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*DEPARTMENT OF MATHEMATICS, SAKARYA UNIVERSITY, SAKARYA, 54050,

TURKEY

Abstract. In this paper, we have introduced the concepts λαh -density of a

subset of the time scale T and λαh -statistical convergence of order α (0 < α ≤ 1)

of ∆− measurable function f defined on the time scale T with the help of
modulus function h and λ = (λn) sequences. Later, we have discussed the

connection between classical convergence, λ-statistical convergence and λαh -

statistical convergence. In addition, we have seen that f is strongly λαh -Cesaro
summable on T then f is λαh -statistical convergent of order α.

1. Introduction

The concept of statistical convergence which is a generalization of classical con-
vergence was first given by Zygmund [21] and later were introduced independently
by Steinhaus [18] and Fast [4]. This concept is discussed under different names in
spaces such as topological space, cone metric space, Banach space, time scale (see
[10],[11],[12],[13],[15],[16],[17],[18],[19],[20],[26],[24],[25],[34],[41],[43]). Mursaleen [27]
introduced the notion of λ-statistical convergence by using the sequence λ = (λn)
and then λ-statistical convergence on the time scales was introduced by Yılmaz et
al[33] . The order of statistical convergence of a sequence of positive linear opera-
tors was introduced by Gadjiev and Orhan [36]. Later, Çolak [37] introduced and
investigated the statistical convergence of order α (0 < α ≤ 1) and strong p-Cesaro
summability of order α of number sequences.

The time scale calculus was first introduced by Hilger in his Ph.D. thesis in
1988 (see [8],[9],[22]). In later years, the integral theory on time scales was given
by Guseinov [7], and further studies were developed by Cabada-Vivero [3] and
Rzezuchowski [16]. Recently, Seyyidoğlu and Tan [17] defined the density of the
subset of the time scale. By using this definition, they gave ∆−convergence and
∆−Cauchy concepts for a real valued function defined on time scale. On the other
side, the modulus function was first introduced by Nakano [14]. Aizpuru et al.[1]
defined a new density concept with the help of a modulus function and obtained
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a new convergence concept between ordinary convergence and statistical conver-
gence. Gürdal and Özgür [6] introduced ideal h-statistical convergence and ideal
h-statistical Cauchy concepts in normed space using the modulus function h and
ideals.

In this paper, we have aimed to define λαh -statistical convergence of ∆− measur-
able functions of order α (0 < α ≤ 1) defined on the time scale by using modulus
function h and λ = (λn) sequences in light of works of Seyyidoğlu and Tan [17]
and others [7], [2].

2. Prelimineries

The statistical convergence concept is based on the asymptotic (natural) density
of a subset B in N (the set of positive integers) which is defined as

δ (B) = lim
n→∞

|{k ≤ n : k ∈ B}|
n

, (2.1)

where |B| denotes the number of elements in B (see [29],[4],[5]). It has been gen-
eralized to α-density of a subset B ⊂ N and given the definition of α−statistically
convergence (α ∈ (0, 1] ) by Colak [37]. The notion of λ-statistical convergence was
introduced by Mursaleen [27] using the sequence λ = (λn) which is a non-decreasing
sequence of positive numbers tending to ∞ as n → ∞ such that λn+1 ≤ λn + 1,
λ1 = 1, and In = [n− λn + 1, n] . Lets denote by Λ the set of λ = (λn) sequences.
The λ- density of B ⊂ N is defined by

δλ(B) = lim
n→∞

|{k ∈ In : k ∈ B}|
λn

(2.2)

and δλ(B) reduces to the natural density δ(B) in case of λn = n for all n ∈ N (see
[33]). A sequence x = (xn) is said to be λ- statistically convergent to L of order α
(α ∈ (0, 1] ) if for every ε > 0,

lim
n→∞

|{k ∈ In : |xk − L| ≥ ε}|
(λn)α

= 0. (2.3)

In this case, we write sλα −limx = L (see [33],[27],[38],[28],[45],[46],[44]) and we
denote by Sλα the set of λα- statistically convergent sequences of order α . If λn
= n, Sλα reduces to Sα the set of statistically convergent number sequences of
order α.

On the other hand, we recall that h : [0,∞)→ [0,∞) is called modulus function,
or simply modulus, if it is satisfies:

(1) h(s) = 0 if and only if s = 0,
(2) h (s+ p) ≤ h (s) + h (p) for every s, p ∈ [0,∞),
(3) h is increasing,
(4) h is continuous from the right at 0.

A modulus may be bounded or unbounded . For instance, h(x) = xp, where
0 < p ≤ 1, is unbounded, but h(x) = x

1+x is bounded (see [39], [23]).

Let h be an unbounded modulus function. The λαh−density of order α (0 < α ≤
1) of a set B ⊆ N is defined by

δλ
α
h (B) = lim

n→∞

h(|{n− λn + 1 ≤ k ≤ n : k ∈ B}|)
h((λn)α)

(2.4)
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whenever this limit exists.
In this study, we shall give a notion of λαh−statistical convergence on any time

scales and its properties. Throughout this paper, we consider the time scales which
are unbounded from above and have a minimum point. Lets remember some con-
cepts.

A nonempty closed subset of R is called a time scale and is denoted by T. We
suppose that a time scale has the topology inherited from R with the standart
topology. For t ∈ T, we consider the forward jump operator σ : T→ T by σ (t) :=
inf {s ∈ T : s > t}. In this definition, we take inf ∅ = supT. For t ∈ T with a ≤ b,
it is defined the interval [a, b] in T by [a, b] = {t ∈ T : a ≤ t ≤ b} .

Let T be a time scale. Denote by F the family of all left-closed and right-open
intervals of T of the form [a, b) = {t ∈ T : a ≤ t < b} with a, b ∈ T and a ≤ b.
It is clear that the interval [a, a) is an empty set, F is semiring of subsets of T.
Let m : F → [0,∞) be the set function on F that assings to each interval [a, b)
its lenght b − a,m ([a, b)) = b − a. Then m is a countably additive measure on
F . We denote by µ∆ the Caratheodory extension of the set function m associated
with family F (for the Caratheodory extension see [17]) and is denoted by µ∆,
the Lebesgue ∆-measure on T, and that is a countably additive measure . In this
case, it is known that if a ∈ T− {maxT}, then the single point set {a} is ∆-
measurable and µ∆(a) =σ (a)− a. If a, b ∈ T and a ≤ b then µ∆(a, b)T = b−σ (a) .
If a, b ∈ T− {maxT}, a ≤ b ; µ∆(a, b]T = σ(b)−σ (a) and µ∆[a, b]T= σ(b)−a. It
can be easily seen that the measure of a subset of N is equal to its cardinality (see
[17],[32]).

Turan and Duman [30] introduced the concept of statistical convergence of ∆-
measurable real-valued functions defined on time scales as follows. Suppose that
Ω be a ∆-measurable subset of T. Then, the set Ω(t) is defined by Ω(t) =: {s ∈
[t0, t]T : s ∈ Ω} for t ∈ T. In this case, the density of Ω on T can be defined as

δT (Ω) = lim
t→∞

µ∆(Ω(t))

µ∆([t0, t]T)
(2.5)

provided that the limit exists. In case of T = N, this reduces to the classical
concept of asymptotic density. Let f : T→ R be a ∆− measurable function.
Then, f is statistically convergent to a real number L on T if for every ε > 0,
δT({t ∈ T : |f(t)− L| ≥ ε}) = 0. In this case, it can be written sT − lim

t→∞
f(t) = L.

Later, the λ-statistical convergence on time scale was introduced by Yılmaz et
al [33], [31]. It is said that f is λ−statistically convergent on T to a real number
L if

lim
t→∞

µ∆λ
({s ∈ [t− λt + t0, t]T : |f(s)− L| ≥ ε})

µ∆λ
([t− λt + t0, t]T)

= 0 (2.6)

for every ε > 0. In this case, we can writes sλT − lim
t→∞

f(t) = L. The set of all λ−
statistically convergence functions on T will be denoted by SλT . Here and afterwards
∆λ shows that ∆ depends on λ.

3. Main Results

Definition 3.1. Let Ω be a ∆λ-measurable subset of T, h be an unbounded modulus
function and α be any real number (0 < α ≤ 1). Then, one defines the set Ω(t, λ)
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by Ω(t, λ) =: {s ∈ [t − λt + t0, t]T : s ∈ Ω} for t ∈ T. In this case, the λαh−density
of Ω on T of order α can be defined as

δ
λαh
T (Ω) = lim

t→∞

h(µ∆λ
(Ω(t, λ)))

h((µ∆λ
([t− λt + t0, t]T))α)

(3.1)

provided that the limit exists.

We can easily get δ
λαh
T (Ω) = δ

α
h

T (Ω) if λt = t and δ
λαh
T (Ω) = δλ

α

T (Ω) if we take
h(x) = x on T.

Definition 3.2. Let f : T→ R be a ∆λ- measurable function. Then, one says

that f is λαh− statistically convergent to a real number L of order α (0 < α ≤ 1) on
T if

lim
t→∞

h(µ∆λ
({s ∈ [t− λt + t0, t]T : |f(s)− L| ≥ ε}))

h((µ∆λ
([t− λt + t0, t]T))α)

= 0 (3.2)

for every ε > 0.

In this case, one writes s
λαh
T − lim

t→∞
f(t) = L. The set of all λαh− statistically

convergence functions on T will be denoted by S
λαh
T .

If we take λt = t in (8), we get classical statistically convergent on T to a real
number L, for the function f which is defined by [17],[30] in (7). This shows that
our results are generalizations of classical conclusions.

As will be noted that, when α = 1, λαh−density of Ω on T of order α returns
to λh−density. In case h(x) = x, λαh−density becomes λα−density. If α = 1 and
h(x) = x, then λαh−density reduces to λ−density of Ω on T.

The equality δ
λαh
T (Ω) + δ

λαh
T (TrΩ) = 1 does not hold for α (0 < α ≤ 1) and an

unbounded modulus h, in general. For instance, if we take h(x) = xp, 0 < p ≤ 1,

0 < α < 1 and Ω = {2n : n ∈ N}, then δ
λαh
T (Ω) = δ

λαh
T (TrΩ) =∞. Also, finite sets

have zero λαh−density for any unbounded modulus h and α (0 < α ≤ 1) (see [30],
[38]).

Lemma 3.1. Let α (0 < α ≤ 1) be any real number, Ω be a ∆λ-measurable subset

of T and h be an unbounded modulus function. If δ
λαh
T (Ω) = 0, then δ

λαh
T (TrΩ) 6= 0.

Proof. Let α (0 < α ≤ 1) be any given real number and the equality δ
λαh
T (Ω) = 0

be valid for any unbounded modulus h. Suppose that δ
λαh
T (TrΩ) = 0. Let us

say Ω(t, λ)T =: {s ∈ [t − λt + t0, t]T : s ∈ Ω(t)} for t ∈ T and TrΩ(t, λ)T =:
{s ∈ [t − λt + t0, t]T : s ∈ T r (Ω)(t)} for t ∈ T. Since µ∆λ

([t − λt + t0, t]T) =
µ∆λ

(Ω(t, λ)T) + µ∆λ
(TrΩ(t, λ)T) for t ∈ T and h is subadditive, we have

h(µ∆λ
([t− λt + t0, t]T)) ≤ h( µ∆λ

Ω(t, λ)T) + h( µ∆λ
(TrΩ(t, λ)T)) (3.3)

Hence we may write

lim
t→∞

h(µ∆λ
([t− λt + t0, t]T))

h((µ∆λ
([t− λt + t0, t]T))α)

(3.4)

≤ lim
t→∞

h( µ∆λ
Ω(t, λ)T)

h((µ∆λ
([t− λt + t0, t]T))α)

+ lim
t→∞

h( µ∆λ
(TrΩ(t, λ)T))

h((µ∆λ
([t− λt + t0, t]T))α)

.
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Since δ
λαh
T (Ω) = 0 and δ

λαh
T (TrΩ) = 0, the right side of the inequality is zero and

thus

lim
t→∞

h(µ∆λ
([t− λt + t0, t]T))

h((µ∆([t− λt + t0, t]T)α)
= 0.

This is a contradiction. Because
h(µ∆λ

([t−λt+t0,t]T))

h((µ∆λ
([t−λt+t0,t]T)α) ≥ 1 for α (0 < α ≤ 1) and

therefore

lim
t→∞

h((µ∆λ
([t− λt + t0, t]T))

h((µ∆λ
([t− λt + t0, t]T)α)

≥ 1. (3.5)

�

For any unbounded modulus h and 0 < α ≤ 1, if δ
λαh
T (Ω) = 0 then δλ

α

T (Ω) = 0,
but the inverse of this does not need to be true ([40]). Namely, a set having
zero α-density for some α (0 < α ≤ 1) might have non-zero λαh−density for some
unbounded modulus h, with the same α. Similarly a set having zero λ− density
might have non-zero λαh−density for some unbounded modulus h and 0 < α ≤ 1.

For example, let h(x) = log(x + 1) and Ω = {1, 4, 9, ...}. Then δλ (Ω) = 0 and

δλ
α

T (Ω) = 0 for 1/2 < α ≤ 1, but δ
λαh
T (Ω) ≥ δλhT (Ω) = 1/2 and therefore δ

λαh
T (Ω) 6=

0.

If Φ ⊆ T has zero λαh−density for some unbounded modulus h and for some α
(0 < α ≤ 1), then it has zero λα−density and hence zero λ−density (see [3]).

Lemma 3.2. [40] Let h be an unbounded modulus and Φ ⊆ T. If 0 < α ≤ β ≤ 1,

then δ
λβh
T (Φ) ≤ δλ

α
h

T (Φ).

Thus, for any unbounded modulus h and 0 < α ≤ β ≤ 1, if Φ has zero λαh−density
in that case, it has zero λβh−density. Specially, a set having zero λαh−density for
some α (0 < α ≤ 1) has zero λh−density. But, the inverse is not correct. For
instance, let h(x) = xp for 0 < p ≤ 1 and Φ = {1, 4, 9, ...}. Then

δλhT (Φ) = lim
t→∞

h(µ∆λ
Φ(t, λ)T)

h(µ∆λ
([t− λt + t0, t]T))

(3.6)

≤ lim
t→∞

h(d
√

Φ(t, λ)e)
h(µ∆λ

([t− λt + t0, t]T))
(3.7)

= lim
t→∞

(d
√

Φ(t, λ)e)p

(µ∆λ
([t− λt + t0, t]T)p

= 0

but, if we get 0 < α ≤ 1/2,

δ
λαh
T (Φ) = lim

t→∞

h(µ∆λ
Φ(t, λ)T)

h((µ∆λ
([t− λt + t0, t]T)α)

(3.8)

= lim
t→∞

(d
√

Φ(t, λ)e)p

((µ∆λ
([t− λt + t0, t]T)α)p

=∞

where dre denotes the integer part of number r.

Proposition 3.3. Let f, g : T→ R be a ∆λ- measurable functions such that s
λαh
T −

lim
t→∞

f(t) = L1 and s
λαh
T − lim

t→∞
g(t) = L2. Then the following statements hold:



6 NAME TOK AND METIN BAŞARIR

i) s
λαh
T − lim

t→∞
(f(t) + g(t)) = L1 +L2,

ii) s
λαh
T − lim

t→∞
(cf(t)) = cL1.

Proof. It is easy to prove and we omit it. �

Theorem 3.4. ShαT ⊆ S
λαh
T if and only if

lim inf
t→∞

h(µ∆λ
([t− λt + t0, t]T))

h((µ∆λ
([t0, t]T)α)

> 0 (3.9)

Proof. For given ε > 0, we have

h(µ∆({s ∈ [t0, t]T : |f(s)− L| ≥ ε})) ⊃ h(µ∆({s ∈ [t− λt + t0, t]T : |f(s)− L| ≥ ε})).

Then

h(µ∆λ
({s ∈ [t0, t]T : |f(s)− L| ≥ ε}))

h((µ∆λ
([t0, t]T)α)

≥ h(µ∆λ
({s ∈ [t− λt + t0, t]T : |f(s)− L| ≥ ε}))

h((µ∆λ
([t0, t]T)α)

=
h(µ∆λ

([t− λt + t0, t]T ))

h((µ∆λ
([t0, t]T)α)

1

h(µ∆λ
([t− λt + t0, t]T ))

h(µ∆λ
({s∈ [t− λt + t0, t]T : |f(s)− L| ≥ ε}))

Hence by using (3.9) and taking the limit as t → ∞, we get s
α
h

T − lim
t→∞

f(s) → L

implies s
λαh
T − lim

t→∞
f(s) = L. �

The definition of p−Cesaro summability on time scales was given by Turan and
Duman [30] as follows.

Definition 3.3. [30] Let f : T→ R be a ∆-measurable function and 0 < p < ∞.
Then, f is strongly p−Cesaro summable on T if there exists some L ∈ R such that

lim
t→∞

1

(µ∆([t0, t]T))

∫
[t0,t]T

|f(s)− L|p∆s = 0. (3.10)

The set of all p− Cesaro summable functions on T is denoted by [Wp]T.
We need to emphasize that measure theory on time scales was first constructed

by Guseinov [7] and Lebesque ∆− integral on time scales introduced by Cabada
and Vivero [35].

Definition 3.4. Let f : T→ R be a ∆λ- measurable function, λ ∈ Λ and 0 < p <
∞. We say that f is strongly λαh − Cesaro summable on T if there exists some
L ∈ R such that
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lim
t→∞

1

(µ∆λ
([t− λt + t0, t]T))α

∫
[t−λt+t0,t]T

h(|f(s)− L|) ∆s = 0. (3.11)

In this case we write [W,λαh ]T− lim f(s) = L. The set of all strongly λαh−Cesaro
summable functions on T will be denoted by [W,λαh ]T. If we take h(x) = xp and
α = 1 then we get [W,λp]T the set of all strongly λp −Cesaro summable functions
on T (see [33]).

Lemma 3.5. Let f : T→ R be a ∆λ- measurable function and Ω(t, λ) = { s ∈
[t− λt + t0, t]T : h(|f(s)− L|) ≥ ε } for ε > 0. In this case, we have

h(µ∆λ
(Ω(t, λ))) ≤ 1

ε

∫
Ω(t,λ)

h(|f(s)− L|) ∆s (3.12)

≤ 1

ε

∫
[t−λt+t0,t]T

h(|f(s)− L|) ∆s (3.13)

Proof. It can be proved by using similar method with [30]. �

Theorem 3.6. Let f : T→ R be a ∆λ- measurable function, λ ∈ Λ , L ∈ R and
0 < p <∞. Then we get:

i) [W,λαh ]T.⊂ s
λαh
T .

ii) If f is strongly λαh − Cesaro summable to L, then s
λαh
T − lim

t→∞
f(t) = L.

iii) If s
λαh
T − lim

t→∞
f(t) = L and f is a bounded function, then f is strongly

λαh − Cesaro summable to L.

Proof. i) Let ε > 0 and [W,λαh ]T − lim f(s) = L. We can write∫
[t−λt+t0,t]T

h(|f(s)− L|) ∆s ≥
∫

Ω(t,λ)

h(|f(s)− L|) ∆s (3.14)

≥ ε h(µ∆λ
(Ω(t, λ))). (3.15)

Therefore, [W,λαh ]T − lim f(s) = L implies s
λαh
T − lim

t→∞
f(s) = L.

ii) Let f is strongly λαh − Cesaro summable to L. For given ε > 0, let Ω(t, λ)
= { s ∈ [t− λt + t0, t]T : h(|f(s)− L|) ≥ ε } on time scale T. Then, it follows from
lemma 9

ε h(µ∆λ
(Ω(t, λ))) ≤

∫
[t−λt+t0,t]T

h(|f(s)− L|) ∆s.

Dividing both sides of the last equality by h(µ∆λ
([t−λt + t0, t]T)) and taking limit

as t→∞, we obtain

lim
t→∞

h(µ∆λ
(Ω(t, λ)))

h((µ∆λ
([t− λt + t0, t]T)α)

(3.16)

≤ 1

ε
lim
t→∞

1

h((µ∆λ
([t− λt + t0, t]T)α)

∫
[t−λt+t0,t]T

h(|f(s)− L|) ∆s = 0
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�

which yields that s
λαh
T − lim

t→∞
f(t) = L.

iii) Let f be bounded and λαh−statistically convergent to L on T. Then, there
exists a positive number M such that |f(s)| ≤M for all s ∈ T, and also

lim
t→∞

h(µ∆λ
(Ω(t, λ)))

h((µ∆λ
([t− λt + t0, t]T)α)

= 0

where Ω(t, λ) = { s ∈ [t− λt + t0, t]T : h(|f(s)− L|) ≥ ε } as stated before. Since∫
[t−λt+t0,t]T

h(|f(s)− L|) ∆s

=

∫
Ω(t,λ)

h(|f(s)− L|) ∆s+

∫
[t−λt+t0,t]T/Ω(t,λ)

h(|f(s)− L|) ∆s (3.17)

≤ (h(M) + h(|L|))
∫

Ω(t,λ)

∆s+ ε

∫
[t−λt+t0,t]T/Ω(t,λ)

∆s

= (h(M) + h(|L|)) h(µ∆λ
(Ω(t, λ))) + ε h(µ∆λ

([t− λt + t0, t]T)),

we obtain

lim
t→∞

1

h((µ∆λ
([t− λt + t0, t]T)α)

∫
[t−λt+t0,t]T

h(|f(s)− L|) ∆s (3.18)

≤ (h(M) + h(|L|)) lim
t→∞

h(µ∆λ
(Ω(t, λ)))

h((µ∆λ
([t− λt + t0, t]T)α)

+ ε

Since ε > 0 is arbitrary, the proof follows from (3.16) and (3.18).

Theorem 3.7. Let f be a ∆λ-measurable function. Then, s
λαh
T − lim

t→∞
f(t) = L if

and only if there exists a ∆λ-measurable set Ω ⊆ T such that δλ
α
h (Ω) = 1 and lim

t→∞
h(|f(t)− L|) = 0, (t ∈ Ω(t, λ)).

Proof. It can be easily proved by using similar way in Theorem 3.9 of Turan and
Duman (see, [30]). �
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