SUPPORTING INFORMATION

Schiff bases carrying dipicolylamine groups for selective determination of metal ions in aqueous media. A phenanthrene-based fluorescent sensor for $\mathbf{H g}^{\mathbf{2 +}}$ determination

Abidin Gümrükçüoğlu*, Nurhayat Özbek, Tuğba Ak, Elvan Vanlı, Miraç Ocak, Ümmühan Ocak

Department of Chemistry, Faculty of Arts and Sciences, Karadeniz Technical University, 61080 Trabzon, Turkey

E-mail:gumrukcuoglu_61@hotmail.com
Tel: +90 4623774267
Fax: +90 4623253196

Fig. S1. Effects of ions on fluorescence spectra of the ligand ADPA in the ethanol-water mixture (1:1). (Ligand concentration $=3.6 \times 10^{-6} \mathrm{M}$. Ion concentrations $=3.6 \times 10^{-5} \mathrm{M}$. Excitation at 370 nm), a: for cations b: for anions.

Fig. S2 The variation of the emission of the ligand ADPA with the concentration of Cd^{2+} added as 0-4 equivalents of Cd^{2+} in the ethanol-water mixture (1:1). Ligand concentration $=3.6 \times 10^{-6} \mathrm{M}$. Excitation at 370 nm . Insets: Emission wavelength is 418 nm .

Fig. S3 The variation of the emission of the ligand ADPA with the concentration of Zn^{2+} added as 0-4 equivalents of Zn^{2+} in the ethanol-water (1:1). Ligand concentration $=3.6 \times 10^{-6} \mathrm{M}$. Insets: Emission wavelength is 418 nm .

Fig. S4 The variation of the emission of the ligand ADPA with the concentration of Cu^{2+} added as $0-8$ equivalents of Cu^{2+} in the ethanol-water mixture (1:1). Ligand concentration $=3.6 \times 10^{-6} \mathrm{M}$. Insets: Emission wavelength is 395 nm .

Fig. S5 The variation of the emission of the ligand ADPA with the concentration of $\mathrm{Hg}^{\mathbf{2 +}}$ added as 0-8 equivalents of Hg^{2+} in the ethanol-water (1:1). Ligand concentration $=3.6 \times 10^{-6} \mathrm{M}$. Insets: Measurements were carried out at 395 nm .

Fig. S6 Effects of ions on fluorescence spectra of the ligand NDPA in the ethanol-water mixture (1:1). (Ligand concentration $=1.7 \times 10^{-5} \mathrm{M}$. Ion concentrations $=1.7 \times 10^{-4} \mathrm{M}$. Excitation at 355 nm .), a: for cations b: for anions.

Fig. S7 The variation of the emission of the ligand NDPA with the concentration of Cu^{2+} added as 0-4 equivalents of Cu^{2+} in the ethanol-water mixture (1:1). Ligand concentration $=2.7 \times 10^{-6}$ M. Excitation at 320 nm . Insets: Emission wavelength is 426 nm .

Fig. S8 The variation of the emission of the ligand NDPA with the concentration of Hg^{2+} added as 0-4 equivalents of Hg^{2+} in the ethanol-water (1:1). Ligand concentration $=2.7 \times 10^{-6} \mathrm{M}$. Excitation at 320 nm . Insets: Emission wavelength is 358 nm .

Fig. S9 Effects of ions on fluorescence spectra of the ligand PDPA in the ethanol-water mixture (1:1). (Ligand concentration $=2.5 \times 10^{-6} \mathrm{M}$. Ion concentrations $=2.5 \times 10^{-5} \mathrm{M}$. Excitation at 360 nm .), a: for cations b: for anions.

Fig. S10 The variation of the emission of the ligand PDPA with the concentration of Hg^{2+} added as $0-8$ equivalents of Hg^{2+} in the ethanol-water mixture (1:1). Ligand concentration $=2.5 \times 10^{-6} \mathrm{M}$. Excitation at 360 nm . Insets: Emission wavelength is 453 nm .

Fig. S11 The variation of the emission of the ligand PDPA with the concentration of Cu^{2+} added as 0-8 equivalents of Cu^{2+} in the ethanol-water (1:1). Ligand concentration $=2.5 \times 10^{-6} \mathrm{M}$. Excitation at 360 nm . Insets: Emission wavelength is 453 nm .

Fig. S12 The variation of the emission of the ligand PDPA with the concentration of Zn^{2+} added as 0-8 equivalents of Zn^{2+} in the ethanol-water mixture (1:1). Ligand concentration $=2.5 \times 10^{-6} \mathrm{M}$. Excitation at 360 nm . Insets: Emission wavelength is 386 nm .

Fig. S13 The variation of the emission of the ligand PDPA with the concentration of Cd^{2+} added as 0-8 equivalents of Cd^{2+} in the ethanol-water (1:1). Ligand concentration $=2.5 \times 10^{-6} \mathrm{M}$. Excitation at 360 nm . Insets: Emission wavelength is 407 nm .

Fig. S14 Effects of ions on fluorescence spectra of the ligand PHDPA in the ethanol-water mixture (1:1). (Ligand concentration $=2.5 \times 10^{-6} \mathrm{M}$. Ion concentrations $=2.5 \times 10^{-5} \mathrm{M}$. Excitation at 300 nm), a: for cations b : for anions.

