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ABSTRACT. In this paper, we have introduced the concepts Af-density of a
subset of the time scale T and Af-statistical convergence of order a (0 < a < 1)
of A— measurable function f defined on the time scale T with the help of
modulus function h and A = (An) sequences. Later, we have discussed the
connection between classical convergence, A-statistical convergence and Af'-
statistical convergence. In addition, we have seen that f is strongly Aj¥-Cesaro
summable on T then f is Af-statistical convergent of order a.

1. INTRODUCTION

The concept of statistical convergence which is a generalization of classical con-
vergence was first given by Zygmund [21] and later were introduced independently
by Steinhaus [I8] and Fast [4]. This concept is discussed under different names in
spaces such as topological space, cone metric space, Banach space, time scale (see
[10], 110, [121,[13], [15], [16], [17], [18], [19],[20], [26], [24],[25], [34], [41], [43] ). Mursaleen [27]
introduced the notion of A-statistical convergence by using the sequence A = (\,)
and then A-statistical convergence on the time scales was introduced by Yilmaz et
al[33] . The order of statistical convergence of a sequence of positive linear opera-
tors was introduced by Gadjiev and Orhan [36]. Later, Colak [37] introduced and
investigated the statistical convergence of order a (0 < o < 1) and strong p-Cesaro
summability of order o of number sequences.

The time scale calculus was first introduced by Hilger in his Ph.D. thesis in
1988 (see [8],[9],[22]). In later years, the integral theory on time scales was given
by Guseinov [7], and further studies were developed by Cabada-Vivero [3] and
Rzezuchowski [16]. Recently, Seyyidoglu and Tan [I7] defined the density of the
subset of the time scale. By using this definition, they gave A—convergence and
A—Cauchy concepts for a real valued function defined on time scale. On the other
side, the modulus function was first introduced by Nakano [14]. Aizpuru et al.[l]
defined a new density concept with the help of a modulus function and obtained
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a new convergence concept between ordinary convergence and statistical conver-
gence. Giirdal and Ozgﬁr [6] introduced ideal h-statistical convergence and ideal
h-statistical Cauchy concepts in normed space using the modulus function h and
ideals.

In this paper, we have aimed to define A{-statistical convergence of A— measur-
able functions of order o (0 < v < 1) defined on the time scale by using modulus
function h and A = (\,) sequences in light of works of Seyyidoglu and Tan [17]
and others [7], [2].

2. PRELIMINERIES

The statistical convergence concept is based on the asymptotic (natural) density
of a subset B in N (the set of positive integers) which is defined as

5(B) = lim {k <n: IfEB}|7
n—oo n

where |B| denotes the number of elements in B (see [29],[4],[5]). It has been gen-
eralized to a-density of a subset B C N and given the definition of a—statistically
convergence (« € (0, 1] ) by Colak [37]. The notion of A-statistical convergence was
introduced by Mursaleen [27] using the sequence A = (\,,) which is a non-decreasing
sequence of positive numbers tending to oo as n — oo such that A\,+1 < Ay + 1,
A =1,and I, = [n — A\, + 1,n] . Lets denote by A the set of A = (\,) sequences.
The A- density of B C N is defined by

(2.1)

55(B) = lim {k €I, : ke B}

n—o00 An

(2.2)

and 0 (B) reduces to the natural density §(B) in case of A\, = n for all n € N (see
[B3]). A sequence x = (z,) is said to be A- statistically convergent to L of order «
(a € (0,1] ) if for every € > 0,
: — >

i €T L2 0]

n—00 ()\n)a
In this case, we write sy —limxz = L (see [33],[27],[38],[28],[45],[46],[44]) and we
denote by Syo the set of A\“- statistically convergent sequences of order o . If A,

= n, Sho reduces to S the set of statistically convergent number sequences of
order a.

(2.3)

On the other hand, we recall that h : [0, 00) — [0, 00) is called modulus function,
or simply modulus, if it is satisfies:
(1) h(s) =01if and only if s =0,
(2) h(s+p) <h(s)+h(p) for every s,p € [0,c0),
(3) h is increasing,
(4) h is continuous from the right at 0.
A modulus may be bounded or unbounded . For instance, h(z) = zP, where
0 <p <1, is unbounded, but h(z) = {7 is bounded (see [39], [23]).
Let h be an unbounded modulus function. The Af—density of order o (0 < o <
1) of a set B C N is defined by

o — 1<k<n:
5 (B) =t MMt ISk <nike BY)

Jim WD) (2.4)
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whenever this limit exists.

In this study, we shall give a notion of Aj—statistical convergence on any time
scales and its properties. Throughout this paper, we consider the time scales which
are unbounded from above and have a minimum point. Lets remember some con-
cepts.

A nonempty closed subset of R is called a time scale and is denoted by T. We
suppose that a time scale has the topology inherited from R with the standart
topology. For t € T, we consider the forward jump operator o : T — T by o (t) :=
inf{s € T:s > t}. In this definition, we take inf ) = supT. For ¢ € T with a <,
it is defined the interval [a,b] in T by [a,b] ={t € T:a <t <b}.

Let T be a time scale. Denote by F the family of all left-closed and right-open
intervals of T of the form [a,b) = {t € T:a <t < b} with a,b € T and a < b.
It is clear that the interval [a,a) is an empty set, F is semiring of subsets of T.
Let m : F — [0,00) be the set function on F that assings to each interval [a, b)
its lenght b — a,m ([a,b)) = b — a. Then m is a countably additive measure on
F. We denote by pa the Caratheodory extension of the set function m associated
with family F (for the Caratheodory extension see [I7]) and is denoted by pua,
the Lebesgue A-measure on T, and that is a countably additive measure . In this
case, it is known that if @ € T — {mazT}, then the single point set {a} is A-
measurable and pa(a) =0 (a) —a. If a,b € T and a < b then ua(a,b)r = b—0o (a).
If a,b € T —{mazT}, a < b ; pala,blr =o(b)—o (a) and pala,blpy= o(b)—a. It
can be easily seen that the measure of a subset of N is equal to its cardinality (see
[17, [320).

Turan and Duman [30] introduced the concept of statistical convergence of A-
measurable real-valued functions defined on time scales as follows. Suppose that
Q2 be a A-measurable subset of T. Then, the set Q(t) is defined by Q(t) =: {s €
[to,t]T : s € Q} for t € T. In this case, the density of Q on T can be defined as

5 () = lim L2EUD) (2.5)

t=oo un([ty, t]y)
provided that the limit exists. In case of T = N, this reduces to the classical
concept of asymptotic density. Let f : T — R be a A— measurable function.
Then, f is statistically convergent to a real number L on T if for every ¢ > 0,
dr({t € T: |f(t) — L| > €}) = 0. In this case, it can be written sy — tlggof(t) = L.

Later, the A-statistical convergence on time scale was introduced by Yilmaz et
al [33], [BI]. Tt is said that f is A—statistically convergent on T to a real number
L if

li FasUs €[t = Ae+to, 8w : [f(s) — L| = €})
t—o0 pay ([t = A+ to, t]r)
for every € > 0. In this case, we can writes 51)5 — 75lim f(t) = L. The set of all A—
—00

=0 (2.6)

statistically convergence functions on T will be denoted by S. Here and afterwards
A shows that A depends on A.
3. MAIN RESULTS

Definition 3.1. Let Q be a Ay-measurable subset of T, h be an unbounded modulus
function and « be any real number (0 < « < 1). Then, one defines the set Q(t, \)
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by Qt,\) = {s € [t — X\ +to,tlr : s € Q} fort € T. In this case, the A\ —density
of Q on T of order a can be defined as

2 () = i M2, ()

A Chan (= A + fo 1)) 3.1)

provided that the limit exists.

We can casily get 03" () = 6k (Q) if A, = ¢ and 53" (Q) = 62" (Q) if we take
h(x) =« on T.

Definition 3.2. Let f : T — R be a Ax- measurable function. Then, one says

that f is Ay — statistically convergent to a real number L of order a (0 < e < 1) on

T of

o B (s € £ A+ to,r < 1f(s) — 1] 2 €})
t—o0 h((pas ([t = Ae + to, 1))
for every € > 0.

=0 (3.2)

In this case, one writes siﬁ — tlim f(t) = L. The set of all Ay — statistically
—00

convergence functions on T will be denoted by S%g.

If we take \; = ¢ in (8), we get classical statistically convergent on T to a real
number L, for the function f which is defined by [17],[30] in (7). This shows that
our results are generalizations of classical conclusions.

As will be noted that, when o = 1, A} —density of € on T of order a returns
to Ap—density. In case h(z) = x, A\ —density becomes A —density. If « = 1 and
h(x) = x, then A —density reduces to A—density of £ on T.

The equality (5%g Q)+ 5%% (T\92) =1 does not hold for & (0 < o < 1) and an
unbounded modulus h, in general. For instance, if we take h(z) = 2P, 0 < p < 1,
0<a<1land Q ={2n:n € N}, then 5%3 Q) = 5%(; (T\2) = co. Also, finite sets
have zero Aj —density for any unbounded modulus h and « (0 < a < 1) (see [30],
[38]).

Lemma 3.1. Let a (0 < a < 1) be any real number, Q@ be a Ax-measurable subset
of T and h be an unbounded modulus function. If61>fh (Q) =0, then 51?" (T\92) # 0.

Proof. Let a (0 < o < 1) be any given real number and the equality 51?% Q=0

be valid for any unbounded modulus h. Suppose that 5{? (T~Q) = 0. Let us
say Q(t, N =: {s € [t = A\ +to,t]lr : s € Q)} for t € T and TNQ(¢, A)p =:
{seft—XM+totlr:s €T (Q))} for t € T. Since pa, ([t — X + to,t1) =
pa, (QEN)1) + pa, (TNQ(E, A1) for t € T and h is subadditive, we have

h(pas ([t = A+ to, tlr)) < A( pay Q8 A1) + A0 pay (TNQ(E A1) (3.3)

Hence we may write

lim h(pay (It = A + to, tr))

t=oo h((pay ([t = A + to, t]r))*)

B YOG TS b (TN0(N))
=t h((pay ([t = A +to, t]T))*)  tmeoh((pay ([E = A +to, tlr))™)

(3.4)
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Since 51?%' () =0 and 51?2 (T~\2) = 0, the right side of the inequality is zero and
thus

hpas ([t = Ae + to, )

1m
t=oo h((pua ([t — A + to. t]r))
R(pa, ([t—Aetto,tlT))
((ray (t=Xe+to,t]T)™)

=0.

This is a contradiction. Because 5; >1fora (0<a<1)and

therefore
. h((pay ([t = A+ to, t]T))
I s (= e 0, 1))~ (35
O

For any unbounded modulus i and 0 < a < 1, if 51?%' () = 0 then 62" () =0,
but the inverse of this does not need to be true ([40]). Namely, a set having
zero a-density for some a (0 < o < 1) might have non-zero Aj —density for some
unbounded modulus h, with the same «. Similarly a set having zero A— density
might have non-zero Ay —density for some unbounded modulus » and 0 < o < 1.
For example, let h(z) = log(z + 1) and Q = {1,4,9,...}. Then §*(Q2) = 0 and
52T (Q) =0 for 1/2 < a < 1, but 53" (Q) > 62 (Q) = 1/2 and therefore 52" () #
0.

If @ C T has zero A —density for some unbounded modulus » and for some o
(0 < a < 1), then it has zero A>—density and hence zero A—density (see [3]).

Lemma 3.2. [40] Let h be an unbounded modulus and ® CT. If0 < a < 5 < 1,
B o
then, 62 (@) < o+ (®).
Thus, for any unbounded modulus 2 and 0 < o < 8 < 1, if ¢ has zero A —density
in that case, it has zero \) —density. Specially, a set having zero A; —density for

some a (0 < o < 1) has zero A\,—density. But, the inverse is not correct. For
instance, let h(z) = 2P for 0 <p <1 and ® = {1,4,9,...}. Then

h’(#’AA (p(tv )‘)T)

(@) = m e ) .
s h([/2(E M) (3.7)

100 h(tin, ([t — M + to, 1))

_ (VRGN

t=oo (pa, ([t — A + to, )P

but, if we get 0 < a < 1/2,

) h(pa, ®(t M)

im

=00 h((pay ([t = A + to, t]7)*)
(/AN

t=o0 ((pay ([t = A + to, tr)*)?

where [r] denotes the integer part of number r.

52t (D) (3.8)

Proposition 3.3. Let f,g: T — R be a Ay- measurable functions such that sf‘rg -
lim f(¢t) = Ly and s%‘h — lim g(t) = La. Then the following statements hold:
t— o0 t— o0
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@

i) sy — lim (f(t) +9(t)) = Ly +La,
i) st — lim (cf(t)) = cLy.

t—o0
Proof. 1t is easy to prove and we omit it. ([l

Theorem 3.4. SQT - Si};: if and only if

lim infh(uAA (= e 4 1o, flr))
t—00 h((pa, ([to, t]T)®)

>0 (3.9)

Proof. For given € > 0, we have

h(pa({s € [to,tlr = |f(s) = L| > €})) D h(ua({s € [t = At +to.t]r = |f(s) — L = €})).
Then

hpa,({s € [to, t)r = [f(s) =

h((pax ([to, tlr)*)

o Mea(selt=A+totr: [f(s) = L[> ¢€}))
B h((pay ([to, t]r)*)

LI > €}))

_ h(pay ([t — X +to, t]r ) 1
h((uay ([t tlr)®)  hpa, ([t — A +to, t]r )

h(pay({s€ [t = A +to, tlr = [f(s) = L] = €}))
Hence by using (3.9) and taking the limit as ¢ — oo, we get s% — tli}m f(s) = L

implies s%g — tlgrolof(s) = L. O

The definition of p — Cesaro summability on time scales was given by Turan and
Duman [30] as follows.

Definition 3.3. [30] Let f : T — R be a A-measurable function and 0 < p < oo.
Then, fis strongly p— Cesaro summable on T if there exists some L € R such that

. 1 »
Aoy | Ve - pras=o (8.10)
[to.t]T
The set of all p — Cesaro summable functions on T is denoted by [Wp]r.
We need to emphasize that measure theory on time scales was first constructed
by Guseinov [7] and Lebesque A — integral on time scales introduced by Cabada
and Vivero [35].

Definition 3.4. Let f: T — R be a Ax- measurable function, A € A and 0 < p <
oo. We say that f is strongly Ay — Cesaro summable on T if there exists some

L € R such that
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. 1 -
L PN +t0,t]T))“[t_AXt t] Mlfte) = L) Aa=0. (311

In this case we write [W, Aff]r —lim f(s) = L. The set of all strongly A\ —Cesaro
summable functions on T will be denoted by [W, AY]y. If we take h(x) = 2P and
a =1 then we get [W, Ap]r the set of all strongly A, — Ceesaro summable functions
on T (see [33]).

Lemma 3.5. Let f : T — R be a Ax- measurable function and Q(t,\) = { s €
[t — At +to, t]r : h(|f(s) = L|) > € } for e > 0. In this case, we have

1
Mus, @ N) <+ [ (A - L)) As (312)
Q(t,\)
1
<+ [ M-z as (3.13)
€
[tf)\t+t0,t]j-
Proof. Tt can be proved by using similar method with [30]. |

Theorem 3.6. Let f : T — R be a Ay- measurable function, A € A , L € R and
0 <p<oo. Then we get:
i) [W, A2]7.C sh.
ii) If f is strongly A% — Cesaro summable to L, then s%" - tli}m f(t) = L.
oo
i) If s-}h — tlim f(t) = L and f is a bounded function, then f is strongly
—00

Ay — Cesaro summable to L.

Proof. 1) Let € > 0 and [W, A%]r — lim f(s) = L. We can write

h(lf(s) = L|) As = / h(lf(s) = LI) As (3.14)
[t—Ae+to,t)r Q(t,\)
> h(uay (@), (3.15)
Therefore, [W, A¥]r — lim f(s) = L implies s%t’? - tlgglof(s) = L.

ii) Let f is strongly A% — C'esaro summable to L. For given € > 0, let Q(t, A)
={se€t—M+to,t]r:h(f(s)—L|]) > e} on time scale T. Then, it follows from
lemma 9

chus,@E )< [ R(F() - L) A,
[t=X¢+to,t]r

Dividing both sides of the last equality by h(pa, ([t — At +to,t]r)) and taking limit
as t — 0o, we obtain

lim h(“AA (Q(t’ )‘)))
t=oo h((pa, ([t — At + to, t1)%)

1 1
— lim
et=ooh((pa, ([t — Ae + to, t])*)

(3.16)

IN

[ nr - zh as=o

[t—X¢+to,t]r
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O
which yields that s%ﬁ — tli}m f@®) = L.
oo

iii) Let f be bounded and Aj—statistically convergent to L on T. Then, there
exists a positive number M such that |f(s)] < M for all s € T, and also

L B, ()
t=ooh((pa, ([t — Ae + to, t]T)*)
where Q(t,\) ={ s € [t — M +to,t]r: h(|f(s) — L|) > € } as stated before. Since

=0

h(lf(s) = L|) As

[t—At—&-to,t]T
- / B(f(s)— LI) As+ / Wf(s)— L) As  (3.17)
Q(t,N) [t=Xe+to,tlr/Qt,N)
< (h(M) + h(|L])) / As+e / As
Q(t,A) [t=At+to,t]r/Q(¢,N)
= (W) + B(LD) h(iar QL A) + ¢ Bl (- M+ to, 1)),
we obtain
. 1
i / Wf(s) — L) As  (3.18)

[t=A¢+to,t]T

C h(a, (91 0)
< (M) + (D), iy e e

Since € > 0 is arbitrary, the proof follows from (3.16) and (3.18).

+ €

Theorem 3.7. Let f be a Ax-measurable function. Then, s%g — tlim f@t)y =1L if
— 00

and only if there exists a Ax-measurable set Q C T such that 5 (Q) =1 and tl}m
(oo}
h(f(t) = L|) =0, (t € Q(t,N)).

Proof. Tt can be easily proved by using similar way in Theorem 3.9 of Turan and
Duman (see, [30]). O
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