO emissions are decreased [26].
Another fuel used in diesel engines as biodiesel
fuel is rapeseed oil (canola oil) fuel. There are
experimental studies on rapeseed oil, hydrogen
and diesel fuels in the literature. Rapeseed oil,
hydrogen and diesel fuel are tested with
different mixing ratios in diesel engine. The
effects of  combustion  characteristics,
performance and emissions are investigated
with different rates of hydrogen fuel has added
to B20 (20% rapeseed oil and 80% diesel) fuel.
Rapeseed oil fuel is reduced performance and
efficiency while it is reduced other emissions
without NOx emissions. Also, the ignition delay
of this fuel is shorter. It doesn’t have a
significant effect on B20 fuel on ignition delay
of hydrogen fuel [27,28]. In another study,
rapeseed methyl ester (RME) and diesel fuel are
used as pilot fuel, natural gas and hydrogen fuel
are used as main fuel in a diesel engine.
Experiments are performed at different engine
speeds. It is observed that the delay of the
ignition is shortened by pilot spraying of
rapeseed methyl ester fuel [29]. In addition, a
better trade-off between HC and NOx is
attempted by pilot spraying of rapeseed methyl
ester fuel [30]. Pilot fuel RME according to pilot
fuel diesel, emission values are generally similar
because of the physical and chemical properties
[31]. It is determined that there is a better result
in NOx emissions in the medium power range as
pilot fuel RME and diesel fuel and as main fuel
hydrogen-diesel ~ fuel [32]. In another
experimental study, as pilot fuel RME and diesel
fuel and as main fuel natural gas are used. The
lower thermal efficiency of the RME fuel
compared to diesel fuel is obtained [33]. RME
fuel according to diesel fuel, CO., UHC and
NOx emissions are lower and thermal efficiency
is higher in different speed and load conditions
[34].

Increased canola oil methyl ester in diesel fuel
due to incomplete combustion, this situation
increased emissions of O. while reducing CO
emissions in exhaust emissions. Also, exhaust
gas temperature has decreased [35].

Many of the rapeseed-hydrogen fuel uses in the
literature are related to the effects of engine
performance and emissions. Also, in general
studies, rapeseed oil is used by mixing with
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methyl ester. In the present study, the effects of
different proportions of diesel, canola oil methyl
ester and hydrogen fuels were investigated on
combustion characteristics and emissions. Both
experimental and modeling were performed
with different fuel mixture ratios at 2000 rpm
engine speed and full load. All features of the
engine were constant kept except for the fuel
ratio for fully understand the effect of used fuels
on the combustion and emissions. The
difference of this study from literature, chamber
pressure and temperature, heat release, state of
the fuel-air mixture inside the chamber,
spraying  process, particle  formation,
evaporation and temperature distribution of the
fuel were examined by using the ESE-DIESEL
part of the AVL-FIRE software in the model.
After that, the experiments were carried out on
diesel fuel, B10 (10% canola oil methyl ester
90% diesel) and B20 (10% canola oil methyl
ester 90% diesel) fuels, and this results were
compared with the model. The results obtained
from the models and experiments were found to
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be close to each other. Then, the effects of
hydrogen on combustion and emissions were
investigated by adding 3% and 6% hydrogen to
the diesel, B10 and B20 fuels in the model.

2. Material Method
2.1. Experimental study

The air-cooled, single-cylinder Antor 3LD 510
direct injection diesel engine was used as the test
engine. In-cylinder pressure measurement of the
engine was used in the Febris combustion
analysis  program. Combustion  chamber
pressure was measured by the Optrand brand
optical fiber pressure sensor. After connecting
the encoder and the pressure sensor to the single
cylinder diesel engine, the data obtained was
transferred to the computer instantly by way of
the Febris interface. The engine was operated at
full load and maximum torque. The engine test
setup was given in Figure 1. The technical
specifications of the engine were given in Table
1. Also, experimental test uncertainty analysis
results were showed in Table 2.

Encoder

E l Data compiler card

> Dynamometer stand

Figure 1. Schematic view of the experimental setup.

Table 1. Test engine specifications.

Specifications

Descriptions

Engine Type
Number of cylinders 1

4- stroke, direct injection diesel engine

Cylinder volume 510 cm?®
Bore x Stroke 85 x 90 (mm x mm)
Compression ratio 17.5:1

Maximum power
Maximum torque
Injection angle 126°
Number of Nozzles 4

8.8@3000 (kW)
32.8@1800 (Nm)




International Journal of Automotive Engineering and Technologies, IJAET 8 (4) 150-164 154

Table 2. Uncertainties of experimental measurement devices

Pressure Sensor Encoder Electric dynamometer
Optrand fiber optic Cubler Baturalp Tayland brand brake
Measuring range 0 -200 bar ~ Measuring range 0-12000 rpm Maximum torque of 80 Nm
0,025 V/bar sensitivity Encoder resolution 360x1° CA %3=+0.02 Uncertainty

120 kHz natural frequency
% <+0,5 accuracy
Measurement in temperature
range -40 and 360 °C 85°C

Converts angle value to digital TTL signal
It can be supplied with 5V or 120 mA
Measurement in temperature range -40 and

Torque sensor = 10 VDC output
Powered by 220 Volt voltage
Measurement in temperature range
-10 and 60 °C

2.2. Numerical study

The analysis of fuels with different ratios was
made by ESE-DIESEL part of the AVL-FIRE
software. In this program were simulated
parameters such as combustion temperature,
viscosity, particle distribution, ignition delay,
emission and engine performance values. All
values of the single cylinder engine were taken
in the conducted analysis. WAVE model was
used as breakup model in the mode, k-zeta-f
model was used as a turbulence model, Multi-
Component as an evaporation model. Also
ECFM-3Z model were used as a combustion
model. Wall interaction model known as "Wall
jet 10" was used for hydrogen, canola oil methyl
ester and diesel fuels in the numerical study. The
spray angle was defined as 126° in this analysis
[36-39]. This model simulates separated of
small droplets from the fuel particle. In the
model, the spray wall interaction model was
used to calculate the effect of non-atomizable or
non-vaporized fuel on the combustion chamber
walls of the sprayed fuel. On the other hand, this
model could be used for EGR and spray type
combustion models. Hydrocarbon based many
fuels could be defined in the ECFM-3Z model.
The extended Zeldovich model was used for NO
emissions. As initial conditions, the temperature
and pressure values were taken respectively 293
K and 1 Bar. The cylinder walls and cylinder
head values were fixed in the boundary
conditions and also the piston was selected as
the moving boundary condition. On the other
side, C2-13 Weber number model was
performed depending on physical and dynamic
parameters of sprayed and dispersed fuel in
Wave fragmentation model. To investigate the
mesh independency, it was considered
containing a different number of cells. Though
the resulting combustion parameters were
identical for all cases, the case which contained
approximately 50,000 cells had closest result
compared to experimental results. The geometry

of the combustion chamber was given in Figure
2. The input and boundary conditions were
given in Table 3.

Cylinderhead

Combustion chamber

Figure 2. Combustion chamber geometry.

Table 3. Determined initial and boundary conditions.
Specifications Descriptions

Engine speed 2000 (rpm)
Air inlet temperature 293.15 (K)
Air inlet pressure 1 (bar)
Fuel injection temperature ~ 330.15 (K)
Cylinder head temperature ~ 575.15 (K)
Cylinder wall temperature ~ 475.15 (K)
Spraying range -20-0 (KA)
Fuel consumption 1.9 (It/h)

Test fuels consist of diesel, canola oil methyl
ester and hydrogen fuels in the AVL-FIRE
library. The engine torque was selected as 2000
rpm in the numerical study. Model had been
created by keeping constant parameters such as
engine volume, cylinder volume, compression
ratio, injector angle and nozzle structures,
exhaust and intake valve opening and closing
advances. Fuel injection pressure is 200 bar both
experimental and numerical. The effects of
different fuel mixtures were investigated on
combustion characteristics and emissions.
Numerical studies were compared with
experimental data in different fuel types. The
properties of diesel-hydrogen and diesel-canola
oil methyl ester fuels were given in Table 4.

3. RESULTS
The analysis of the combustion in the engine
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should be interpreted as an indicator of some measured by the encoder connected to the
parameters in-cylinder. The crankshaft angle crankshaft was measured in the engine.

Table 4. Comparison of diesel fuel and hydrogen characteristics [40,41].

Properties Diesel Hydrogen  Canola oil methyl ester
Formula n-CisHog H, -
Auto ignition temperature (K) 530 858 -
Minimum ignition energy (MJ) - 0.02 -
Flammability limits (volume % in Air) 0.7-5 4-75 -
Stoichiometric air—fuel ratio on mass basis  14.5 34.3 -
Molecular weight (g/mole) 100 2 -
Limits of flammability - 0.1-7.1 -
Density at 160 °C and 1.01 bar (kg/m?®) 833-881  0,0838 881
Net heating value (Lower) (MJ/kg) 42.5 119.93 -
Flame velocity (cm/s) 30 265-325 -
Quenching gap in NTP Air (cm) - 0.064 -
Diffusivity in Air (cm?/s) - 0.63 -
Octane number 30 130 -
Cetane number 40-55 - 45-59
Calculated cetane index distillation (%) 57.8 - 47.2-55
Boiling point (K) 436-672  20-27 -
Pour point (°C) -6 - -10.0
Freezing point (°C) - - -12.9
Ester content (%) - - 99.6
Flash point (°C) 58 - 135.7
Viscosity at 15.5 °C, centipoise (mm?/s) 2.6-4.1 - 4.44
Specific gravity 0.83 0.091 -
TDC TDC
e o - L e
90 90
80 80 4
T 70 T 70
< w0 € o-
£ w0+ E w0
30 30
20 20
10 10
L T T L0 T T T T 0 T T T T T T T
600 650 700 750 800 850 900 600 650 700 750 800 850 900
Crank Angle (°CA) a Crank Angle (°CA)
0- e
— — ' B20 Numerical
90 < S B20 Experimental

80

70

60 —

Pressure (bar)
I
(=]
1

0 T T I T T T 1

550 600 650 700 750 800 850 900
Crank Angle (°CA)
Figure 3. Experimental and numerical comparison of in-cylinder pressure changes of Diesel (a), B10 (b) and B20 (c)
fuels.

In-cylinder pressure change measured by the optical sensor connected to this encoder was an
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important parameter used in the combustion
analysis of the engine. The engine experiments
performed in this study were modeled
numerically in the AVL-Fire program. Thus,
numerical and experimental results were
presented comparatively, and the validity of the
numerical model was emphasized. In the
experiments, diesel fuel, B10 (10% canola oil
methyl ester 90% diesel) and B20 (10% canola
oil methyl ester 90% diesel) fuels were
performed at 2000 rpm engine speed and full
load. The in-cylinder pressure values of these
fuels depending on the crank angle were
compared both experimentally and numerically
(Figure 3).

It is seen in all test fuels where the pressure
values obtained from modeling with biodiesel
fuel in AVL library and experiment were close
to each other. In the experimental study, it was
aimed to minimize the margin of error by
making an average calculation of 200 cycles for
all test fuels. When the B10 and B20 fuels were
compared to diesel fuel, the maximum pressure
values in-cylinder had slightly increased. There
were different reasons for this increase. The first
of these was that the biodiesel fuels have a
higher density than diesel fuel. The biodiesel
fuel injected from the injector may had
increased the maximum pressure by spraying
more fuel per unit volume. Another reason was
the oxygen found in the chemical structure of
biodiesel fuel. It could be said that the amount
of oxygen is higher in the combustion chamber
and the fuel breaks down more easily by
increasing the temperature in-cylinder. This
situation could be said to cause a slight increase
in maximum pressures. As a matter of fact, these
results also overlap with the combustion
analysis performed in the AVL Fire program.
Increases in penetration depths due to the use of
biodiesel fuels and the separation of the fuel into
smaller particles performed a more homogenous
distribution of the fuel in the combustion
chamber. This was thought to be effective in
increasing the maximum pressures in biodiesel
blended fuels. The fact that the experimental
results obtained with different fuels and the
numerical results were similar to each other, the
results obtained by the addition of hydrogen to
test fuels were also validate in modeling.

By adding 3% and 6% hydrogen to fuels, the in-
cylinder pressure changes depending on the

crank angle were given numerically in Figure 4.
Hydrogen compared to diesel and biodiesel
fuels, the maximum pressures in the cylinder
increased in all mixtures where hydrogen was
added due to the high flame velocity and high
thermal value.
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%6H+D

%3H+B10

== %6H+B10

— === %3H+B20

— === %6H+B20
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2.0x10°

—
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550 h(ll() 650 700 750 800 850 900
Crank Angle (°CA)
Figure 4. Pressure change in-cylinder by addition of
hydrogen to fuels at different mixing ratios.
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Figure 5. Change of accumulated heat release diesel and
biodiesel fuel mixtures (a) and the addition of hydrogen
to fuels (b).

In addition, the in-cylinder combustion behavior
of hydrogen fuel and biodiesel fuels were
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examined. In particular, these two fuels had
improved the combustion process, and oxygen
in the structure of biodiesel fuels provides better
combustion with hydrogen fuel and in Figure 5
was shown that the resulting heat release is
increased. Accumulated heat release (AHR) rate
provides information on combustion in engines.
Accumulated heat release values increase in
parallel with the increase in-cylinder pressure
and temperature of biodiesel blended fuels. In
particular, increased in ignition delay durations
as a function of the cetane number of fuels had
increased the maximum heat release, and in
parallel to this, had increased at maximum in-
cylinder temperatures. As a matter of fact, this
situation was clearly seen in spray distribution
and temperature graphs.

3.1. The formation of local CO

Hydrogen fuel has many advantages such as
ignition limits in wide A / F ratios, absence of
carbon components, high octane numbers, high
thermal value compared to gasoline and diesel
fuels. Its use as a double fuel is quite common
due to this advantages. In diesel engine used by
10% and 20% canola oil methyl ester were
mixed with diesel fuel. 3% and 6% hydrogen
were added to eliminate some disadvantages of
this fuel mixture. The dispersion and
combustion process resulting from spraying the
fuels into the combustion chamber were
analyzed experimentally and numerically.

In numerical analysis; especially in-cylinder CO
formation, spray distribution and temperature
formation were investigated extensively for
each model. CO is a kind of harmful emission
caused by toxic and incomplete combustion.
The formation of CO varies greatly depending
on the air / fuel ratio. The CO emission
formation was obtained for all test fuels at
different crank angles in-cylinder. Combustion
and emissions occurring were investigated
before and after the 720 crank which is accepted
as TDC in the engine. The CO formation in the
combustion chambers was investigated at four
different crank angles, 715°,720°,730° and 735°.
In the below figures were given the CO
distribution in the combustion chambers of fuel
mixtures D, B10, B20, D + 3% H, D + 6% H,
B10 +3% H, B10 + 6% H, B20 + 3% H and B20
+ 6% H (Figure 6). When the figures were
examined, the highest CO formation was

obtained in the study using pure diesel fuel. It
was thought that oxygen in the structure of
canola oil methyl ester is a factor that improves
combustion. As a result of the recovery of
combustion, CO emissions had also decreased
with the increase in the rate of biodiesel fuel. In
particular, by adding hydrogen to diesel, B10
and B20 fuels have caused significant
reductions in CO emissions (Figure 6). In
addition, significant reductions in CO emissions
were observed due to the lack of carbon in the
structure of hydrogen. In particular, the lowest
CO emission formation was observed in the B20
studies with hydrogen added. Another factor in
the reduction of CO emissions was that
hydrogen fuel had improved evaporation by
increasing combustion temperatures in the
combustion chamber. In addition, the high flame
speed of hydrogen fuel compared to diesel and
biodiesel fuels had led to better combustion of
the fuel mixture. The homogeneous mixture of
biodiesel fuels with air in the cylinder was
another factor in the reduction of CO emissions.
In all test fuels, local CO formation is lower at
the angle of 5 degrees before the TDC (Figure
6). This situation could been seen more clearly
in the spray distribution / temperature patterns
of the fuel.

In all test fuels, in parallel with the increase in
cylinder temperature and pressure, the
evaporation of the fuel and the air-mixing rate
were more clearly seen at the 720° crank angle.
The combustion effect was quite high at 730°
crank angle. In the process of initiation and
continuation of combustion, CO formation is
observed in a wider area by the end of the
spraying at the 735° crank angle.

3.2. Spray distribution / temperature
formation

In diesel engines, the penetration depth and
spray formation in the combustion chambers are
very important on the fuel / air mixture ratio. At
the same time, the formation of in-cylinder
temperature and the distribution of fuel particles
give important information about combustion.
In the following figures, the spray distribution-
temperature distributions in the combustion
chambers were given at different crank angles of
the fuel mixtures D, B10, B20, D + 3% H, D +
6% H, B10 + 3% H, B10 + 6% H, B20 + 3% H
and B20 + 6% H (Figure 7).
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Figure 6. Investigation of the in-cylinder CO emission in different fuel mixtures.
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Especially the high viscosity and density of
biodiesel fuels was a negative result in terms of
combustion and emissions. However, when the
engine was operating at 2000 rpm, the inclusion
of oxygen in the structure of biodiesel fuel and
the injection of excess fuel due to its density
increased  the  in-cylinder  combustion
temperatures compared to the diesel fuel used.
This effect of the temperature had improved the
decomposition and penetration of the fuel into
smaller particles by eliminating this negative
situation caused by the fuel viscosity. In all the
test studies, the dispersion of the flame in the
combustion chamber was given with the end of
spraying at the 731 crank angle. With the
advancement of the crank angle, it had been
observed that the fuels have broken down and
continued to burn in the chamber pocket (Figure
7). The fuel particles that were plastered to the
combustion chamber walls started to burn due to
the temperature and caused the temperatures to
increase in this region. At the first outlet of the
injector, larger fuels were decomposed into
small fuel particles together with in-cylinder
temperatures and mixture formation. In
particular, biodiesel blended fuels compared to
diesel fuel had been observed that it had a longer
carbon-hydrogen chemical chain structure, the
excess oxygen and the decomposition of smaller
fuel particles due to high temperatures. Also,
B10 and B20 fuels had higher combustion
temperatures than D fuel. In addition, the
separation of B10 and B20 fuels into smaller
particles increases the penetration of the spray .
Reduction of the stress applied to the fuel
surface by separating the fuel into small
particles, it caused the fuel particles to continue
to exist in the combustion chamber. Adding 3%
and 6% hydrogen fuel to the D, B10 and B20
fuels have highly affected the particle
distribution and temperature formation (Figure
7). For example, when the piston was at the
TDC, the maximum temperatures obtained in
the combustion chamber for D, B10 and B20
fuels were recorded as 2498 K, 2529 K and 2571
K respectively. Both the increase in the rate of
biodiesel and the increase in the rate of
additional hydrogen fuel had led to an increase
in these temperatures. For example, when 3%
and 6% hydrogen were added to the D fuel, the
combustion temperatures were 2612 K and 2671
K, respectively. Similarly, when 3% and 6%

hydrogen were added to the B10 fuel, the
combustion temperatures were 2644 K and 2701
K respectively. When 3% and 6% hydrogen
were added to the B20 fuel, the combustion
temperatures were 2675 K and 2719 K
respectively. Also, in Table 5 was showed the
maximum spray sauter diameters (d32 m) of
different fuels. These results confirm the above-
mentioned sentences. The addition of hydrogen-
biodiesel and diesel fuel caused a decrease in the
maximum spray sauter diameter (d32 m).

Table 5. The maximum spray sauter diameter (d32 m) of
different fuels

The maksimum Spray Sauter

Fuel Diameter (d32 m)
D 0.00015135
B10 0.00015096
B20 0.00015095
D+3%H 0.00015068
D+6%H 0.00014952
B10+3%H 0.00015068
B10+6% H 0.00015026
B20+3% H 0.00015078
B20+6% H 0.00015022

4. Conclusions

In this conducted study, D, B10 and B20 fuels
were  investigated  experimentally  and
numerically in a direct injection diesel engine.
The engine was operated at 2000 rpm with
engine speed and full load. AIll other
engineparameters were kept constant to
understand the effect of fuels. In the
experimental study, it was aimed to minimize
the margin of error by making an average
calculation of 200 cycles for all test fuels. In this
study were examined parameters such as in-
cylinder pressure change, accumulated heat
release, the formation of local CO, spray
distribution and temperature formation in
different fuel mixtures and the change of
temperature and the distribution of fuel particles
in different fuel mixture. When the B10 and B20
fuels were compared to diesel fuel, the
maximum pressure values in-cylinder had
slightly increased. The reason of this could be
said that the oxygen found in the chemical
structure of biodiesel fuel and higher density
than diesel fuel. Also, increases in penetration
depths due to the use of biodiesel fuels and the
separation of the fuel into smaller particles
performed a more homogenous distribution of
the fuel in the combustion chamber.
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Figure 7. The formation of in-cylinder temperature and the distribution of spray droplet in different fuel mixture.
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When the ratio of in-cylinder pressure and
accumulated heat release were examined, it was
seen that the experimental and numerical results
were close to each other. This situation proved
the accuracy of the results obtained from the
numerical study. Then, the effect of hydrogen
was investigated numerically by adding 3% and
6% hydrogen to D, B10 and B20 fuels. By
adding of hydrogen fuel, the high flame speed of
the fuel and the high heat value of the hydrogen
fuel compared to diesel and biodiesel fuels, and
it increased the in-cylinder maximum pressures
in all the operations. Hydrogen and biodiesel
fuels had improved the combustion process, and
oxygen in the structure of biodiesel fuels
provides better combustion with hydrogen fuel
and this situation, accumulated heat release was
increased. The maximum flame zone was
obtained by using B20 + 6% H mixed fuel in the
combustion chamber. Increasing the rate of
hydrogen in biodiesel blended fuels was
provided easier disintegration of the fuel and
distribution within the combustion chamber. It
was concluded that the addition of hydrogen to
biodiesel fuels with low cetane numbers a factor
that facilitates combustion.

Investigation of the thermal and chemical
effects of the addition of hydrogen to may use in
both diesel and biodiesel fuels may be the next
study on engine parts.

Nomenclature

D : Diesel
H : Hydrogen
TDC : Top Dead Center

CA :Crank Angle

A/F  : Air/Fuel

CFD : Computational Fluid Dynamic
CO  : Carbon monoxide

HC  : Hydrocarbon

02 : Oxygen

RME : Rapeseed Methyl Ester

AHR : Accumulated Heat Release
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