SUPPORTING INFORMATION

Schiff bases carrying dipicolylamine groups for selective determination of metal ions in aqueous media. A phenanthrene-based fluorescent sensor for Hg²⁺ determination

Abidin Gümrükçüoğlu*, Nurhayat Özbek, Tuğba Ak, Elvan Vanlı, Miraç Ocak, Ümmühan Ocak

Department of Chemistry, Faculty of Arts and Sciences, Karadeniz Technical University, 61080 Trabzon, Turkey

E-mail:gumrukcuoglu_61@hotmail.com Tel: +90 462 377 42 67 Fax: +90 462 325 31 96

Fig. S1. Effects of ions on fluorescence spectra of the ligand **ADPA** in the ethanol-water mixture (1:1). (Ligand concentration= 3.6×10^{-6} M. Ion concentrations= 3.6×10^{-5} M. Excitation at 370 nm), a: for cations b: for anions.

Fig. S2 The variation of the emission of the ligand **ADPA** with the concentration of Cd^{2+} added as 0-4 equivalents of Cd^{2+} in the ethanol-water mixture (1:1). Ligand concentration= 3.6×10^{-6} M. Excitation at 370 nm. Insets: Emission wavelength is 418 nm.

Fig. S3 The variation of the emission of the ligand **ADPA** with the concentration of Zn^{2+} added as 0-4 equivalents of Zn^{2+} in the ethanol-water (1:1). Ligand concentration= $3.6x10^{-6}$ M. Insets: Emission wavelength is 418 nm.

Fig. S4 The variation of the emission of the ligand **ADPA** with the concentration of Cu^{2+} added as 0-8 equivalents of Cu^{2+} in the ethanol-water mixture (1:1). Ligand concentration= 3.6×10^{-6} M. Insets: Emission wavelength is 395 nm.

Fig. S5 The variation of the emission of the ligand **ADPA** with the concentration of Hg^{2+} added as 0-8 equivalents of Hg^{2+} in the ethanol-water (1:1). Ligand concentration= 3.6×10^{-6} M. Insets: Measurements were carried out at 395 nm.

Fig. S6 Effects of ions on fluorescence spectra of the ligand **NDPA** in the ethanol-water mixture (1:1). (Ligand concentration= 1.7×10^{-5} M. Ion concentrations= 1.7×10^{-4} M. Excitation at 355 nm.), a: for cations b: for anions.

Fig. S7 The variation of the emission of the ligand **NDPA** with the concentration of Cu^{2+} added as 0-4 equivalents of Cu^{2+} in the ethanol-water mixture (1:1). Ligand concentration= 2.7×10^{-6} M. Excitation at 320 nm. Insets: Emission wavelength is 426 nm.

Fig. S8 The variation of the emission of the ligand **NDPA** with the concentration of Hg^{2+} added as 0-4 equivalents of Hg^{2+} in the ethanol-water (1:1). Ligand concentration=2.7x10⁻⁶ M. Excitation at 320 nm. Insets: Emission wavelength is 358 nm.

Fig. S9 Effects of ions on fluorescence spectra of the ligand PDPA in the ethanol-water mixture (1:1). (Ligand concentration= 2.5×10^{-6} M. Ion concentrations= 2.5×10^{-5} M. Excitation at 360 nm.), a: for cations b: for anions.

Fig. S10 The variation of the emission of the ligand **PDPA** with the concentration of Hg^{2+} added as 0-8 equivalents of Hg^{2+} in the ethanol-water mixture (1:1). Ligand concentration= 2.5×10^{-6} M. Excitation at 360 nm. Insets: Emission wavelength is 453 nm.

Fig. S11 The variation of the emission of the ligand **PDPA** with the concentration of Cu^{2+} added as 0-8 equivalents of Cu^{2+} in the ethanol-water (1:1). Ligand concentration= 2.5×10^{-6} M. Excitation at 360 nm. Insets: Emission wavelength is 453 nm.

Fig. S12 The variation of the emission of the ligand **PDPA** with the concentration of Zn^{2+} added as 0-8 equivalents of Zn^{2+} in the ethanol-water mixture (1:1). Ligand concentration=2.5x10⁻⁶ M. Excitation at 360 nm. Insets: Emission wavelength is 386 nm.

Fig. S13 The variation of the emission of the ligand **PDPA** with the concentration of Cd^{2+} added as 0-8 equivalents of Cd^{2+} in the ethanol-water (1:1). Ligand concentration= 2.5×10^{-6} M. Excitation at 360 nm. Insets: Emission wavelength is 407 nm.

Fig. S14 Effects of ions on fluorescence spectra of the ligand **PHDPA** in the ethanol-water mixture (1:1). (Ligand concentration= 2.5×10^{-6} M. Ion concentrations= 2.5×10^{-5} M. Excitation at 300 nm), a: for cations b: for anions.