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Abstract
With the assistance of representative calculation programming, the present paper examines the careful voyaging
wave arrangements from the general (2+1)-dimensional nonlinear development conditions by utilizing the
Improved F-expansion strategy. As a result, the used technique is effectively utilized and recently delivered
some definite voyaging wave arrangements. The recently created arrangements have been communicated as far
as trigonometric and hyperbolic capacities. The created arrangements have been returned into their relating
condition with the guide of emblematic calculation programming Maple. Among the produced solutions, some
solutions have been visualized by 3D and 2D line graphs under the choice of suitable arbitrary parameters to
show their physical interpretation. The delivered arrangements show the intensity of the executed technique to
evaluate the accurate arrangements of the nonlinear (2+1)-dimensional nonlinear advancement conditions, which
are reasonably pertinent for using nonlinear science, scientific material science and designing. The Improved
F-expansion method is a reliable treatment for searching essential nonlinear waves that enrich a variety of
dynamic models that arise in engineering fields.
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1. Introduction
As of late, nonlinear incomplete differential conditions (NPDEs) is comprehensively used to delineate various huge marvels and
dynamic methodology in various fields of science and designing, particularly in liquid mechanics, hydrodynamics, numerical
science, dissemination process, strong state material science, plasma material science, neural material science, substance energy
and geo-optical filaments. In this article, we will study the generalized (2+1)-dimensional nonlinear evolution equations in the
form

uxt +uxxxy +auxuxy +buxxuy = 0 (1.1)

Recently, some special cases of Eq. (1.1) have been studied by several authors[1]-[4]. When setting a =4 and b = 2, we get:

uxt +uxxxy +4uxuxy +2uxxuy = 0 (1.2)
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Eq. (1.2) known as the Calogero–Bogoyavlenskii–Schiff (CBS) equation with (2+1) dimensional.

where u = u(x,y, t) is used for brevity. In the article, subscript occurring with a term denotes its partial derivative with
respect to the subscript variable.in equ.(1.2) ut describes the time evolution of the wave, while the terms uxxuy and uxuxy are
account for nonlinearity of the wave. The CBS equation has some physical situated history like it very well may be composed as
potential structure [5]. The CBS equation was at first built by Bogoyavlenskii and Schiff in different ways [6]-[9]. The ongoing
history of some past inquires about show that few powerful strategies for getting definite arrangements of the CBS condition
are contributed by a differing gathering of specialists over the globe [10]-[13], for instance, the periodic and soliton solutions of
the CBS equation were gotten by Gandarias et al.[10]. Its integrability has been demonstrated by Zhang et al.[11] and derived
also the symmetry reductions of the equation. Li and Chen [12] found the exact solutions by using the generalized Raccati
equation expansion method. Wang and Yang [13] employed the Hirota Bilinear strategy for construction of the quasi-periodic
wave solutions in terms of theta functions for a Hirota bilinear equation.
When setting a = – 4 and b = – 2, we get:

uxt +uxxxy−4uxuxy−2uxxuy = 0 (1.3)

Eq. (3) known as the breaking soliton equation with (2+1) dimensional.
When setting a = 4 and b = 4, we get:

uxt +uxxxy +4uxuxy +4uxxuy = 0 (1.4)

Eq. (4) known as the Bogoyavlenskii equation with (2+1) dimensional.

Numerous researchers arranged through nonlinear evolution equations (NEEs) to build voyaging wave arrangement by
executing a few techniques. The methods that are entrenched in ongoing writing, for example, the extended Kudryashov
method[14], the modified simple equation method [15], the new extended (G′/G) expansion method [16]-[17], the Darboux
transformation [18], the trial solution method [19], the Exp-Function Method [20], the multiple simplest equation method [21],
exp(−φ(ξ )) -expansion method [22]-[26], Pseudo parabolic model [27]-[29], Sine-Gordon expansion method[30], Complex
solitons in the conformable (2+1)-dimensional Ablowitz-Kaup-Newell-Segur equation [31], Modified auxiliary expansion
method [32], Method of line [33], Bernoulli sub-equation function method [34]-[35], The modified exponential function method
[36], Improved Bernoulli sub equation function method [37], Finite difference method [38] and so on.

The target of this article is to apply the Improved F-expansion technique to build the precise voyaging wave answers for
nonlinear advancement conditions in scientific material science by means of the generalized (2+1)-dimensional nonlinear
evolution equations.

The article is set up as pursues: In section 2, the Improved F-expansion scheme has been talked about. In segment 3, we
apply this plan to the nonlinear development conditions raised previously. In section 4, represents Results and Discussion, In
section and in section 5 ends are given.

2. Description of the Improved F-Expansion Method
In this segment, we portray in subtleties The Improved F-extension strategy technique for discovering traveling wave equations
of nonlinear equations. Any nonlinear condition in two free factors x and t can be communicated in following structure:

Re(u,ut ,ux,utt ,uxx,uxt .........) = 0 (2.1)

where, u(ξ ) = u(x, t) is an unknown function, ℜ is a polynomial of u(ξ ) = u(x, t) and its partial derivatives in which the
highest order derivatives and nonlinear terms are included.
Step 1: The given PDE (2.1) can be changed into ODE utilizing the change ξ = x±ω t where ω is the speed of traveling wave
such that ω ∈ R−{0}
The traveling wave change grants us to diminish Eq. (2.1) to the following ODE:

ℜ(u,u′,u′′, ..................) = 0 (2.2)

where ℜ is a polynomial in u(ξ ) and its derivatives, where u′(ξ ) = du
dξ
, u′′(ξ ) = d2u

dξ 2 , and so on.
step 2:Suppose the solution of Eq. (2.2) can be expressed by a polynomial in ψ(ξ ) :

U = u(ξ ) =
N

∑
j=0

α j(ψ(ξ )) j+
N

∑
j=1

β j(ψ(ξ ))− j (2.3)
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where

ψ(ξ ) = (m+ϕ(ξ )) (2.4)

Here αN or βN may be zero, but both could not be zero simultaneously. α j( j = 0,1,2 · · ·N),β j( j = 1,2 · · ·N) and m are
constants to be determined later and Φ(ξ ) satisfies the ODE in form:

ϕ
′(ξ ) = K +ϕ

2(ξ ) (2.5)

We now present three cases of the general solutions of the Riccati Equation (2.5) (Cruz, Schuch, Castanos and Rosas-Ortiz,
2015).
Case-I: When K < 0, we get following hyperbolic solution

Φ(ξ ) =−
√
−K tanh(

√
−Kξ )

Φ(ξ ) =−
√
−K coth(

√
−Kξ )

Case-II: When K > 0, we get following trigonometric solution

Φ(ξ ) =
√

K tan(
√

Kξ )

Φ(ξ ) =−
√

K cot(
√

Kξ )

Case-III: When K = 0, we get following solution

Φ(ξ ) =− 1
ξ

Step 3: The value of the positive integer N can be determined by balancing the highest order linear terms with nonlinear terms
of the highest order appearing in Eq. (2.2).
If the degree of u(ξ ) is D [u(ξ )] = n, then the degree of the other expressions will be as follows:

D
[

dpu(ξ )
dξ p

]
= n+ p, D

[
up
(

dqu(ξ )
dξ q

)s]
= n p+ s(n+q)

Step 4: Substituting Eq. (2.3) along with Eqs. (2.4) and (2.5) into Eq. (2.2), we obtain polynomials in (m+ϕ(ξ )) j and
(m+ϕ(ξ ))− j, ( j = 0, 1, 2, · · · ,N).Gathering every coefficient of the came about polynomials to zero, yields an over-decided
arrangement of arithmetical equations for α j, β j, ω and m.
Step 5: Assume the estimation of the constants can be gotten by fathoming the mathematical conditions got in step 4.
Substituting the estimations of the constants together with the arrangements of Eq. (2.5), we will acquire new and far reaching
precise traveling wave arrangements of the nonlinear development Eq. (2.1).

3. Application of the Method
In this section, we will exert the Improved F-expansion method to solve the equation (1.1).Now Using the traveling wave
variable ξ = x+ y−ω t and integrating with respect to ξ reduces Eq. (1.1) to the following ordinary differential equation for
u = u(ξ ).

−ω u′+
(

a+b
2

)(
u′
)2

+u′′′ = 0 (3.1)

Where, primes denote the differentiation with regard to ξ By balancing u′′′ and (u′)2 we obtain N = 1.Therefore the Improve
F-expansion method admits to solution of (2.1) in the form

U (x,y, t) = α0 +α1 (m+ϕ(ξ ))+β1 (m+ϕ(ξ ))−1 (3.2)

Now, substituting Eq. (3.2) into Eq. (3.1), and equating the coefficients of the powers ϕ(ξ ) then we obtain a system of algebraic
equations. Solving this system of equations for α0,α1,β1,m and ω we obtain the following set values:
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Set-1: m = m,ω =−4K,α0 = α0,α1 = 0,β1 =
12(m2+K)

a+b .

Set-2: m = m,ω =−4K,α0 = α0,α1 =− 12
a+b ,β1 = 0.

Set-3: m = 0,ω =−16K,α0 = α0,α1 =− 12
a+b ,β1 =

12K
a+b .

Case-I: When K < 0, we get following hyperbolic solution

Family-1

U1 (x,y, t) = α0 +
12

(
m2 +K

)
(a+b)

(
m−
√
−K tanh(

√
−Kξ )

)
U2 (x,y, t) = α0 +

12
(
m2 +K

)
(a+b)

(
m−
√
−Kcoth(

√
−Kξ )

)
where, ω =−4K and ξ = x+ y−ω t.
Family-2

U3 (x,y, t) = α0−
12

(
m−
√
−K tanh(

√
−Kξ )

)
(a+b)

U4 (x,y, t) = α0−
12

(
m−
√
−Kcoth(

√
−Kξ )

)
(a+b)

where, ω =−4K and ξ = x+ y−ω t.
Family-3

U5 (x,y, t) = α0 +
12
√
−K tanh(

√
−Kξ )

(a+b)
− 12K

(a+b)
√
−K tanh(

√
−Kξ )

U6 (x,y, t) = α0 +
12
√
−Kcoth(

√
−Kξ )

(a+b)
− 12K

(a+b)
√
−Kcoth(

√
−Kξ )

where, ω =−16K and ξ = x+ y−ω t.
Case-II: When K > 0, we get following trigonometric solution

Family-4

U7 (x,y, t) = α0 +
12

(
m2 +K

)
(a+b)

(
m+
√

K tan(
√

Kξ )
)

U8 (x,y, t) = α0 +
12

(
m2 +K

)
(a+b)

(
m−
√

K cot(
√

Kξ )
)

where, ω =−4K and ξ = x+ y−ω t.
Family-5

U9 (x,y, t) = α0−
12

(
m+
√

K tan(
√

Kξ )
)

(a+b)

U10 (x,y, t) = α0−
12

(
m−
√

K cot(
√

Kξ )
)

(a+b)

where, ω =−4K and ξ = x+ y−ω t.
Family-6

U11 (x,y, t) = α0 +
12
√

K tan(
√

Kξ )

(a+b)
+

12K
(a+b)

√
K tan(

√
Kξ )

U12 (x,y, t) = α0 +
12
√

K cot(
√

Kξ )

(a+b)
− 12K

(a+b)
√

K cot(
√

Kξ )
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where, ω =−16K and ξ = x+ y−ω t.
Case-III: When K = 0, we get following rational solution

Family-7

U13 (x,y, t) = α0 +
12(m2 +K)

(a+b)
(

m− 1
ξ

)
where, ω =−4K and ξ = x+ y−ω t.
Family-8

U14 (x,y, t) = α0−
12

(
m− 1

ξ

)
(a+b)

where, ω =−4K and ξ = x+ y−ω t.
Family-9

U15 (x,y, t) = α0 +
12

(a+b)ξ
− 12Kξ

(a+b)

where, ω =−16K and ξ = x+ y−ω t.

4. Results and Discussion
Around there, we will discuss the physical depiction of the procured careful and singular wave answer for the general
(2+1)-dimensional nonlinear advancement condition. We address these arrangements in graphical and check about the
kind of arrangement. Presently we pictorial some get arrangements acknowledge by applied techniques for the general
(2+1)-dimensional nonlinear advancement condition.

Figure 4.1. Kink Shape of U1(ξ ) for a0 =−2,a = 2,b = 3,m = 2,K =−.33,y = 2 within −10≤ x, t ≤ 10. The left-sided
figure shows the 3D plot and the right-sided figure shows the 2D plot for t = 0



Exact Travelling Wave Solutions of the Nonlinear Evolution Equations by Improved F-Expansion in Mathematical
Physics — 120/123

Figure 4.2. Kink Shape of U3(ξ ) for a0 =−2,a = 2,b = 3,m = 2,K =−.33,y = 2 within −10≤ x, t ≤ 10. The left-sided
figure shows the 3D plot and the right-sided figure shows the 2D plot for t = 0

Figure 4.3. Kink Shape of U2(ξ ) for a0 =−2,a = 2,b = 1,m =−2,K =−2,y = 0 within −10≤ x, t ≤ 10.
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Figure 4.4. Singular Kink Shape of U4(ξ ) for a0 =−2,a = 2,b = 3,m = 2,K =−.33,y = 2 within −10≤ x, t ≤ 10. The
left-sided figure shows the 3D plot and the right-sided figure shows the 2D plot for t = 0

Figure 4.5. Periodic N soliton Shape of U7(ξ ) for a0 = 2,a = 2,b = 3,m = 2,K = .3,y = 0 within −10≤ x, t ≤ 10. The
left-sided figure shows the 3D plot and the right-sided figure shows the 2D plot for t = 0

5. Conclusion
In this segment, we have seen that two kinds of traveling wave arrangements as far as hyperbolic and trigonometric capacities
for the general (2+1)-dimensional nonlinear evolution equation is effectively discovered by utilizing the Improved F-expansion
method. From our outcomes got in this paper, we finish up the Improved F-expansion scheme strategy is amazing, powerful
and helpful. The exhibition of this technique is dependable, basic and gives numerous new arrangements. Likewise, the
arrangements of the proposed nonlinear development conditions in this paper have numerous potential applications in atomic
and molecule material science. At long last, this technique gives a ground-breaking scientific instrument to get increasingly
broad accurate arrangements of a large number of nonlinear PDEs in numerical material science.
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