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Analysis of The Dynamics of The Classical Epidemic Model with Beta Distributed Random 

Components 
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ABSTRACT: In this study, the classical epidemic model of Kermack and McKendrick is analyzed with 

beta distributed random components. A random analysis is done for the deterministic epidemic model 

by transforming the parameters and initial values of the system to random variables with beta 

distribution. The approximations for the expectations of the model variables are compared with the 

deterministic results to comment on the randomness of the cases with random parameters and random 

initial values. Results for some numerical characteristics of these two cases are also given to investigate 

the accuracy of the approximations for the expected values. 

Keywords:  SIR Model, Random Effect, Beta Distribution, Moment, Random Differential Equation. 

Klasik Salgın Hastalik Modeli Dinamiklerinin Beta Dağılımına Sahip Rastgele Bileşenlerle 

İncelenmesi 

ÖZET: Bu çalışmada Kermack ve McKendrick’in klasik salgın hastalık modeli beta dağılımına sahip 

rastgele bileşenlerle incelenmektedir. Deterministik model için sistemin parametreleri ve başlangıç 

koşulları beta dağılımına sahip rastgele değişkenlere dönüştürülerek bir rastgele inceleme yapılmaktadır. 

Model değişkenlerinin beklenen değerleri için elde edilen yaklaşımlar deterministik sonuçlarla 

karşılaştırılarak rastgele başlangıç koşulları ve rastgele parametre içeren durumların rastgele yapıları 

hakkında yorum yapılmaktadır. Beklenen değerlerin yaklaşımlarının doğruluğunun incelenmesi için iki 

durumun bazı sayısal karakteristiklerinin sonuçları da verilmektedir. 

Anahtar Kelimeler: SIR Modeli, Rastgele Etki, Beta Dağılımı, Moment, Rastgele Diferansiyel 

Denklem. 
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INTRODUCTION 

The SIR model, also known as the classical epidemic model, is a milestone in mathematical 

epidemiology studies. It enables the investigation of disease dynamics through the analysis of the 

compartments of any population under consideration. The total population is divided into 3 

compartments (Susceptible – Infected – Recovered) and the changes in these compartments over time 

are analyzed to monitor the course of the disease. SIR model was introduced by Kermack and 

McKendrick in early 1900s and takes its name from the capital letters of the compartments (Kermack 

and McKendrick, 1927). Various other models have been formed from the classical model by adding 

new compartments and parameters to analyze many other diseases and events in medicine, biology etc. 

(Khan et al., 2015; Merdan et al., 2017). SIS (Susceptible – Infected – Susceptible), SEIR (Susceptible 

– Exposed – Infected – Recovered) and MSEIR (Passively immune – Susceptible – Exposed – Infected 

– Recovered) are some of the derivatives of the classical epidemic model (Hethcote, 2000). 

 A vast majority of the literature on mathematical modeling studies in various fields of science 

are made on a deterministic level. That is, the randomness of the real life course of events is ignored in 

these studies. The recent works are focused on a fractional and/or numerical perspective for modeling 

studies (Araz and Durur, 2018; Yokus and Yavuz, 2018; Dokuyucu et al., 2018; Singh et al., 2018; 

Prakasha et al., 2019; Dokuyucu, 2019; Durur et al., 2019; Rasool et al., 2019; Yokus, 2019; Durur, 

2019; Yokus, 2020). However, it is known that some components of modeling studies in epidemiology, 

biochemistry and etc. are determined through statistical investigations and hence possess a, non-

negligibly, random nature. In this study, we will be transforming some components of the deterministic 

classical epidemic model to random variables with beta distribution to represent the real life randomness 

of some events in the mathematical models. The motivation of such an analysis is the previous studies 

of the authors which contain similar random modeling and analyses of influenza and bacterial resistance 

(Merdan and Khaniyev, 2008; Merdan et al., 2017). The transformation of the parameters and initial 

values to random variables enables the modeling of a random scenario for disease transmission, where 

the disease spreads in the population randomly or where the population is structured of randomly 

distributed susceptible and infected individuals. Beta distribution has previously been used to describe 

the dispersion of data about sunshine data and HIV transmission probability (Wiley et al., 1989; 

Suleiman et al., 1999). Since Beta distribution has been used for the distributions of such random events 

in various fields and because of the fact that we can arrange the parameters of this distribution to obtain 

a symmetrical continuous distribution in a limited support with a bell shaped density for certain 

parameters, Beta distribution will be used to for the random parameters and the random initial values.  

 The outline of the paper is as follows: The classical epidemic model will be introduced in the 

next section on a deterministic level. In the following sections, the random models with random 

parameters and random initial data will be given, respectively. In the last three parts, results for the 

expectations of these two random models will be compared and a conclusion will be given, along with 

the results of the simulations. 

MATERIALS AND METHODS 

The Deterministic Classical Epidemic Model 

The deterministic model in (Hethcote, 2000) is used in this study. Here, 𝑠, 𝑖, 𝑟 are the population 

compartments denoting the susceptible, infected and recovered humans, respectively. 𝑛(𝑡) denotes the 

total population:  
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 𝑑𝑠

𝑑𝑡
= −𝛽𝑖

𝑠

𝑛
, 𝑠(0) = 𝑠0 ≥ 0, 

𝑑𝑖

𝑑𝑡
= 𝛽𝑖

𝑠

𝑛
− 𝛾𝑖, 𝑖(0) = 𝑖0 ≥ 0, 

𝑑𝑟

𝑑𝑡
= 𝛾𝑖, 𝑟(0) = 𝑟0 ≥ 0. 

(1) 

We use the general “fixed population” assumption of compartmental models: 

 𝑠(𝑡) + 𝑖(𝑡) + 𝑟(𝑡) → fixed.  

Dividing all population groups by 𝑛(𝑡), we form a new set of variables: 𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡). Since 𝑅(𝑡) =

1 − 𝑆(𝑡) − 𝐼(𝑡), the non-dimensionalized model is obtained as: 

 𝑑𝑆

𝑑𝑡
= −𝛽𝐼𝑆, 

𝑑𝐼

𝑑𝑡
= 𝛽𝐼𝑆 − 𝛾𝐼. 

(2) 

The parameters of the model are given as follows: 𝛽 denotes the contact rate and has the deteministic 

value 1 while 𝛾 denotes the recovery rate and has the value 1/3. These parameter values are used along 

with initial conditions: 𝑆(0) = 0.99, 𝐼(0) = 0.01 for the numerical simulations. The values of the 

parameters have been taken from (Hethcote, 2000). It should also be noted that the time 𝑡, is given in 

days. 

SIR Model with Beta Distributed Random Parameters 

 The general beta distribution is a continuous distribution with left and right shape parameters 𝑎 

and 𝑏, a location parameters 𝑐 and a scale parameter 𝑑. The random variable 𝑋 has the general beta 

distribution with parameters (𝑎, 𝑏) in (𝑐, 𝑑), if it has the probability density function 

 
𝑓(𝑥) =

1

𝐵(𝑎, 𝑏)𝑑𝑎+𝑏−1
(𝑥 − 𝑐)𝑎−1(𝑐 + 𝑑 − 𝑥)𝑏−1, 𝑥 ∈ (𝑐, 𝑐 + 𝑑), 𝑎 > 0, 𝑏 > 0.  

We will be using a symmetrical general Beta distribution by choosing identical left and right shape 

parameters (𝑎 = 𝑏), since we will be assuming equal dispersion of the data around the deterministic 

value of the model parameters and initial values.  

The parameters of system (2) will be transformed into random variables with symmetrical general 

Beta distribution to model the randomness of the values of recovery and contact rates in real life. The 

expected value of a general Beta distributed random variable 𝑋∗ with parameters (𝑎, 𝑏, 𝑐, 𝑑) is given as 

(Bekiryazici et al., 2016) 

 𝐸(𝑋∗) = 𝑐 + 𝑑
𝑎

𝑎 + 𝑏
.  

The parameters of system (2), 𝛽 and 𝛾 are transformed into random variables 𝛽∗, 𝛾∗ such that 

 𝛽∗ = 𝑐1 + 𝑑1𝑍1, 

𝛾∗ = 𝑐2 + 𝑑2𝑍2, 

 
 

where 𝑍1, 𝑍2 are independent random variables with standard Beta distribution having the parameters 

(𝑎𝑖, 𝑏𝑖), 𝑖 = 1,2 and 𝑐𝑖, 𝑑𝑖, 𝑖 = 1,2 are the lower bounds and lengths of their supports, respectively. Since 

the deterministic values are 𝛽 = 1 and 𝛾 = 1/3, we determine the parameters of the general Beta 

distributions (𝑎𝑖, 𝑏𝑖, 𝑐𝑖, 𝑑𝑖), 𝑖 = 1,2 such that 𝐸(𝛽∗) = 1 and 𝐸(𝛾∗) = 1/3. If the new parameters 𝛽∗, 𝛾∗ 

are written in the system (2), we get the random model with random parameters: 
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 𝑑𝑆

𝑑𝑡
= −𝛽∗𝐼𝑆, 

𝑑𝐼

𝑑𝑡
= 𝛽∗𝐼𝑆 − 𝛾∗𝐼, 

(3) 

along with the initial values 𝑆(0) = 0.99, 𝐼(0) = 0.01. Since 𝑆(𝑡) and 𝐼(𝑡) are determined through the 

random equations in (3), they become random variables as well. If we denote a generally Beta distributed 

random variable 𝑋∗ ∼ 𝑔𝐵𝑒𝑡𝑎(𝑐, 𝑑, 𝑎, 𝑏), for 𝛾∗ ∼ 𝑔𝐵𝑒𝑡𝑎 (
19

60
,

1

30
, 4,4) and 𝛽∗ ∼ 𝑔𝐵𝑒𝑡𝑎(0.99,0.02,3,3); 

(where 𝑔𝐵𝑒𝑡𝑎 denotes a generally distributed random variable) 

 
𝐸(𝛾∗) = 𝑐1 + 𝑑1

𝑎1

𝑎1 + 𝑏1
=

19

60
+

1

30

4

4 + 4
=

1

3
, 

𝐸(𝛽∗) = 𝑐2 + 𝑑2

𝑎2

𝑎2 + 𝑏2
= 0.99 + 0.02

3

3 + 3
= 1. 

 

If we place the random variables 𝛾∗ = 𝑐1 + 𝑑1𝑍1 =
19

60
+

1

30
𝑍1, 𝛽∗ = 0.99 + 0.02𝑍2 in the system (3), 

where 𝑍1 ∼ 𝐵𝑒𝑡𝑎(4,4) and 𝑍2 ∼ 𝐵𝑒𝑡𝑎(3,3) are independent, we get 

 𝑑𝑆

𝑑𝑡
= −(0.99 + 0.02𝑍2)𝐼𝑆, 

𝑑𝐼

𝑑𝑡
= (0.99 + 0.02𝑍2)𝐼𝑆 − (

19

60
+

1

30
𝑍1) 𝐼, 

(4) 

along with the initial values 𝑆(0) = 0.99, 𝐼(0) = 0.01. System (4) can be simulated in MATLAB by 

using the command ‘betarnd(A,B)’. The “betarnd(A,B)” command in MATLAB generates 

standard Beta distributed random variables with parameters 𝐴, 𝐵. 

RESULTS AND DISCUSSION 

SIR Model with Beta Distributed Random Initial Values 

 For the second random model, the initial values of (2) will be transformed into random variables 

with symmetrical general Beta distribution. The initial values 

 𝑆(0) = 𝑆0 = 0.99, 𝐼(0) = 𝐼0 = 0.01,  

will be similarly randomized. By selecting the new random initial values 𝑆0
∗ and 𝐼0

∗ as 

 𝑆0
∗ ∼ 𝑔𝐵𝑒𝑡𝑎(0,98,0.02,3,3), 𝐼0

∗ ∼ 𝑔𝐵𝑒𝑡𝑎(0,0.02,4,4).  

Since 𝑆0 and 𝐼0 represent the initial fractions of susceptible and infected humans, they have to be in the 

interval (0,1). The supports of the new random initial values were determined accordingly: 

 𝑆0
∗ ∈ (0.98,1), 𝐼0

∗ ∈ (0,0.02).  

Using the new initial values, we obtain the second model: 

 𝑑𝑆

𝑑𝑡
= −𝛽𝐼𝑆, 𝑆0

∗ ∼ 𝑔𝐵𝑒𝑡𝑎(0,98,0.02,3,3), 

𝑑𝐼

𝑑𝑡
= 𝛽𝐼𝑆 − 𝛾𝐼, 𝐼0

∗ ∼ 𝑔𝐵𝑒𝑡𝑎(0,0.02,4,4), 

(5) 

where 𝛽 = 1 and 𝛾 = 1/3. Once again, we will simulate system (5) in MATLAB by using the command 

‘betarnd(A,B)’. 

Comparison of Random Characteristics 

Differential Transformation Method (DTM) is a popular scheme for analyzing the approximate 

solutions of differential equations (Pukhov, 1982; Zhou, 1986). The mean square convergence of random 

DTM has been previously given by Villafuerte and Cortés (Villafuerte and Cortés, 2013). Using 
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Differential Transformation Method, we can obtain approximate analytical solution of system (2) and 

then introduce the random parameters and initial values that are general Beta distributed to investigate 

the random characteristics (Khudair, Haddad and Khalaf, 2016). Using 𝑛 = 2 iterations, the approximate 

analytical solution of 𝑆(𝑡) in the random model with random parameters is obtained as (we will use 

𝑆∗(𝑡), 𝐼∗(𝑡) for the model with random parameters and 𝑆∗∗(𝑡), 𝐼∗∗(𝑡) for the model with random initial 

values to distinguish these two cases): 

 𝑆∗(𝑡) = 0.99 − 0.0099𝛽𝑡 + (−0.004851𝛽2 + 0.00495𝛽𝛾)𝑡2, 

𝐼∗(𝑡) = 0.01 + (0.0099𝛽 − 0.01𝛾)𝑡 + (0.004851𝛽2 − 0.0099𝛽𝛾 + 0.005𝛾2)𝑡2. 
 

Similarly for the random model with random initial conditions, (using 𝑛 = 2 iterations), we get: 

 
𝑆∗∗(𝑡) = 𝑆0 − 𝑆0𝐼0𝑡 + (−

1

2
𝑆0

2𝐼0 +
1

6
𝑆0𝐼0 +

1

2
𝑆0𝐼0

2) 𝑡2, 

𝐼∗∗(𝑡) = 𝐼0 + (𝑆0𝐼0 −
1

3
𝐼0) 𝑡 + (

1

2
𝑆0

2𝐼0 −
1

3
𝑆0𝐼0 −

1

2
𝑆0𝐼0

2 +
1

18
𝐼0) 𝑡2. 

 

Hence, by the expected values of 𝑆(𝑡) with random parameters and initial values can be compared as 

below. The expectation of 𝑆(𝑡) with random parameters is: 

 𝐸(𝑆∗(𝑡)) = 𝐸(0.99 − 0.0099𝛽𝑡 + (−0.004851𝛽2 + 0.00495𝛽𝛾)𝑡2) 

= 0.99 − 0.0099𝐸(𝛽)𝑡 − (0.004851𝐸(𝛽2) + 0.00495𝐸(𝛽)𝐸(𝛾))𝑡2, 

𝐸(𝑆∗∗(𝑡)) = 𝐸 (𝑆0 − 𝑆0𝐼0𝑡 + (−
1

2
𝑆0

2𝐼0 +
1

6
𝑆0𝐼0 +

1

2
𝑆0𝐼0

2) 𝑡2) 

= 𝐸(𝑆0) − 𝐸(𝑆0)𝐸(𝐼0)𝑡 + (−
1

2
𝐸(𝑆0

2)𝐸(𝐼0) +
1

6
𝐸(𝑆0)𝐸(𝐼0) +

1

2
𝐸(𝑆0)𝐸(𝐼0

2)) 𝑡2. 

 

Higher moments of a random variable 𝑋∗ ∼ 𝑔𝐵𝑒𝑡𝑎(𝑐, 𝑑, 𝑎, 𝑏) can be obtained by using the equality, 

 𝑋∗ = 𝑐 + 𝑑𝑍, 𝑍 ∼ 𝐵𝑒𝑡𝑎(𝑎, 𝑏) ⇒ 𝐸((𝑋∗)𝑘) = 𝐸((𝑐 + 𝑑𝑍)𝑘),  

and the higher moment formulas of a standard Beta random variable 𝑍 ∼ 𝐵𝑒𝑡𝑎(𝑎, 𝑏) (Feller, 1968): 

 
𝐸(𝑍𝑘) =

𝑎(𝑎 + 1) … (𝑎 + (𝑘 − 1))

(𝑎 + 𝑏)(𝑎 + 𝑏 + 1) … (𝑎 + 𝑏 + (𝑘 − 1))
.  

Using this equality and the fact that 𝐸((𝑋∗)𝑘) = 𝐸((𝑐 + 𝑑𝑍)𝑘), we obtain the first three moments of the 

general beta distributed random variables 𝛽∗, 𝛾∗, 𝑆0
∗ and 𝐼0

∗ as: 

 𝛽∗ ∼ 𝑔𝐵𝑒𝑡𝑎(0.99,0.02,3,3) 

⇒ 𝐸(𝛽∗) = 1, 𝐸(𝛽∗2) ≃ 0.9999, 𝐸(𝛽∗3) ≃ 1, 𝐸(𝛽∗4) ≃ 0.9606. 

𝛾∗ ∼ 𝑔𝐵𝑒𝑡𝑎(19 60⁄ , 1 30⁄ , 4,4) 

⇒ 𝐸(𝛾∗) ≃ 0.3333, 𝐸(𝛾∗2) ≃ 0.1108, 𝐸(𝛾∗3) ≃ 0.0371, (𝛾∗4) ≃ 0.0101. 

𝑆0
∗ ∼ 𝑔𝐵𝑒𝑡𝑎(0,98,0.02,3,3) 

⇒ 𝐸(𝑆0
∗) = 0.99, 𝐸(𝑆0

∗2) = 0.98, 𝐸(𝑆0
∗3) ≃ 0.9703, 𝐸(𝑆0

∗4) ≃ 0.9224. 

𝐼0
∗ ∼ 𝑔𝐵𝑒𝑡𝑎(0,0.02,4,4) 

⇒ 𝐸(𝐼0
∗) = 0.01, 𝐸(𝐼0

∗2) = 0, 𝐸(𝐼0
∗3) ≃ 1.3334 × 10−6, 𝐸(𝐼0

∗3) ≃ 1.6970 × 10−8. 

 

The results have been obtained for the approximations of 𝑆(𝑡) and 𝐼(𝑡) in the deterministic model and 

the random models with random parameters and initial values (Tables 1, 2). 

The results show that for the first 36 hours of the disease (𝑡 ∈ (0,1.5)), the results for the random 

and deterministic models are almost the same. Hence, DTM has provided accurate approximation 

formulas for the early expectations of the model components. Although the formulas for the expectations 

of the model components 𝑆(𝑡) and 𝐼(𝑡) may continue to provide accurate results for 𝑡 > 0, the 

nonlinearity and the fact that this model consists of coupled differential equations may increase the error 

in the approximate results as 𝑡 gets larger. 
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Table 1. Results for 𝑆(𝑡) in the models (2), (4) and (5) for 𝑡 ∈ (0,1.5). 

𝒕 𝑺(𝒕) 𝑬(𝑺∗(𝒕)) 𝑬(𝑺∗∗(𝒕)) 

0 0.9900 0.9900 0.9900 

0.1 0.9890 0.9890 0.9890 

0.2 0.9879 0.9879 0.9879 

0.3 0.9867 0.9867 0.9867 

0.4 0.9855 0.9855 0.9855 

0.5 0.9842 0.9842 0.9841 

0.6 0.9828 0.9828 0.9827 

0.7 0.9813 0.9813 0.9812 

0.8 0.9797 0.9797 0.9796 

0.9 0.9780 0.9780 0.9779 

1.0 0.9762 0.9762 0.9761 

1.1 0.9744 0.9744 0.9742 

1.2 0.9724 0.9724 0.9722 

1.3 0.9703 0.9703 0.9701 

1.4 0.9680 0.9680 0.9678 

1.5 0.9657 0.9657 0.9654 

 

Table 2. Results for 𝐼(𝑡) in the models (2), (4) and (5) for 𝑡 ∈ (0,1.5). 

𝒕 𝑰(𝒕) 𝑬(𝑰∗(𝒕)) 𝑬(𝑰∗∗(𝒕)) 

0 0.0100 0.0100 0.0100 

0.1 0.0107 0.0107 0.0107 

0.2 0.0114 0.0114 0.0114 

0.3 0.0122 0.0122 0.0122 

0.4 0.0130 0.0130 0.0130 

0.5 0.0139 0.0139 0.0139 

0.6 0.0148 0.0148 0.0148 

0.7 0.0158 0.0158 0.0158 

0.8 0.0168 0.0168 0.0169 

0.9 0.0179 0.0179 0.0180 

1.0 0.0191 0.0191 0.0192 

1.1 0.0203 0.0203 0.0205 

1.2 0.0217 0.0216 0.0218 

1.3 0.0230 0.0230 0.0232 

1.4 0.0245 0.0245 0.0247 

1.5 0.0260 0.0260 0.0263 

 

It can also be seen that the difference between the deterministic results and the random results 

are higher for the case with random initial values. This is due to the width of the supports of the 

randomized model components, 𝛽∗, 𝛾∗, 𝑆0
∗ and 𝐼0

∗. The supports are 𝛾∗ ∈ (
19

60
,

21

60
) , 𝛽∗ ∈

(0.99,1.01), 𝑆0
∗ ∈ (0.98,1) and 𝐼0

∗ ∈ (0,0.02). While the random effects for 𝛽∗, 𝛾∗ and 𝑆0
∗ are similar 
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and around 5% of the deterministic value, 𝐼0
∗ has a much larger random effect of 100%. This amount of 

randomness in the random initial data has caused a difference in the results for models (4) and (5). 

Simulations 

The deterministic solutions for the deterministic model (2) can be found in the referred study 

(Hethcote, 2000). The comparison of the expectations for the models with random initial data and 

random parameters can be seen in Figure 1. 

 
Figure 1. Expectations of the variables with random parameters (left) and random initial values (right). 

Figure 2 shows the effects of a higher random effect in model (5) through the confidence 

intervals. Once again, the effects of the larger support for the random initial data can be seen in the 

graphs for confidence intervals. Although the expected values are similar for the cases with random 

parameters and random initial values, the 99% confidence intervals are remarkably larger in the second 

case. 

The effects of a greater randomness in the case with random initial data can also be seen by 

analyzing the coefficients of variation in both cases. In the model with random parameters, the maximum 

standard deviation for 𝑆(𝑡) is obtained at 𝑡 = 7.5 with a value of 0.009086 and since 𝐸(𝑆(𝑡)) = 0.3865 

at 𝑡 = 7.5 we see that the coefficient of variation can go up to about 2.35%; whereas for the model with 

random initial data, the maximum standard deviation for 𝑆(𝑡) is obtained at 𝑡 = 6.5 with a value of 

0.08224 and considering 𝐸(𝑆(𝑡)) = 0.529 for 𝑡 = 6.5, it is seen that the coefficient of variation is 

around 15.55%. Similarly for 𝐼(𝑡) in the model with random parameters, maximum standard deviation 

is 0.006685 and the expectation is 𝐸(𝐼(𝑡)) = 0.2878 at 𝑡 = 7 which corresponds to a coefficient of 

variation around 2.32%, whereas in the model with random initial data, maximum standard deviation is 

0.04127 and the expectation is 𝐸(𝐼(𝑡)) = 0.2013 at 𝑡 = 5.5 which corresponds to a coefficient of 

variation around 20.50%. The results are given in Table 3. 

Table 3. Coefficient of variations for 𝑆(𝑡) and 𝐼(𝑡) in both cases, calculated at the instants of their largest standard deviations. 

 𝑺(𝒕) 𝑰(𝒕) 

Random Parameters 0.0235 0.0232 

Random Initial Data 0.1555 0.2050 
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Figure 2. Confidence intervals of 𝑆(𝑡) and 𝐼(𝑡) with random parameters (upper graphs) and random initial data (lower 

graphs) are given. The three curves in each graphs denote the upper bound of the confidence interval, expected value and 

the lower bound of the confidence interval, from top to bottom, respectively. 

CONCLUSION 

In this study, we used the classical epidemic model of Kermack and McKendrick with the 

parameters and initial values of the referred study by H.W. Hethcote. We obtained two random models 

consisting of differential equations with random parameters and random initial values, respectively. We 

compared the results for the expectation formulas obtained by DTM in both random models. The 

coefficients of variation were also considered for the random models (4) and (5). It is seen that the 

approximations for the expected values in both random cases were accurate in the first 36 hours 

(𝑡 ∈ (0,1)). The random models have been simulated in MATLAB using 𝑁 > 100000 simulations and 

the expectations for both models proved similar results to the deterministic results given by H.W. 

Hethcote. The confidence intervals for the random models and the variation coefficients show that there 

is a higher amount of randomness in the results for the case with random initial values. This has been a 

result of the amount of random effects that were added to the initial value 𝐼0. When the results for the 

expectations obtained from the simulations and the approximations by DTM are considered, it can be 

concluded that the models with random parameters and random initial data produce similar results with 

the deterministic results. Hence, the random models are meaningful and may be used to model the real 

life randomness of various phenomena that can be modeled by using this epidemiological model.  

The model with random parameters suggest that the infected fraction of the population is expected 

to assume its maximum value of 0.303 at 𝑡 = 7.75, whereas the susceptible fraction at this time is 

expected to be 0.3584. Using the model assumption 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) = 1, it can be found that 𝑅(𝑡) =

0.3584 at 𝑡 = 7.75. Thus the model with random parameters suggests that at most 30.3% of the 

population is expected to be infected, with a 0.64% deviation in this expectation since std(𝐼(𝑡)) =

0.006364 for 𝑡 = 7.75. For the model with random initial data, max(𝐼(𝑡)) = 0.2981 at 𝑡 = 8 and since 

𝑆(𝑡) = 0.3446 at this time, 𝑅(𝑡) = 0.3573 for 𝑡 = 8. However, std(𝐼(𝑡)) = 0.01444 at 𝑡 = 8 means 

there may be about 1.4% deviation in this expectation within the model with random initial data. It 
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should be noted that the numerical differences are a result of the amount of random effects used for the 

random parameters and random initial data. Similar analysis can be made for mathematical models of 

other diseases or events and different distributions can be used for the random effects to analyze or 

compare the random results under varying conditions. 
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