PROCEEDINGS OF INTERNATIONAL MATHEMATICAL SCIENCES URL: https://dergipark.org.tr/tr/pub/pims Volume I Issue 1 (2019), Pages 1-10.

ON THE λ_h^{α} -STATISTICAL CONVERGENCE OF THE FUNCTIONS DEFINED ON THE TIME SCALE

NAME TOK* AND METIN BAŞARIR*

*DEPARTMENT OF MATHEMATICS, SAKARYA UNIVERSITY, SAKARYA, 54050, TURKEY

ABSTRACT. In this paper, we have introduced the concepts λ_h^{α} -density of a subset of the time scale \mathbb{T} and λ_h^{α} -statistical convergence of order α $(0 < \alpha \leq 1)$ of $\Delta-$ measurable function f defined on the time scale \mathbb{T} with the help of modulus function h and $\lambda = (\lambda_n)$ sequences. Later, we have discussed the connection between classical convergence, λ -statistical convergence and λ_h^{α} -statistical convergence. In addition, we have seen that f is strongly λ_h^{α} -Cesaro summable on T then f is λ_h^{α} -statistical convergent of order α .

1. INTRODUCTION

The concept of statistical convergence which is a generalization of classical convergence was first given by Zygmund [21] and later were introduced independently by Steinhaus [18] and Fast [4]. This concept is discussed under different names in spaces such as topological space, cone metric space, Banach space, time scale (see [10],[11],[12],[13],[15],[16],[17],[18],[19],[20],[26],[24],[25],[34],[41],[43]). Mursaleen [27] introduced the notion of λ -statistical convergence by using the sequence $\lambda = (\lambda_n)$ and then λ -statistical convergence on the time scales was introduced by Yılmaz et al[33]. The order of statistical convergence of a sequence of positive linear operators was introduced by Gadjiev and Orhan [36]. Later, Çolak [37] introduced and investigated the statistical convergence of order α ($0 < \alpha \leq 1$) and strong *p*-Cesaro summability of order α of number sequences.

The time scale calculus was first introduced by Hilger in his Ph.D. thesis in 1988 (see [8],[9],[22]). In later years, the integral theory on time scales was given by Guseinov [7], and further studies were developed by Cabada-Vivero [3] and Rzezuchowski [16]. Recently, Seyyidoğlu and Tan [17] defined the density of the subset of the time scale. By using this definition, they gave Δ -convergence and Δ -Cauchy concepts for a real valued function defined on time scale. On the other side, the modulus function was first introduced by Nakano [14]. Aizpuru et al.[1] defined a new density concept with the help of a modulus function and obtained

²⁰¹⁰ Mathematics Subject Classification. Primary: MSC Number 40A05; 47H10; Secondaries: MSC Numbers 46A45.

Key words and phrases. Δ -convergence, statistical convergence, density, modulus function, λ sequences, Cesaro summable.

^{©2019} Proceedings of International Mathematical Sciences.

a new convergence concept between ordinary convergence and statistical convergence. Gürdal and Özgür [6] introduced ideal h-statistical convergence and ideal h-statistical Cauchy concepts in normed space using the modulus function h and ideals.

In this paper, we have aimed to define λ_h^{α} -statistical convergence of Δ - measurable functions of order α ($0 < \alpha \leq 1$) defined on the time scale by using modulus function h and $\lambda = (\lambda_n)$ sequences in light of works of Seyyidoğlu and Tan [17] and others [7], [2].

2. Prelimineries

The statistical convergence concept is based on the asymptotic (natural) density of a subset B in \mathbb{N} (the set of positive integers) which is defined as

$$\delta(B) = \lim_{n \to \infty} \frac{|\{k \le n : k \in B\}|}{n}, \tag{2.1}$$

where |B| denotes the number of elements in B (see [29],[4],[5]). It has been generalized to α -density of a subset $B \subset \mathbb{N}$ and given the definition of α -statistically convergence ($\alpha \in (0, 1]$) by Colak [37]. The notion of λ -statistical convergence was introduced by Mursaleen [27] using the sequence $\lambda = (\lambda_n)$ which is a non-decreasing sequence of positive numbers tending to ∞ as $n \to \infty$ such that $\lambda_{n+1} \leq \lambda_n + 1$, $\lambda_1 = 1$, and $I_n = [n - \lambda_n + 1, n]$. Lets denote by Λ the set of $\lambda = (\lambda_n)$ sequences. The λ - density of $B \subset \mathbb{N}$ is defined by

$$\delta_{\lambda}(B) = \lim_{n \to \infty} \frac{|\{k \in I_n : k \in B\}|}{\lambda_n}$$
(2.2)

and $\delta_{\lambda}(B)$ reduces to the natural density $\delta(B)$ in case of $\lambda_n = n$ for all $n \in \mathbb{N}$ (see [33]). A sequence $x = (x_n)$ is said to be λ - statistically convergent to L of order α ($\alpha \in (0, 1]$) if for every $\epsilon > 0$,

$$\lim_{n \to \infty} \frac{|\{k \in I_n : |x_k - L| \ge \epsilon\}|}{(\lambda_n)^{\alpha}} = 0.$$
(2.3)

In this case, we write $s_{\lambda^{\alpha}} - limx = L$ (see [33],[27],[38],[28],[45],[46],[44]) and we denote by $S_{\lambda^{\alpha}}$ the set of λ^{α} - statistically convergent sequences of order α . If $\lambda_n = n$, $S_{\lambda^{\alpha}}$ reduces to S^{α} the set of statistically convergent number sequences of order α .

On the other hand, we recall that $h: [0, \infty) \to [0, \infty)$ is called modulus function, or simply modulus, if it is satisfies:

- (1) h(s) = 0 if and only if s = 0,
- (2) $h(s+p) \leq h(s) + h(p)$ for every $s, p \in [0, \infty)$,
- (3) h is increasing,
- (4) h is continuous from the right at 0.

A modulus may be bounded or unbounded. For instance, $h(x) = x^p$, where $0 , is unbounded, but <math>h(x) = \frac{x}{1+x}$ is bounded (see [39], [23]).

Let h be an unbounded modulus function. The λ_h^{α} -density of order α ($0 < \alpha \leq 1$) of a set $B \subseteq \mathbb{N}$ is defined by

$$\delta^{\lambda_h^{\alpha}}(B) = \lim_{n \to \infty} \frac{h(|\{n - \lambda_n + 1 \le k \le n : k \in B\}|)}{h((\lambda_n)^{\alpha})}$$
(2.4)

whenever this limit exists.

In this study, we shall give a notion of λ_h^{α} -statistical convergence on any time scales and its properties. Throughout this paper, we consider the time scales which are unbounded from above and have a minimum point. Lets remember some concepts.

A nonempty closed subset of \mathbb{R} is called a time scale and is denoted by \mathbb{T} . We suppose that a time scale has the topology inherited from \mathbb{R} with the standart topology. For $t \in \mathbb{T}$, we consider the forward jump operator $\sigma : \mathbb{T} \to \mathbb{T}$ by $\sigma(t) := \inf \{s \in \mathbb{T} : s > t\}$. In this definition, we take $\inf \emptyset = sup\mathbb{T}$. For $t \in \mathbb{T}$ with $a \leq b$, it is defined the interval [a, b] in \mathbb{T} by $[a, b] = \{t \in \mathbb{T} : a \leq t \leq b\}$.

Let \mathbb{T} be a time scale. Denote by \mathcal{F} the family of all left-closed and right-open intervals of \mathbb{T} of the form $[a, b) = \{t \in \mathbb{T} : a \leq t < b\}$ with $a, b \in \mathbb{T}$ and $a \leq b$. It is clear that the interval [a, a) is an empty set, \mathcal{F} is semiring of subsets of \mathbb{T} . Let $m : \mathcal{F} \to [0, \infty)$ be the set function on \mathcal{F} that assings to each interval [a, b)its lenght b - a, m([a, b)) = b - a. Then m is a countably additive measure on \mathcal{F} . We denote by μ_{Δ} the Caratheodory extension of the set function m associated with family \mathcal{F} (for the Caratheodory extension see [17]) and is denoted by μ_{Δ} , the Lebesgue Δ -measure on \mathbb{T} , and that is a countably additive measure . In this case, it is known that if $a \in \mathbb{T} - \{max\mathbb{T}\}$, then the single point set $\{a\}$ is Δ measurable and $\mu_{\Delta}(a) = \sigma(a) - a$. If $a, b \in \mathbb{T}$ and $a \leq b$ then $\mu_{\Delta}(a, b)_{\mathbb{T}} = b - \sigma(a)$. If $a, b \in \mathbb{T} - \{max\mathbb{T}\}, a \leq b ; \mu_{\Delta}(a, b]_{\mathbb{T}} = \sigma(b) - \sigma(a)$ and $\mu_{\Delta}[a, b]_{\mathbb{T}} = \sigma(b) - a$. It can be easily seen that the measure of a subset of \mathbb{N} is equal to its cardinality (see [17],[32]).

Turan and Duman [30] introduced the concept of statistical convergence of Δ measurable real-valued functions defined on time scales as follows. Suppose that Ω be a Δ -measurable subset of \mathbb{T} . Then, the set $\Omega(t)$ is defined by $\Omega(t) =: \{s \in [t_0, t]_{\mathbb{T}} : s \in \Omega\}$ for $t \in \mathbb{T}$. In this case, the density of Ω on \mathbb{T} can be defined as

$$\delta_{\mathbb{T}}(\Omega) = \lim_{t \to \infty} \frac{\mu_{\Delta}(\Omega(t))}{\mu_{\Delta}([t_0, t]_{\mathbb{T}})}$$
(2.5)

provided that the limit exists. In case of $\mathbb{T} = \mathbb{N}$, this reduces to the classical concept of asymptotic density. Let $f : \mathbb{T} \to \mathbb{R}$ be a Δ - measurable function. Then, f is statistically convergent to a real number L on \mathbb{T} if for every $\epsilon > 0$, $\delta_{\mathbb{T}}(\{t \in \mathbb{T} : |f(t) - L| \ge \epsilon\}) = 0$. In this case, it can be written $s_{\mathbb{T}} - \lim_{t \to \infty} f(t) = L$.

Later, the λ -statistical convergence on time scale was introduced by Yılmaz et al [33], [31]. It is said that f is λ -statistically convergent on \mathbb{T} to a real number L if

$$\lim_{t \to \infty} \frac{\mu_{\Delta_{\lambda}}(\{s \in [t - \lambda_t + t_0, t]_{\mathbb{T}} : |f(s) - L| \ge \epsilon\})}{\mu_{\Delta_{\lambda}}([t - \lambda_t + t_0, t]_{\mathbb{T}})} = 0$$
(2.6)

for every $\epsilon > 0$. In this case, we can writes $s_{\mathbb{T}}^{\lambda} - \lim_{t \to \infty} f(t) = L$. The set of all λ -statistically convergence functions on \mathbb{T} will be denoted by $S_{\mathbb{T}}^{\lambda}$. Here and afterwards Δ_{λ} shows that Δ depends on λ .

3. Main Results

Definition 3.1. Let Ω be a Δ_{λ} -measurable subset of \mathbb{T} , h be an unbounded modulus function and α be any real number ($0 < \alpha \leq 1$). Then, one defines the set $\Omega(t, \lambda)$

by $\Omega(t,\lambda) =: \{s \in [t - \lambda_t + t_0, t]_{\mathbb{T}} : s \in \Omega\}$ for $t \in \mathbb{T}$. In this case, the λ_h^{α} -density of Ω on \mathbb{T} of order α can be defined as

$$\delta_{\mathbb{T}}^{\lambda_{h}^{\alpha}}(\Omega) = \lim_{t \to \infty} \frac{h(\mu_{\Delta_{\lambda}}(\Omega(t,\lambda)))}{h((\mu_{\Delta_{\lambda}}([t-\lambda_{t}+t_{0},t]_{\mathbb{T}}))^{\alpha})}$$
(3.1)

provided that the limit exists.

We can easily get $\delta_{\mathbb{T}}^{\lambda_{h}^{\alpha}}(\Omega) = \delta_{\mathbb{T}}^{\alpha}(\Omega)$ if $\lambda_{t} = t$ and $\delta_{\mathbb{T}}^{\lambda_{h}^{\alpha}}(\Omega) = \delta_{\mathbb{T}}^{\lambda^{\alpha}}(\Omega)$ if we take h(x) = x on \mathbb{T} .

Definition 3.2. Let $f : \mathbb{T} \to \mathbb{R}$ be a Δ_{λ} -measurable function. Then, one says that f is λ_h^{α} -statistically convergent to a real number L of order α ($0 < \alpha \leq 1$) on \mathbb{T} if

$$\lim_{t \to \infty} \frac{h(\mu_{\Delta_{\lambda}}(\{s \in [t - \lambda_t + t_0, t]_{\mathbb{T}} : |f(s) - L| \ge \epsilon\}))}{h((\mu_{\Delta_{\lambda}}([t - \lambda_t + t_0, t]_{\mathbb{T}}))^{\alpha})} = 0$$
(3.2)

for every $\epsilon > 0$.

In this case, one writes $s_{\mathbb{T}}^{\lambda_h^{\alpha}} - \lim_{t \to \infty} f(t) = L$. The set of all λ_h^{α} - statistically convergence functions on \mathbb{T} will be denoted by $S_{\mathbb{T}}^{\lambda_h^{\alpha}}$.

If we take $\lambda_t = t$ in (8), we get classical statistically convergent on \mathbb{T} to a real number L, for the function f which is defined by [17],[30] in (7). This shows that our results are generalizations of classical conclusions.

As will be noted that, when $\alpha = 1$, λ_h^{α} -density of Ω on \mathbb{T} of order α returns to λ_h -density. In case h(x) = x, λ_h^{α} -density becomes λ^{α} -density. If $\alpha = 1$ and h(x) = x, then λ_h^{α} -density reduces to λ -density of Ω on \mathbb{T} .

The equality $\delta_{\mathbb{T}}^{\lambda_h^{\alpha}}(\Omega) + \delta_{\mathbb{T}}^{\lambda_h^{\alpha}}(\mathbb{T} \setminus \Omega) = 1$ does not hold for α ($0 < \alpha \leq 1$) and an unbounded modulus h, in general. For instance, if we take $h(x) = x^p$, 0 , $<math>0 < \alpha < 1$ and $\Omega = \{2n : n \in \mathbb{N}\}$, then $\delta_{\mathbb{T}}^{\lambda_h^{\alpha}}(\Omega) = \delta_{\mathbb{T}}^{\lambda_h^{\alpha}}(\mathbb{T} \setminus \Omega) = \infty$. Also, finite sets have zero λ_h^{α} -density for any unbounded modulus h and α ($0 < \alpha \leq 1$) (see [30], [38]).

Lemma 3.1. Let α $(0 < \alpha \leq 1)$ be any real number, Ω be a Δ_{λ} -measurable subset of \mathbb{T} and h be an unbounded modulus function. If $\delta_{\mathbb{T}}^{\lambda_{h}^{\alpha}}(\Omega) = 0$, then $\delta_{\mathbb{T}}^{\lambda_{h}^{\alpha}}(\mathbb{T} \setminus \Omega) \neq 0$.

Proof. Let α $(0 < \alpha \leq 1)$ be any given real number and the equality $\delta_{\mathbb{T}}^{\lambda_h^{\alpha}}(\Omega) = 0$ be valid for any unbounded modulus h. Suppose that $\delta_{\mathbb{T}}^{\lambda_h^{\alpha}}(\mathbb{T} \setminus \Omega) = 0$. Let us say $\Omega(t,\lambda)_{\mathbb{T}} := \{s \in [t - \lambda_t + t_0,t]_{\mathbb{T}} : s \in \Omega(t)\}$ for $t \in \mathbb{T}$ and $\mathbb{T} \setminus \Omega(t,\lambda)_{\mathbb{T}} := \{s \in [t - \lambda_t + t_0,t]_{\mathbb{T}} : s \in \mathbb{T} \setminus (\Omega)(t)\}$ for $t \in \mathbb{T}$. Since $\mu_{\Delta_{\lambda}}([t - \lambda_t + t_0,t]_{\mathbb{T}}) = \mu_{\Delta_{\lambda}}(\Omega(t,\lambda)_{\mathbb{T}}) + \mu_{\Delta_{\lambda}}(\mathbb{T} \setminus \Omega(t,\lambda)_{\mathbb{T}})$ for $t \in \mathbb{T}$ and h is subadditive, we have

$$h(\mu_{\Delta_{\lambda}}([t-\lambda_t+t_0,t]_{\mathbb{T}})) \le h(\ \mu_{\Delta_{\lambda}}\Omega(t,\lambda)_{\mathbb{T}}) + h(\ \mu_{\Delta_{\lambda}}(\mathbb{T} \setminus \Omega(t,\lambda)_{\mathbb{T}}))$$
(3.3)

Hence we may write

$$\lim_{t \to \infty} \frac{h(\mu_{\Delta_{\lambda}}([t - \lambda_{t} + t_{0}, t]_{\mathbb{T}}))}{h((\mu_{\Delta_{\lambda}}([t - \lambda_{t} + t_{0}, t]_{\mathbb{T}}))^{\alpha})}$$

$$\leq \lim_{t \to \infty} \frac{h(\mu_{\Delta_{\lambda}}\Omega(t, \lambda)_{\mathbb{T}})}{h((\mu_{\Delta_{\lambda}}([t - \lambda_{t} + t_{0}, t]_{\mathbb{T}}))^{\alpha})} + \lim_{t \to \infty} \frac{h(\mu_{\Delta_{\lambda}}(\mathbb{T} \smallsetminus \Omega(t, \lambda)_{\mathbb{T}}))}{h((\mu_{\Delta_{\lambda}}([t - \lambda_{t} + t_{0}, t]_{\mathbb{T}}))^{\alpha})}.$$
(3.4)

Since $\delta_{\mathbb{T}}^{\lambda_h^{\alpha}}(\Omega) = 0$ and $\delta_{\mathbb{T}}^{\lambda_h^{\alpha}}(\mathbb{T} \setminus \Omega) = 0$, the right side of the inequality is zero and thus

$$\lim_{t \to \infty} \frac{h(\mu_{\Delta_{\lambda}}([t - \lambda_t + t_0, t]_{\mathbb{T}}))}{h((\mu_{\Delta}([t - \lambda_t + t_0, t]_{\mathbb{T}})^{\alpha})} = 0.$$

This is a contradiction. Because $\frac{h(\mu_{\Delta_{\lambda}}([t-\lambda_t+t_0,t]_{\mathbb{T}}))}{h((\mu_{\Delta_{\lambda}}([t-\lambda_t+t_0,t]_{\mathbb{T}})^{\alpha})} \geq 1$ for $\alpha \ (0 < \alpha \leq 1)$ and

therefore

$$\lim_{t \to \infty} \frac{h((\mu_{\Delta_{\lambda}}([t - \lambda_t + t_0, t]_{\mathbb{T}})))}{h((\mu_{\Delta_{\lambda}}([t - \lambda_t + t_0, t]_{\mathbb{T}})^{\alpha})} \ge 1.$$
(3.5)

For any unbounded modulus h and $0 < \alpha \leq 1$, if $\delta_{\mathbb{T}}^{\lambda_h^{\alpha}}(\Omega) = 0$ then $\delta_{\mathbb{T}}^{\lambda^{\alpha}}(\Omega) = 0$, but the inverse of this does not need to be true ([40]). Namely, a set having zero α -density for some α ($0 < \alpha \leq 1$) might have non-zero λ_h^{α} -density for some unbounded modulus h, with the same α . Similarly a set having zero λ - density might have non-zero λ_h^{α} -density for some unbounded modulus h and $0 < \alpha \leq 1$. For example, let h(x) = log(x+1) and $\Omega = \{1, 4, 9, ...\}$. Then $\delta^{\lambda}(\Omega) = 0$ and $\delta_{\mathbb{T}}^{\lambda^{\alpha}}(\Omega) = 0$ for $1/2 < \alpha \leq 1$, but $\delta_{\mathbb{T}}^{\lambda^{\alpha}_{h}}(\Omega) \geq \delta_{\mathbb{T}}^{\lambda_{h}}(\Omega) = 1/2$ and therefore $\delta_{\mathbb{T}}^{\lambda^{\alpha}_{h}}(\Omega) \neq 0$ 0.

If $\Phi \subseteq \mathbb{T}$ has zero λ_h^{α} -density for some unbounded modulus h and for some α $(0 < \alpha \leq 1)$, then it has zero λ^{α} -density and hence zero λ -density (see [3]).

Lemma 3.2. [40] Let h be an unbounded modulus and $\Phi \subseteq \mathbb{T}$. If $0 < \alpha \leq \beta \leq 1$, then $\delta_{\mathbb{T}}^{\lambda_h^{\beta}}(\Phi) \leq \delta_{\mathbb{T}}^{\lambda_h^{\alpha}}(\Phi).$

Thus, for any unbounded modulus h and $0 < \alpha \leq \beta \leq 1$, if Φ has zero λ_h^{α} -density in that case, it has zero λ_h^{β} -density. Specially, a set having zero λ_h^{α} -density for some α (0 < $\alpha \leq 1$) has zero λ_h -density. But, the inverse is not correct. For instance, let $h(x) = x^p$ for $0 and <math>\Phi = \{1, 4, 9, ...\}$. Then

$$\delta_{\mathbb{T}}^{\lambda_{h}}(\Phi) = \lim_{t \to \infty} \frac{h(\mu_{\Delta_{\lambda}} \Phi(t, \lambda)_{\mathbb{T}})}{h(\mu_{\Delta_{\lambda}}([t - \lambda_{t} + t_{0}, t]_{\mathbb{T}}))}$$
(3.6)

$$\leq \lim_{t \to \infty} \frac{h(|\sqrt{\Phi(t,\lambda)}|)}{h(\mu_{\Delta_{\lambda}}([t-\lambda_{t}+t_{0},t]_{\mathbb{T}}))}$$

$$([\sqrt{\Phi(t,\lambda)}])^{p}$$
(3.7)

$$= \lim_{t \to \infty} \frac{(|\sqrt{\Psi(t,\lambda)}|)^{p}}{(\mu_{\Delta_{\lambda}}([t-\lambda_{t}+t_{0},t]_{\mathbb{T}})^{p}} = 0$$

but, if we get $0 < \alpha \leq 1/2$,

$$\delta_{\mathbb{T}}^{\lambda_{h}^{\alpha}}(\Phi) = \lim_{t \to \infty} \frac{h(\mu_{\Delta_{\lambda}} \Phi(t, \lambda)_{\mathbb{T}})}{h((\mu_{\Delta_{\lambda}}([t - \lambda_{t} + t_{0}, t]_{\mathbb{T}})^{\alpha}))}$$

$$= \lim_{t \to \infty} \frac{(\lceil \sqrt{\Phi(t, \lambda)} \rceil)^{p}}{((\mu_{\Delta_{\lambda}}([t - \lambda_{t} + t_{0}, t]_{\mathbb{T}})^{\alpha})^{p}} = \infty$$
(3.8)

where [r] denotes the integer part of number r.

Proposition 3.3. Let $f, g: \mathbb{T} \to \mathbb{R}$ be a Δ_{λ} -measurable functions such that $s_{\mathbb{T}}^{\lambda_h^{\alpha}}$ - $\lim_{t\to\infty} f(t) = L_1 \text{ and } s_{\mathbb{T}}^{\lambda_h^{\alpha}} - \lim_{t\to\infty} g(t) = L_2. \text{ Then the following statements hold:}$

i)
$$s_{\mathbb{T}}^{\lambda_h^{\alpha}} - \lim_{t \to \infty} (f(t) + g(t)) = L_1 + L_2,$$

ii) $s_{\mathbb{T}}^{\lambda_h^{\alpha}} - \lim_{t \to \infty} (cf(t)) = cL_1.$

Proof. It is easy to prove and we omit it.

Theorem 3.4. $S^h_{\alpha \mathbb{T}} \subseteq S^{\lambda^h_h}_{\mathbb{T}}$ if and only if

$$\liminf_{t \to \infty} \frac{h(\mu_{\Delta_{\lambda}}([t - \lambda_t + t_0, t]_{\mathbb{T}}))}{h((\mu_{\Delta_{\lambda}}([t_0, t]_{\mathbb{T}})^{\alpha})} > 0$$
(3.9)

Proof. For given $\epsilon > 0$, we have

 $h(\mu_{\Delta}(\{s \in [t_0, t]_{\mathbb{T}} : |f(s) - L| \ge \epsilon\})) \supset h(\mu_{\Delta}(\{s \in [t - \lambda_t + t_0, t]_{\mathbb{T}} : |f(s) - L| \ge \epsilon\})).$ Then

$$\frac{h(\mu_{\Delta_{\lambda}}(\{s \in [t_0, t]_{\mathbb{T}} : |f(s) - L| \ge \epsilon\}))}{h((\mu_{\Delta_{\lambda}}([t_0, t]_{\mathbb{T}})^{\alpha})} \\
\ge \frac{h(\mu_{\Delta_{\lambda}}(\{s \in [t - \lambda_t + t_0, t]_{\mathbb{T}} : |f(s) - L| \ge \epsilon\}))}{h((\mu_{\Delta_{\lambda}}([t_0, t]_{\mathbb{T}})^{\alpha})} \\
= \frac{h(\mu_{\Delta_{\lambda}}([t - \lambda_t + t_0, t]_{\mathbb{T}}))}{h((\mu_{\Delta_{\lambda}}([t_0, t]_{\mathbb{T}})^{\alpha})} \frac{1}{h(\mu_{\Delta_{\lambda}}([t - \lambda_t + t_0, t]_{\mathbb{T}}))} \\
= h(\mu_{\Delta_{\lambda}}(\{s \in [t - \lambda_t + t_0, t]_{\mathbb{T}} : |f(s) - L| \ge \epsilon\})) \\$$

Hence by using (3.9) and taking the limit as $t \to \infty$, we get $s_{\mathbb{T}}^{\overset{\alpha}{h}} - \lim_{t \to \infty} f(s) \to L$ implies $s_{\mathbb{T}}^{\lambda_h^{\alpha}} - \lim_{t \to \infty} f(s) = L$.

The definition of p-Cesaro summability on time scales was given by Turan and Duman [30] as follows.

Definition 3.3. [30] Let $f : \mathbb{T} \to \mathbb{R}$ be a Δ -measurable function and 0 .Then, <math>f is strongly p-Cesaro summable on \mathbb{T} if there exists some $L \in \mathbb{R}$ such that

$$\lim_{t \to \infty} \frac{1}{(\mu_{\Delta}([t_0, t]_{\mathbb{T}}))} \int_{[t_0, t]_{\mathbb{T}}} |f(s) - L|^p \Delta s = 0.$$
(3.10)

The set of all p - Cesaro summable functions on \mathbb{T} is denoted by $[W_p]_{\mathbb{T}}$.

We need to emphasize that measure theory on time scales was first constructed by Guseinov [7] and *Lebesque* Δ – *integral* on time scales introduced by Cabada and Vivero [35].

Definition 3.4. Let $f : \mathbb{T} \to \mathbb{R}$ be a Δ_{λ} -measurable function, $\lambda \in \Lambda$ and 0 .We say that <math>f is strongly $\lambda_h^{\alpha} - Cesaro$ summable on \mathbb{T} if there exists some $L \in \mathbb{R}$ such that

 $\mathbf{6}$

$$\lim_{t \to \infty} \frac{1}{(\mu_{\Delta_{\lambda}}([t - \lambda_t + t_0, t]_{\mathbb{T}}))^{\alpha}} \int_{[t - \lambda_t + t_0, t]_{\mathbb{T}}} h(|f(s) - L|) \ \Delta s = 0.$$
(3.11)

In this case we write $[W, \lambda_h^{\alpha}]_{\mathbb{T}} - \lim f(s) = L$. The set of all strongly λ_h^{α} -Cesaro summable functions on \mathbb{T} will be denoted by $[W, \lambda_h^{\alpha}]_{\mathbb{T}}$. If we take $h(x) = x^p$ and $\alpha = 1$ then we get $[W, \lambda_p]_{\mathbb{T}}$ the set of all strongly $\lambda_p - Cesaro$ summable functions on \mathbb{T} (see [33]).

Lemma 3.5. Let $f : \mathbb{T} \to \mathbb{R}$ be a Δ_{λ} -measurable function and $\Omega(t, \lambda) = \{ s \in [t - \lambda_t + t_0, t]_{\mathbb{T}} : h(|f(s) - L|) \ge \epsilon \}$ for $\epsilon > 0$. In this case, we have

$$h(\mu_{\Delta_{\lambda}}(\Omega(t,\lambda))) \leq \frac{1}{\epsilon} \int_{\Omega(t,\lambda)} h(|f(s) - L|) \Delta s$$
(3.12)

$$\leq \frac{1}{\epsilon} \int_{[t-\lambda_t+t_0,t]_{\mathbb{T}}} h(|f(s)-L|) \Delta s \qquad (3.13)$$

Proof. It can be proved by using similar method with [30].

Theorem 3.6. Let $f : \mathbb{T} \to \mathbb{R}$ be a Δ_{λ} -measurable function, $\lambda \in \Lambda$, $L \in \mathbb{R}$ and 0 . Then we get:

i) $[W, \lambda_h^{\alpha}]_{\mathbb{T}} \subset s_{\mathbb{T}}^{\lambda_h^{\alpha}}.$

ii) If f is strongly $\lambda_h^{\alpha} - Cesaro$ summable to L, then $s_{\mathbb{T}}^{\lambda_h^{\alpha}} - \lim_{t \to \infty} f(t) = L$.

iii) If $s_{\mathbb{T}}^{\lambda_h^{\alpha}} - \lim_{t \to \infty} f(t) = L$ and f is a bounded function, then f is strongly $\lambda_h^{\alpha} - Cesaro$ summable to L.

Proof. i) Let $\epsilon > 0$ and $[W, \lambda_h^{\alpha}]_{\mathbb{T}} - \lim f(s) = L$. We can write

$$\int_{[t-\lambda_t+t_0,t]_{\mathbb{T}}} h(|f(s)-L|) \Delta s \geq \int_{\Omega(t,\lambda)} h(|f(s)-L|) \Delta s \quad (3.14)$$

$$\geq \epsilon h(\mu_{\Delta_{\lambda}}(\Omega(t,\lambda))). \tag{3.15}$$

Therefore, $[W, \lambda_h^{\alpha}]_{\mathbb{T}} - \lim_{t \to \infty} f(s) = L$ implies $s_{\mathbb{T}}^{\lambda_h^{\alpha}} - \lim_{t \to \infty} f(s) = L$.

ii) Let f is strongly $\lambda_h^{\alpha} - Cesaro$ summable to L. For given $\epsilon > 0$, let $\Omega(t, \lambda) = \{ s \in [t - \lambda_t + t_0, t]_{\mathbb{T}} : h(|f(s) - L|) \ge \epsilon \}$ on time scale \mathbb{T} . Then, it follows from lemma 9

$$\epsilon \ h(\mu_{\Delta_{\lambda}}(\Omega(t,\lambda))) \leq \int_{[t-\lambda_t+t_0,t]_{\mathbb{T}}} h(|f(s)-L|) \ \Delta s.$$

Dividing both sides of the last equality by $h(\mu_{\Delta_{\lambda}}([t-\lambda_t+t_0,t]_{\mathbb{T}}))$ and taking limit as $t \to \infty$, we obtain

$$\lim_{t \to \infty} \frac{h(\mu_{\Delta_{\lambda}}(\Omega(t,\lambda)))}{h((\mu_{\Delta_{\lambda}}([t-\lambda_{t}+t_{0},t]_{\mathbb{T}})^{\alpha})} \qquad (3.16)$$

$$\leq \frac{1}{\varepsilon} \lim_{t \to \infty} \frac{1}{h((\mu_{\Delta_{\lambda}}([t-\lambda_{t}+t_{0},t]_{\mathbb{T}})^{\alpha})} \int_{[t-\lambda_{t}+t_{0},t]_{\mathbb{T}}} h(|f(s)-L|) \Delta s = 0$$

which yields that $s_{\mathbb{T}}^{\lambda_h^{\alpha}} - \lim_{t \to \infty} f(t) = L$. iii) Let f be bounded and λ_h^{α} -statistically convergent to L on \mathbb{T} . Then, there exists a positive number M such that $|f(s)| \leq M$ for all $s \in \mathbb{T}$, and also

$$\lim_{t \to \infty} \frac{h(\mu_{\Delta_{\lambda}}(\Omega(t,\lambda)))}{h((\mu_{\Delta_{\lambda}}([t-\lambda_t+t_0,t]_{\mathbb{T}})^{\alpha})} = 0$$

where $\Omega(t,\lambda) = \{ s \in [t - \lambda_t + t_0, t]_{\mathbb{T}} : h(|f(s) - L|) \ge \epsilon \}$ as stated before. Since

$$\int_{\Omega(t,\lambda)} h(|f(s) - L|) \Delta s$$

$$= \int_{\Omega(t,\lambda)} h(|f(s) - L|) \Delta s + \int_{[t-\lambda_t + t_0,t]_{\mathbb{T}}/\Omega(t,\lambda)} h(|f(s) - L|) \Delta s \quad (3.17)$$

$$\leq (h(M) + h(|L|)) \int_{\Omega(t,\lambda)} \Delta s + \epsilon \int_{[t-\lambda_t + t_0,t]_{\mathbb{T}}/\Omega(t,\lambda)} \Delta s$$

$$= (h(M) + h(|L|)) h(\mu_{\Delta_{\lambda}}(\Omega(t,\lambda))) + \epsilon h(\mu_{\Delta_{\lambda}}([t-\lambda_t + t_0,t]_{\mathbb{T}})),$$

we obtain

8

$$\lim_{t \to \infty} \frac{1}{h((\mu_{\Delta_{\lambda}}([t - \lambda_t + t_0, t]_{\mathbb{T}})^{\alpha})} \int_{[t - \lambda_t + t_0, t]_{\mathbb{T}}} h(|f(s) - L|) \Delta s \quad (3.18)$$

$$\leq (h(M) + h(|L|)) \lim_{t \to \infty} \frac{h(\mu_{\Delta_{\lambda}}(\Omega(t, \lambda)))}{h((\mu_{\Delta_{\lambda}}([t - \lambda_t + t_0, t]_{\mathbb{T}})^{\alpha})} + \epsilon$$

Since $\epsilon > 0$ is arbitrary, the proof follows from (3.16) and (3.18).

Theorem 3.7. Let f be a Δ_{λ} -measurable function. Then, $s_{\mathbb{T}}^{\lambda_{h}^{\alpha}} - \lim_{t \to \infty} f(t) = L$ if and only if there exists a Δ_{λ} -measurable set $\Omega \subseteq \mathbb{T}$ such that $\delta^{\lambda_{h}^{\alpha}}(\Omega) = 1$ and $\lim_{t \to \infty}$ $h(|f(t) - L|) = 0, \ (t \in \Omega(t, \lambda)).$

Proof. It can be easily proved by using similar way in Theorem 3.9 of Turan and Duman (see, [30]). \square

Acknowledgments. The authors are very grateful to the the anonymous Referees for their valuable suggestions in rewriting this paper in the present form.

References

- [1] A. Aizpuru, M. C. Listán-García and F. Rambla-Borreno, Density by moduli and statistical convergence, Quaest. Math. 37 4 (2014) 525-530.
- [2] G. Aslim, G. Sh. Guseinov, Weak semirings, ω -semirings, and measures, Bull. Allahabad Math. Soc. 14 (1999) 1-20.
- [3] A. Cabada and D. R. Vivero, Expression of the Lebesque Δ -integral on time scales as a usual Lebesque integral; application to the calculus of Δ -antiderivates, Math. Comput. Modelling, 43 (2006) 194-207.
- [4] H. Fast, Sur la convergence statitique, Colloq. Math. 2 (1951) 241–244.

- [5] J. A. Fridy, On statistical convergence, Analysis, 5 (1985) 301–313.
- [6] M. Gürdal, M. O. Ozgür, A generalized statistical convergence via moduli, Electron. J. Math. Anal. Applic. 3 2 (2015) 173–178.
- [7] G. Sh. Guseinov, Integration on time scales, J. Math. Anal. Appl. 285 1 (2003) 107–127.
- [8] S. Hilger, Ein maßkettenkalkül mit anwendung auf zentrumsmanningfaltigkeilen Ph.D thesis, Universitat, Würzburg (1989).
- [9] S. Hilger, Analysis on measure chains-A unified a approach to continuous and discrete calculus, Results Math. 18 (1990) 19–56.
- [10] H. Cakalli, A new approach to statistically quasi Cauchy sequences, Maltepe Journal of Mathematics, 1, 1, (2019) 1–8.
- [11] E. Kolk The statistical convergence in Banach spacess, Acta Comment. Univ. Tartu. Math. 928 (1991) 41–52.
- [12] K. Li, S. Lin and Y. Ge, On statistical convergence in cone metric space, Topology Appl. 196 (2015) 641–651.
- [13] G. Di. Maio and L. D. R. Kočinac, Statistical convergence in topology, Topology Appl. 156 (2008) 28–45
- [14] H.Nakano, Concav modulus, J. Math. Soc. Jpn. 5 (1953) 29-49.
- [15] W. H. Ruckle, FK spaces in which the sequence of coordinate vectors is bounded, Can. J. Math. 25 (1973) 973–978.
- [16] T. Rzezuchowski, A note on measures on time scales, Demonstr. Math. 33 (2009) 27–40.
- [17] M. S. Seyyidoğlu and N. O. Tan, A note on statistical convergence on time scales, J. Inequal. Appl. (2012) 219–227.
- [18] H. Steinhaus, Sur la convergence ordinarie et la convergence asimptotique, Colloq. Math. 2 (1951) 73–74.
- [19] I. Taylan, Abel statistical delta quasi Cauchy sequences of real numbers, Maltepe Journal of Mathematics, 1, 1, (2019)18–23.
- [20] Ş. Yıldız, Lacunary statistical p-quasi Cauchy sequences, Maltepe Journal of Mathematics, 1, 1, (2019) 9–17.
- [21] A. Zygmund, Trigonometric Series, United Kingtom: Cambridge Univ. Press (1979).
- [22] B. Aulbach, S. Hilger, : A unified approach to continuous and discrete dynamics. J. Qual. Theory Diff. Equ. (Szeged, 1988), Colloq. Math. Soc. J´anos Bolyai, North-Holland Amsterdam 53, 37–56 (1990).
- [23] I. J. Maddox, Spaces of strongly summable sequences, Quarterly Journal of Mathematics: Oxford Journals, 18(2) (1967), 345-355.
- [24] M. Bohner and A. Peterson, Dynamic equations on time scales, an introduction with applications, (2001), Birkhauser, Boston.
- [25] R. Agarwal, M. Bohner, D. O'Regan, and A. Peterson, Dynamic equations on time scales: a survey, Journal of Computational and Applied Mathematics, 141(1-2) (2002), 1-26.
- [26] I. J. Maddox, Statistical convergence in a locally convex space, Mathematical Proceedings of the Cambridge Philosophical Society, 104(1) (1988), 141–145.
- [27] M. Mursaleen, λ -statistical convergence, Mathematica Slovaca, 50 (1) (2000), 111-115.
- [28] F. Nuray, λ -strongly summable and λ -statistically convergent functions, Iranian Journal of Science and Technology; Transaction A Science, 34(4) (2010), 335–338.
- [29] T. Salat, On statistically convergent sequences of real numbers, Mathematica Slovaca, 30 (1980), 139-150.
- [30] C. Turan and O. Duman, Statistical convergence on time scales and its characterizations, Advances in Applied Mathematics and Approximation Theory, Springer, Proceedings in Mathematics & Statistics, 41 (2013), 57-71.
- [31] Y. Altın, H. Koyunbakan and E. Yılmaz, Uniform Statistical Convergence on Time Scales, Journal of Applied Mathematics, Volume 2014, Article ID 471437, 6 pages.
- [32] F. Moricz, Statistical limit of measurable functions, Analysis, 24 (2004), 1-18.
- [33] E. Yilmaz, Y. Altin and H. Koyunbakan, λ- Statistical convergence on Time scales, Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 23 (2016) 69-78.
- [34] S. A. Mohiuddine, A. Alotaibi and M. Mursaleen, Statistical convergence through de la Vall'ee-Poussin mean in locally solid Riesz spaces, Advances in Difference Equations, 2013, 2013:66.

- [35] A. Cabada and D. R. Vivero, Expression of the Lebesque integral on time scales as a usual Lebesque integral; application to the calculus of -antiderivates, Mathematical and Computer Modelling, 43 (2006), 194-207.
- [36] A. D.Gadjiev and C. Orhan, Some approximation theorems via statistical convergence, Rocky Mountain J. Math. 32(1) (2002), 129-138.
- [37] R. Çolak, Statistical convergence of order α, Modern Methods in Analysis and Its Applications, Anamaya Pub., New Delhi, India (2010) 121-129.
- [38] E. Kayan and R. Çolak, λ_d -Statistical Convergence, λ_d -statistical Boundedness and Strong $(V, \lambda)_d$ summability in Metric Spaces, Mathematics and Computing. ICMC 2017. Communications in Computer and Information Science, vol 655 (2017) pp. 391- 403 Springer, doi: 10.1007/978-981-10-4642-1-33.
- [39] I. J. Maddox, Sequence spaces defined by a modulus, Math. Proc. Camb. Philos. Soc., 100 (1986) 161-166.
- [40] V. K. Bhardwaj, S. Dhawan f- statistical convergence of order α and strong Cesàro summability of order α with respect to a modulus, J. Inequal. Appl. 332 (2015) 14 pp. doi:10.1186/s13660-015-0850-x.
- [41] Nihan Turan and Metin Başarır, A note on quasi-statistical convergence of order α in rectangular cone metric space, Konuralp J.Math., 7 (1) (2019) 91-96.
- [42] Nihan Turan and Metin Başarır, On the Δ_g -statistical convergence of the function defined time scale, AIP Conference Proceedings, 2183, 040017 (2019); https://doi.org/10.1063/1.5136137.
- [43] Şengül, Hacer; Et, Mikail. f-lacunary statistical convergence and strong f-lacunary summability of order α. Filomat 32 (2018), no. 13, 4513–4521.
- [44] Et, Mikail; Şengül, Hacer. On (Δ^m, I) -lacunary statistical convergence of order α . J. Math. Anal. 7 (2016), no. 5, 78–84.
- [45] Şengül, Hacer. Some Cesàro-type summability spaces defined by a modulus function of order (α, β). Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat. 66 (2017), no. 2, 80–90.
- [46] Şengül, Hacer; Et, Mikail. On lacunary statistical convergence of order α. Acta Math. Sci. Ser. B (Engl. Ed.) 34 (2014), no. 2, 473–482.

NAME TOK,, DEPARTMENT OF MATHEMATICS, SAKARYA UNIVERSITY, SAKARYA, 54050, TURKEY *E-mail address*: nametokk@gmail.com

Metin Başarır,, Department of Mathematics, Sakarya University, Sakarya, 54050, Turkey

E-mail address: basarir@sakarya.edu.tr