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ABSTRACT 
 
Measurement errors are very often come upon in data analysis. Classical statistical methods become disadvantageous and 
ordinary least squares estimator of parameters turns into inconsistent and biased, in the existence of measurement errors in 
the data. Although some methods are used, the performances of them are not good enough in the presence of 
multicollinearity and measurement errors in the data, simultaneously. That’s why researchers have been inquiring about the 
estimation of the parameters if the measurement error models have multicollinearity, lately. Especially, biased estimation 
techniques have been researched in the existence of multicollinearity for measurement error models recently. In this paper, 
the ridge and Liu estimation approaches to the measurement error models in the existence of multicollinearity are 
investigated. The comparisons of the biased estimators’ performances are analyzed theoretically and numerically. 
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1. MODEL AND ESTIMATORS 
 

Let us consider the multiple linear measurement error (ME) models  

0Y x e    ,    X x u  ,     (1) 

where 0  is the slope and  1 2, ,..., p      is the 1p  vector of coefficients,  1 2, ,..., px x x x   

is the 1p vector set of unobservable true p  regressor variables that are observed as 

 1 2, ,..., pX X X X   with 1p  ME vector   1 2, ,..., pu u u u  , iu  being the ME  in the i -th 

regressor variable ix , e  is the 1n  vector of the response error in the observed variable 

 1 2, ,..., nY Y Y Y  . We presume that  

     2 1, , ,0, , , , ,p x xx ee uux e u N BlockDiag 

       
  

0  (2) 

where x  is the mean vector of x , ee  is the variance of  e 's, xx  and uu  are the covariance 

matrices of x 's and u 's, consecutively. Owing to the assumption of normality, we have the follows: 

0

1 ,
'

x ee xx xx

p

x xx xx uu

Y
N

X

      

 

             
                

 . 
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At that case, the conditional distribution of Y  given X  is normally distributed with mean matrix 

  0E Y X X     and variance-covariance matrix    cov zz ee xx p xxY X I K        , 

where  0 0 p xx xI K      ,  xxK  ,  1
xxK   , and 

 
11

xx XX xx xx uu xxK
         (3) 

is the p p  matrix of reliability ratios of X  (see, Gleser [1] and Cheng and Van Ness, [2]). The 

fundamental problem here is to obtain the consistent estimation of   under diverse cases presuming 

uu  is known. Gleser [1] demonstrated that the maximum likelihood (ML) estimators of 0 ,   and 

zz  are basically the OLS estimators, namely 

1
0 ,n n n XX XYY X S S        , (4) 

where iX  is the mean of iX ,  Y  is the mean of Y ,   ,
i iXX X XS S    

i iX X i i n i i nS x X j x X j   , 

 
1 2

, ,..., ,
pXY X Y X Y X YS S S S


    
iX Y i i n i i nS X X j Y Y j   ,  1,1,...,1nj

 . Apparently, 

1

1
XXS

n 
 is an unbiased estimator of XX  and  

1
XXS

n
  is convergence in probability to XX .  (4)  

ensured that 
1 0ee zz n xx uu nK         ,   (5) 

where    0 0

1
zz n n n n n nY j X Y j X

n
    


          is the estimate of error variance. When uu  is 

known and xxK  is unknown, xxK  is estimated consistently by replacing xx  and xx uu     by their 

individual consistent estimators as below: 

 1ˆ
xx XX XX uuK S S n   , (6) 

where 
1

XXS
n

 is the ML estimate of xx uu   . Hence, the ML estimates of 0 ,   and ee  are 

obtained as follows: 

  1
0 0

ˆ ˆ,n n n p xx n xx nI K x K             and ˆ
ee zz n uu xx nK        . (7) 

At last, 0n nY X      and 

 
1

n XX uu XYS n S


    (8) 

supplied to 0ee   which specified in (5). Thus,  as n ,    10,n p zz XXn N       and 

   10,n p zzn N C     , (9) 

where 
1

xx XX xx xx XX xxC K K        . (10) 

A consistent estimator of C  is stated as below: 

   1ˆ ˆˆ
n xx XX xx XX uu XX XX uuC K K S n S S n        (11) 

(see Fuller [3], chapter 2). 
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Multicollinearity is a very popular problem in the linear regression model and has been studied on a 
large scale. With the intent to get over the multicollinearity, biased estimators, which are alternative to 
the OLS estimator, have been suggested by many researchers. The most popular techniques used in the 
existence of the multicollinearity in linear regression analysis are ridge regression suggested by Hoerl 
and Kennard [4] and Liu estimator suggested by Liu [5].  
 
Lately, researchers have investigated the estimation of the parameters for the ME models in the event 
of the multicollinearity that comes into being in the data. Saleh and Shalabh [6] considered the ridge 
regression estimation approach, which is suggested by Hoerl and Kennard [4] in linear regression, for 
the ME models. They derived the ridge estimator for the ME models with known reliability matrix 

XXK , by minimizing  

   0 0n n XX n n XXj XK Y j XK Y k            , (12) 

where k  is a Lagrangian multiplier. Then the solution of (12) gives the ridge estimator: 

   
1ˆ k C kI C 


   , (13) 

where 0k   is the biasing parameter.  Subsequently, replacing the consistent estimator of   and C

supplied with  (8) and (11), respectively, the ridge estimator of   for the ME model is stated as 

follows: 

   
1ˆ

n n n nk C kI C 


   , (14) 

where n
  and nC  are supplied with (8) and (11),  sequentially and  

1

n nC kI C


  is a consistent 

estimator of  
1

C kI C


  with xx XX xxC K K  . Although the ridge estimator is powerful in the 

applications, it is a complicated function of the biasing parameter.  
 
Üstündağ Şiray [7] moved the Liu estimation attitude, which suggested by Liu [5] in the linear 
regression, to the ME models in the presence of multicollinearity. She considered the extension 

d      to the model and attained the new model is as below: 

0 n xxY j XK

d I

 


 

     
           

 ,   0 1d  , (15) 

where d  is a constant. By implementing the least-squares method to the model (15) and after some 
algebraic operations Liu estimator for ME models obtained as follows: 

     
1ˆ

xx xx xx xxd K X XK I K X XK dI 


       . (16) 

In this way, replacing the consistent estimator of   and C  given in (8) and (11), sequentially, the Liu 

estimator of   for the ME model is got as below: 

     
1ˆ

n n n nd C I C dI 


     (17) 

where 0 1d    and     
1

n nC I C dI


  , which is a consistent estimator of    
1

C I C dI


   

with xx XX xxC K K  . The Liu estimator is advantageous to the ridge estimator inasmuch as it is a 

linear function of d  and therefore choosing the biasing parameter d  is more convenient. 
 
In this paper, we compare the ridge and Liu estimators for the ME models by the criterion of mean 
squared error. In section 2, firstly asymptotic matrix mean squared error (MMSE) comparisons, 
secondly, asymptotic scalar mean squared error (SMSE) comparisons of the ridge and Liu estimators 
for the ME models are done. We point out that the comparison of the ridge and Liu estimators are very 
troublesome in the sense of the SMSE and MMSE criteria. In section 3, we perform a simulation 
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analysis with the intent of comparing the ridge and Liu estimators' superiority of each other for the ME 
model by the criterion SMSE. Also, we do a numerical illustration to demonstrate the theoretical 
results, in section 4. Lastly, we give a summary and conclusions in section 5.  
 
 
2. MEAN SQUARED ERROR COMPARISONS OF THE RIDGE AND LIU ESTIMATORS 
 
2.1. Mean Squared Errors of The Ridge and Liu Estimators 
 

It is very well-known that MMSE of 


 that is an estimator of   is as follows: 

    

     

lim

cov ,

n
M E n

bias bias

    

  



  
    

  


 

  

  
 (18) 

where  bias 


 is the asymptotic bias of 


 and  cov 


 is the asymptotic covariance matrix of 


. 

Also, the SMSE is achieved by implementing the trace operator to the MMSE: 

        covm tr bias bias   
 

   
 (19) 

 

Let 1


 and 2


 are yielded as two estimators of 


, it is said that the estimator 2


 outperforms the 

estimator 1


 in terms of MMSE criterion iff the difference    1 2M M 
 

 is a nonnegative 

definite (nnd) matrix.  If    1 2m m 
 

 then the estimator 2


 is better than the estimator 1


 in 

terms of the SMSE criterion. 
 
In this section, we compare the MMSE and SMSEs of the ridge and Liu estimators.  We presume that 

as n  the limit of nC  exists and the parameter   is identifiable.  As n  the MMSE of the 

ridge estimator, which is given by Saleh and Shalabh [6], is written as follows: 

          
1 1 1 11 2ˆ

n zzM k C C kI C C kI C k C kI C kI  
          . (20) 

Also, as n  SMSE of ridge estimator is expressed as below: 

      
2 22ˆ

n zzm k tr C kI C k C kI   
      

 
. (21) 

The asymptotic covariance matrix of n
  is 1

zzC  , where xx XX xxC K K   is a positive definite (pd) 

matrix. So, there is an orthogonal matrix   such that 

   1 2, ,...,xx XX xx pC K K diag            , (22) 

where 1 2 ... 0p       are eigenvalues of the matrix C . Therefore, the SMSE of the ridge 

estimator is derived as follows: 

  
   

2
2

2 2
1 1

ˆ
p p

i i
n zz

i ii i

m k k
k k

 
 

  

 
 

  , (23) 

where  1 2, ,..., p        . 

As n  the MMSE of the Liu estimator, which is given by Üstündağ Şiray [7], is expressed as 
below: 
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1 1 2 1 11ˆ 1n zzM d C I C dI C C dI C I d C I C I  
              

(24) 

Also, as n  the SMSE of the Liu estimator is expressed as follows: 

               
1 1 2 21ˆ 1n zzm d tr C I C dI C C dI C I d C I   
           . (25) 

 
By using orthogonal decomposition given in (22), the SMSE of the Liu estimator is achieved as 
below: 

    
 

 
 

2 2
2

2 2
1 1

ˆ 1
1 1

p p
i i

n zz
i ii i i

d
m d d

 
 

   


  

 
  , (26) 

where  1 2, ,..., p        .  

 
2.2. MMSE Comparisons of The Ridge and Liu Estimators 
 
In this section, we show that the comparison of the ridge and Liu estimators are very troublesome in 
the sense of the MMSE criterion. Despite the comparisons are made, it is very hard to ensure the 
conditions achieved. Hence, we do not enounce the superiority comparison results as theorems.  
 

Let           
1 1 1 11 1

1 C C kI C C kI C C I C dI C C dI C I
              is the pd matrix. 

               
1 1 2 1 12

1
ˆ ˆ 1n n zzM k M d k C kI C kI d C I C I    

   
           , 

where 1  is defined as above.  It is obvious that    
1 12k C kI C kI
 

   is a pd matrix. 

Therefore, we are interested in      
2 1 1

1 1zz d C I C I 
 

     .  If 1zz   is pd matrix, then 

by utilizing Lemma 1 (given in the appendix)      ˆ ˆ
n nM k M d   is nnd iff 

     
2 1 11 1

11 1zz d C I C I  
       .  After the algebraic simplification, it implies 

   
 

1

1 2
1

zzC I C I
d


 


      


. Hence,  ˆ

n d  is better than  ˆ
n k   iff 

   
 

1

1 2
1

zzC I C I
d


 


      


 by the criterion of MMSE. 

Let            
1 1 1 11 1

2 C I C dI C C dI C I C C kI C C kI C
              is the pd matrix 

               
1 1 2 1 12

2
ˆ ˆ 1n n zzM d M k k C kI C kI d C I C I    

   
           , 

where 2  is defined as above.  It is obvious that      
2 1 1

1d C I C I
 

    is a pd matrix. 

Therefore, we deal with    
1 12

2zz k C kI C kI 
 

    .  If 2zz   is pd matrix, then by 

utilizing Lemma 1 (attended in the appendix)      ˆ ˆ
n nM d M k   is nnd iff 

   
1 11 2 1

1 1zz k C kI C kI  
       .  After the algebraic facilitation, it becomes
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1

2 2
zzC kI C kI

k


 


       . That’s why  ˆ

n k  is better than  ˆ
n d   iff 

   
1

2 2
zzC kI C kI

k


 


        in terms of the criterion of MMSE. 

If it is paid attention, 1zz   signifies the difference between the covariance matrices of the ridge and 

Liu estimators and further 2zz   signifies the difference between the covariance matrices of the Liu 

and ridge estimators, respectively. The comparisons presented here are based on the positive 
definiteness of the difference between the covariance matrices of the mentioned estimators. 
 
2.3. SMSE Comparisons of The Ridge and Liu Estimators 
 
In this section, we show that the comparison of the ridge and Liu estimators can be made, however, it 
is very troublesome to ensure the conditions procured. We express the comparisons result as theorems, 
but they are not practical, which can be seen. Instead of using the theorems, the comparison of these 
estimators '  superiority of each other for the ME model is achieved by a simulation analysis in section 
3 in terms of the SMSE criterion. 
 
Now we compare the ridge and Liu estimators for the ME models by the criterion of SMSE. For this 

purpose, we first assume that d  is fixed and make the comparison. We latter assume that k  is fixed 
and make the comparison.  
 

Theorem 2.1 Let d  be fixed.  

i. If 
 

 
 
 

 

2

2
1

22

2 2
1

1

1

1

p
i

i i zz

p
ii

i i i i

dd

k



 



  








  
 

   





, then  ˆ
n d  is better than  ˆ

n k  for

 1
0 i

i

d
k

d






 


, 1, 2,...i p  by the criterion of SMSE. 

ii. If 
 

 
   

2

2
1

22

2 2
1 1

p
i

i i zz

p
i i

i i i i

k

kd

k



 

 

  








 
 

   





, then  ˆ
n k  is better than  ˆ

n d  for 
 1

0 i

i

d
k

d






 


, 

1, 2,...,i p  by the criterion of SMSE. 

Proof: i. By using (23) and (26) 

     
 

 
 

 
 

 

2

2 2
1 1

2 2
22

2 2
1 1

ˆ ˆ
1

1 .
1

p p
ii

n n zz
i ii i i

p p
i i

i ii i

d
m k m d

k

k d
k


  

  

 

 

 

 

 
   

   

  
 

 

 

 
 
 
(27) 

It is easily seen that 
 

2
2

2
1

p
i

i i

k
k



 
 is positive. So,      ˆ ˆ

n nm k m d   will be positive if  
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2 2
2

2 2 2
1 1 1

1 0.
1 1

p p p
ii i

zz
i i ii i i i

d
d

k

 


     

 
    

    
    (28) 

 
Firstly, we consider the positivity of 

 
 
 

        

   

2

2 2 2 2
1 1

1 1

1 1

p p
i i i i i iii

i ii i i i i i

k d d d kd

k k

     

      

                  
     

   
 
 
(29) 

 

(29) is positive for 
 1

0 i

i

d
k

d






 


, 1, 2,...,i p . Because (29) is positive for 

 1
0 i

i

d
k

d






 


, 

1, 2,...i p , inequality (28) can be stated as 
 

 
 
 

 

2

2
1

22

2 2
1

1

1

1

p
i

i i zz

p
ii

i i i i

dd

k



 



  








  
 

   





.  The proof is 

finished. 
 
ii. By using (23) and (26) 

       
   

 
 

 

2

2 2
1 1

2 2
22

2 2
1 1

ˆ ˆ
1

1 .
1

p p
i i

n n zz
i ii i i

p p
i i

i ii i

d
m d m k

k

k d
k

 
  

  

 

 

 

 

 
   

   

  
 

 

 

 
 
 
(30) 

It is easily seen that  
 

2
2

2
1

1
1

p
i

i i

d







 is positive. So,      ˆ ˆ
n nm d m k   will be positive if  

 
     

2 2
2

2 2 2
1 1 1

0.
1

p p p
i i i

zz
i i ii i i i

d
k

k k

  


     

 
   

    
    (31) 

 
Firstly, we consider the positivity of 

 
   

         

   

2

2 2 2 2
1 1

1 1
.

1 1

p p
i i i i i ii i

i ii i i i i i

k d d d kd

k k

      

      

                 
     

   
 
 
(32) 

 

(32) is positive for 
 1

0 i

i

d
k

d






 


, 1, 2,...,i p . Since (32) is positive for 

 1
0 i

i

d
k

d






 


, 

1, 2,...i p , inequality (31) can be expressed as 
 

 
   

2

2
1

22

2 2
1 1

p
i

i i zz

p
i i

i i i i

k

kd

k



 

 

  








 
 

   





.  The proof is 

completed. 
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Theorem 2.2 Let k  be fixed as 0 1k  .  

i. If 
 

 
 
 

 

2

2
1

22

2 2
1

1

1

1

p
i

i i zz

p
ii

i i i i

dd

k



 



  








  
 

   





, then  ˆ
n d  is better than  ˆ

n k  for 

 1
0 1i

i

k
d

k






  


, 1, 2,...,i p  by the criterion of SMSE. 

ii. If 
 

 
   

2

2
1

22

2 2
1 1

p
i

i i zz

p
i i

i i i i

k

kd

k



 

 

  








 
 

   





, then  ˆ
n k  is better than  ˆ

n d  for

 1
0 1i

i

k
d

k






  


, 1, 2,...,i p  by the criterion of SMSE. 

Proof: i. By using (28), we investigate the positivity of   

 
 
 

        

   

2

2 2 2 2
1 1

1 1

1 1

p p
i i i i i iii

i ii i i i i i

d k k d kd

k k

     

      

                  
     

   (33) 

(33) is positive for 
 1

0 1i

i

k
d

k






  


, 1, 2,...,i p . Because (33) is positive for 

 1
0 1i

i

k
d

k






  


, 1, 2,...,i p , inequality (28) can be expressed as 

 

 
 
 

 

2

2
1

22

2 2
1

1

1

1

p
i

i i zz

p
ii

i i i i

dd

k



 



  








  
 

   





.  The proof is finished. 

ii. By using (30), we consider the positivity of   

 
   

         

   

2

2 2 2 2
1 1

1 1

1 1

p p
i i i i i ii i

i ii i i i i i

d k k d kd

k k

      

      

                 
     

   (34) 

(34) is positive for 
 1

0 1i

i

k
d

k






  


, 1, 2,...i p . Because (34) is positive 

 1
0 1i

i

k
d

k






  


, 1, 2,...,i p , inequality (31) can be stated as 

 

 
   

2

2
1

22

2 2
1 1

p
i

i i zz

p
i i

i i i i

k

kd

k



 

 

  








 
 

   





.  The proof is completed. 
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3. SIMULATION ANALYSIS 
 
In this section, we do a simulation analysis by utilizing the Matlab R2014a program with an eye to 
comparing the ridge and Liu estimators' superiority of each other for the ME model. By complying 
with McDonald and Galarneau [8], the regressor variables are reckoned by 

 
1 22

11 ,   1, 2, , ,   1,2, , ,ij ij ipx z z i n j p         (35) 

where   is described as the correlation between any two regressor variables is stated by 2 , ijz  

independent standard normal pseudorandom numbers. We consider   = 0.85, 0.95, and 0.99 in order 

to examine the effects of different degrees of multicollinearity on the mentioned estimators. The 
number of explanatory variables is used as p  5 in the event of n = 100. After that, regressor 

variables standardized such that 'x x  is in correlation form.  
 

Independent ie ’s ( 1, 2, ,i n  ) are generated from the normal distribution with mean 0 and variance 

ee , in each replication on the experiment. The variances of ie ’s are taken into consideration in the 

simulation analysis ee = 1, 5, and 10. The parameter vector is used as the normalized eigenvector 

corresponding to the largest eigenvalue of the matrix 'x x , which is procured from the restriction 

' 1   . In addition, independent iu ’s ( 1, 2, ,i n  ) are generated from the normal distribution 

with mean vector 0 and variance-covariance matrix uu I . The variances of iu ’s used in the 

simulation analysis are uu = 1, 3, and 5. The values of k  and d are specified in the interval (0, 1).   

Observations on the dependent variable are generated by  
 

0 1 1 2 2   

, 1,2, ,

i i i p ip i

i i i

Y x x x e

X x u i n

        

  




 (36) 

where  1 2, ,...,k k k nkY Y Y Y  ,  1 2, ,..., nx x x x  .   

 

The estimated SMSE (ESMSE) for any estimator *


 is obtained as follows: 

     * * *

1

1
ˆ '

MCN

i i
i

mse
MCN

    


  
  

, (37) 

where 
*
i


 is the calculated value of *


 for the i -th replication of the experiment and MCN  is the 

number of replications, which is specified as 3000 for this experiment. The consequences of the 
simulation analysis are presented in Figures 1a-9c. In the Figures, the values of biasing parameters on 
the horizontal axis and ESMSE values on the vertical axis are shown. 
From the figures, we can decide that the most crucial characteristic that impacts the performance of 
the estimators is the variances of the MEs. Hence, we make comments according to the variances of 
the MEs.  
 

In the case of uu I  , in the event of biasing parameters soar, the ESMSE values of the Liu estimator 

diminish, and ESMSE values of the ridge estimator soar in the interval (0,1), generally. The increase 

in ee  does not alter the superiority comparison of the estimators but soars the ESMSE values of the 

estimators. Interestingly, the soar in   diminishes the ESMSE values of the estimators. 
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In the case of 3uu I   and 5uu I  , in the event of biasing parameters soar, the ESMSE values of 

the ridge estimator diminish, and ESMSE values of the Liu estimator soar in the interval (0,1). The 

soar in ee  does not change the superiority comparison of the estimators but diminishes the ESMSE 

values of the estimators. Similarly, the soar in   does not alter the superiority comparison of the 

estimators but soars the ESMSE values of the estimators. 
 
As a result of the simulation analysis, we can state that in the event of variances of MEs are about 1, 

we should prefer the values of d close to 1 and values of k  close to 0. Also, for variances of MEs are 

bigger than 1, we should prefer the values of d close to 0 and values of k  close to 1. 
 

 
(a) 

 
(b) 

 
(c) 

Figure 1. ESMSE values of Ridge and Liu estimators when ee  = 1, uu I   for the ME models              

(a) when   = 0.85; (b) when   = 0.95 ; (c) when   = 0.99 

 

 
(a) 

 
(b) 

 
(c) 

Figure 2. ESMSE values of Ridge and Liu estimators when ee  = 5, uu I   for the ME models                

(a) when   = 0.85; (b) when   = 0.95 ; (c) when   = 0.99 

 

 
(a) 

 
(b) 

 
(c) 

Figure 3. ESMSE values of Ridge and Liu estimators when ee  = 10, uu I   for the ME models                

(a) when   = 0.85; (b) when   = 0.95 ; (c) when   = 0.99 
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(a) 

 
(b) 

 
(c) 

Figure 4. ESMSE values of Ridge and Liu estimators when ee  = 1, 3uu I   for the ME models                    

(a) when   = 0.85; (b) when   = 0.95 ; (c) when   = 0.99 
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Figure 5. ESMSE values of Ridge and Liu estimators when ee  = 5, 3uu I   for the ME models                     

(a) when   = 0.85; (b) when   = 0.95 ; (c) when   = 0.99 
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Figure 6. ESMSE values of Ridge and Liu estimators when ee  = 10, 3uu I   for the ME models                     

(a) when   = 0.85; (b) when   = 0.95 ; (c) when   = 0.99 
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Figure 7. ESMSE values of Ridge and Liu estimators when ee  = 1, 5uu I   for the ME models                      

(a) when   = 0.85; (b) when   = 0.95 ; (c) when   = 0.99 
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(a) 

 
(b) 

 
(c) 

Figure 8. ESMSE values of Ridge and Liu estimators when ee  = 5, 5uu I   for the ME models                      

(a) when   = 0.85; (b) when   = 0.95 ; (c) when   = 0.99 
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Figure 9. ESMSE values of Ridge and Liu estimators when ee  = 10, 5uu I   for the ME models                      

(a) when   = 0.85; (b) when   = 0.95 ; (c) when   = 0.99 
 

 

4. NUMERICAL EXAMPLE 
 
We use the Longley dataset to exemplify the theoretical findings. The Longley dataset contains 
diverse macroeconomic variables that are known to be highly multicollinear.  Longley [9] essentially 
used the dataset to test the computational accuracy of regression programs. The variables are Y  : total 

derived employment (in thousands), 1X : gross national product implicit price deflator (in tenths), 2X : 

gross national product (GNP) (in millions), 3X : unemployment (in thousands), 4X : size of armed 

forces, 5X : noninstitutional population 14 years of age and over (in thousands), 6X : year. Beaton et 

al. [10] used this data in a discussion of the effect ME on regression coefficients. They claimed that 
rounding error provides a lower bound for the ME model. A possible covariance matrix for ME 

obtained by Beaton et al. [10] is  21
1, 10 , 1, 1, 1, 1

12
uu diag   . 

 

With the aim of comparing the ridge and Liu estimators in the ME models, we use the criterion of 
SMSE. We obtained the SMSE values for the mentioned estimators in the Matlab R2014a program. 
The SMSE values are given in Figure 10. In figure 10, the values of biasing parameters on the 
horizontal axis and ESMSE values on the vertical axis are shown. As seen in Figure 10, for values 

between [0, 0.4] of k  the ridge estimator and for values between [0.4, 1] of d is the Liu estimator 
show good performance for this dataset, by the criterion of SMSE.  
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Figure 10. SMSE values of the ridge and Liu estimators for the values of k and d. 

 
Now, we check the conditions of Theorems 2.1 and 2.2 according to Figure 10. Firstly we specify 
fixed d and we select the value of k according to fixed d value, after that we specify fixed k and we 
select the value of d according to fixed k value. Let d is fixed as 0.75. We choose the value of k as 
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provided. By using these biasing parameters we get   ˆ 0.2381nm d   and   ˆ 0.28nm k  , 

which signifies the Liu estimator is better than the ridge estimator. This result supports the Theorem 

2.1.i. Secondly, we choose the value of k as 
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  ˆ 0.2437nm d   and   ˆ 0.2348nm k  , which signifies the ridge estimator is better than the 

Liu estimator. This result endorses the Theorem 2.1.ii.  
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we get   ˆ 0.2365nm d   and   ˆ 0.27nm k  , which signifies the Liu estimator is better than 

the ridge estimator. This result supports the Theorem 2.2.i.  
Again we get k is fixed as 0.013 and we choose the value of d as 

 1
max 0.01 0.9969i
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. By using these biasing parameters we get   ˆ 0.28nm d   

and   ˆ 0.27nm k  , which signifies the ridge estimator is better than the Liu estimator. This result 

endorses the Theorem 2.2.ii. 
 
 
5. SUMMARY AND CONCLUSIONS 
 
In this paper, we examine the biased estimation approach to the ME models in the event of the 
multicollinearity exists in the data. We compare two estimators, which are the ridge and Liu estimators 
by theoretical and numerical evaluations. We demonstrated that, although the comparisons are made 
theoretically by the criterion of MMSE, it is very troublesome to ensure the conditions obtained. 
Furthermore, we give as the theorems which are obtained the comparisons of the above-mentioned 
estimators by the criterion of SMSE. Nevertheless, these theorems are not practical because of the 
difficulties of providing the conditions. But then, we show the conditions of the theorems provide by a 
numerical example. Also, we perform a simulation analysis for yielding the comparisons of the ridge 
and Liu estimators in the sense of the SMSE criterion. Consequently, we indicate that the most crucial 
factor that has an impact on the performance of the estimators is the variances of the MEs. 
Additionally, we point out that, when the variances of the MEs are close to 1, we should prefer the 

values of d close to 1 and values of k  close to 0, when the variances of the MEs are bigger than 1 we 

should prefer the values of d close to 0 and values of k  close to 1. 
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APPENDIX 
 
We give Lemma 1 used for yielding the MMSE comparisons of estimators. 
 

Lemma 1.  Let G  be a pd matrix, namely 0G  ,   be some vector, then ' 0G    iff 
1' 1G   . (Farebrother, [11]) 
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