

Fundamental Journal of Mathematics and Applications

Journal Homepage: www.dergipark.gov.tr/fujma ISSN: 2645-8845 doi: 10.33401/fujma.635754

Three Equivalent *n*-Norms on the Space of *p*-Summable Sequences

Muhammad Nur^{1,2*} and Hendra Gunawan²

¹Department of Mathematics, Hasanuddin University, Indonesia
²Analysis and Geometry Group, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Indonesia
*Corresponding author E-mail: muhammadnur@unhas.ac.id

Article Info

Keywords: Equivalence, n-norm, Semiinner product g, p-summable sequence space

2010 AMS: 46B20, 46A45, 46A99,

46B99

Received: 22 October 2019 Accepted: 08 December 2019 Available online: 20 December 2019 Given a normed space, one can define a new *n*-norm using a semi-inner product g on the space, different from the *n*-norm defined by Gähler. In this paper, we are interested in the new *n*-norm which is defined using such a functional g on the space ℓ^p of p-summable sequences, where $1 \le p < \infty$. We prove particularly that the new *n*-norm is equivalent with the one defined previously by Gunawan on ℓ^p .

1. Introduction

On a normed space $(X, \|\cdot\|)$, let $g: X^2 \to \mathbb{R}$ be the functional defined by the formula

Abstract

$$g(x,y) := \frac{1}{2} ||x|| [\tau_{+}(x,y) + \tau_{-}(x,y)],$$

with

$$\tau_{\pm}(x,y) := \lim_{t \to 0^{\pm}} \frac{\|x + ty\| - \|x\|}{t}.$$

Then, one may check that g satisfies the following properties:

- (1) $g(x,x) = ||x||^2$ for every $x \in X$;
- (2) $g(\alpha x, \beta y) = \alpha \beta g(x, y)$ for every $x, y \in X$ and $\alpha, \beta \in \mathbb{R}$;
- (3) $g(x,x+y) = ||x||^2 + g(x,y)$ for every $x, y \in X$;
- (4) $|g(x,y)| \le ||x|| ||y||$ for every $x, y \in X$.

Assuming that the *g*-functional is linear in the second argument then [y,x] = g(x,y) is a *semi-inner product* on X. Note that all vector spaces in text are assumed to be over \mathbb{R} . For example, one may observe that the functional

$$g(x,y) := ||x||_p^{2-p} \sum_k |x_k|^{p-1} \operatorname{sgn}(x_k) y_k, \quad x := (x_k), y := (y_k) \in \ell^p$$

is a semi-inner product on ℓ^p , $1 \le p < \infty$ [1].

Remark 1.1. Note that not all vector spaces have the property that the g-functional is linear in the second argument. If the normed space is smooth, then the g-functional is linear in the second argument. A normed spaces with the property that the g-functional is linear in the second argument is referred to as normed spaces of (G)-type [2].

By using a semi-inner product g, Miličić [3] introduced the following orthogonality relation on X: x is said to be g-orthogonal to y, denoted by $x \perp_g y$, provided that g(x,y) = 0. For more recent works, see in [4, 5]. Recently, Nur and Gunawan in [6] defined a 2-norm on X by

$$||x_1,x_2||_g := \sup_{||y_j|| \le 1, j=1,2} \left| \begin{array}{cc} g(y_1,x_1) & g(y_2,x_1) \\ g(y_1,x_2) & g(y_2,x_2) \end{array} \right|.$$

Similarly, we can define an *n*-norm (with $n \ge 2$) using the semi-inner product g on X. An *n*-norm on X is a mapping $\|\cdot, \dots, \cdot\|: X \times \dots \times X \longrightarrow \mathbb{R}$ which satisfies the following four properties:

- (1) $||x_1,...,x_n|| = 0$ if and only if $x_1,...,x_n$ are linearly dependent;
- (2) $||x_1,...,x_n||$ is invariant under permutation;
- (3) $\|\alpha x_1, \dots, x_n\| = |\alpha| \|x_1, \dots, x_n\|$ for every $x_1, \dots, x_n \in X$ and for every $\alpha \in \mathbb{R}$;
- (4) $||x_1, \dots, x_{n-1}, y + z|| \le ||x_1, \dots, x_{n-1}, y|| + ||x_1, \dots, x_{n-1}, z||$ for every $x, y, z \in X$.

The pair $(X, \|\cdot, \dots, \cdot\|)$ is called an *n*-normed space.

The theory of 2-normed spaces was initially introduced by Gähler [7] in the 1960's. Meanwhile, the theory of *n*-normed spaces for $n \ge 2$ was developed in [8]-[10]. See [11]-[15] for recent results on this subject.

On the space ℓ^p of *p*-summable sequences, where $1 \le p < \infty$, the following *n*-norm

$$||x_1, \dots, x_n||_p := \left[\frac{1}{n!} \sum_{k_1} \dots \sum_{k_n} \left(\text{abs} \middle| \begin{array}{ccc} x_{1k_1} & \dots & x_{1k_n} \\ \vdots & \ddots & \vdots \\ x_{nk_1} & \dots & x_{nk_n} \end{array} \right]^{p} \right]^{\frac{1}{p}}$$
(1.1)

is defined by Gunawan in [16]. As shown in [17, 18], this n-norm is equivalent with the one formulated by Gähler in [8]-[10], namely

$$||x_{1},...,x_{n}||'_{p} := \sup_{||y_{j}||_{p'} \le 1, j=1,...,n} \begin{vmatrix} \sum_{k} x_{1k} y_{1k} & \cdots & \sum_{k} x_{1k} y_{nk} \\ \vdots & \ddots & \vdots \\ \sum_{k} x_{nk} y_{1k} & \cdots & \sum_{k} x_{nk} y_{nk} \end{vmatrix},$$
(1.2)

where p' denotes the dual exponent of p. Precisely, we have the following theorem

Theorem 1.2. [19] For every $x_1, \ldots, x_n \in \ell^p$ $(1 \le p < \infty)$, we have

$$(n!)^{\frac{1}{p}-1} \|x_1,\ldots,x_n\|_p \le \|x_1,\ldots,x_n\|_p' \le (n!)^{\frac{1}{p}} \|x_1,\ldots,x_n\|_p.$$

In this article, we shall first prove that, on ℓ^p $(1 \le p < \infty)$, the new 2-norm $\|\cdot, \cdot\|_g$ is equivalent with the 2-norm $\|\cdot, \cdot\|_p$ which is defined in (1.1). Using this result, we can prove that the 2-normed space $(\ell^p, \|\cdot, \cdot\|_g)$ is complete. We then extend the result for all $n \ge 2$.

2. Main results

Before we discuss the equivalence between the two 2-norms on ℓ^p ($1 \le p < \infty$), we need some definitions. Let $(X, \|\cdot\|)$ be a normed space. We define the *g*-orthogonal projection of a vector *y* on a subspace *S* of *X* as follows.

Definition 2.1. [20] Let $y \in X$ and $S = span\{x_1, ..., x_m\}$ be a subspace of X with $\Gamma(x_1, ..., x_m) = det[g(x_i, x_j)] \neq 0$. The g-orthogonal projection of y on S, which we denote by y_S , is defined by

$$y_{S} := -\frac{1}{\Gamma(x_{1}, \dots, x_{m})} \begin{vmatrix} 0 & x_{1} & \dots & x_{m} \\ g(x_{1}, y) & g(x_{1}, x_{1}) & \dots & g(x_{1}, x_{m}) \\ \vdots & \vdots & \ddots & \vdots \\ g(x_{m}, y) & g(x_{m}, x_{1}) & \dots & g(x_{m}, x_{m}) \end{vmatrix},$$

and its g-orthogonal complement $y - y_S$ is given by

$$y - y_{S} = \frac{1}{\Gamma(x_{1}, \dots, x_{m})} \begin{vmatrix} y & x_{1} & \dots & x_{m} \\ g(x_{1}, y) & g(x_{1}, x_{1}) & \dots & g(x_{1}, x_{m}) \\ \vdots & \vdots & \ddots & \vdots \\ g(x_{m}, y) & g(x_{m}, x_{1}) & \dots & g(x_{m}, x_{m}) \end{vmatrix}.$$

Observe here that $x_i \perp_g y - y_S$ for every i = 1, ..., m. Note that, if $S = \text{span}\{x\}$, then

$$y_S = \frac{g(x, y)}{\|x\|^2} x,$$

and $y - y_S$ is the g-orthogonal complement y on S. It is clear here that $x \perp_g y - y_S$.

Next, let $x_1, ..., x_n \in X$ be a set of n linearly independent vectors. We may construct a *left g-orthogonal sequence* $x_1^*, ..., x_n^*$ with $x_1^* := x_1$, and

$$x_i^* := x_i - (x_i)_{S_{i-1}}, (2.1)$$

where $S_{i-1} = \operatorname{span} \left\{ x_1^*, \dots, x_{i-1}^* \right\}$ for $i = 2, \dots, n$. Observe here that $x_i^* \perp_g x_j^*$ for i < j (see [15, 20]). For $X = \ell^p$ ($1 \le p < \infty$), we have relation for the n-norm $\|x_1, \dots, x_n\|_p$ and the 'volume' of the n-dimensional parallelepiped spanned by $\{x_1, \dots, x_n\}$ in ℓ^p , namely $V(x_1, \dots, x_n) = \prod_{i=1}^n \|x_i^*\|_p$, as follows.

Theorem 2.2. [19] Let $\{x_1, \ldots, x_n\}$ be a set of linearly independent vectors in ℓ^p $(1 \le p < \infty)$. Then we have

$$(n!)^{\frac{1}{p}-1} \|x_1,\ldots,x_n\|_p \le V(x_{i_1},\ldots,x_{i_n}) \le (n!)^{\frac{1}{p}} \|x_1,\ldots,x_n\|_p$$

for any permutation (i_1, \ldots, i_n) of $(1, \ldots, n)$.

Note that the value of $V(x_1,...,x_n)$ may not be invariant under permutation of $(x_1,...,x_n)$ because $g(\cdot,\cdot)$ may not be symmetry. The above theorem states that all possible values of $V(x_{i_1},...,x_{i_n})$ lie between two multiples of $||x_1,...,x_n||_p$, independent of the permutation.

2.1. The equivalence between two 2-norms

Let us consider Gunawan's definition and Gähler's definition of 2-norm on ℓ^p ($1 \le p \le \infty$), namely:

$$||x_1, x_2||_p = \left[\sum_{k_1} \sum_{k_2} \left(\text{abs} \left| \begin{array}{cc} x_{1k_1} & x_{1k_2} \\ x_{2k_1} & x_{2k_2} \end{array} \right| \right)^p \right]^{\frac{1}{p}}$$

and

$$||x_1,x_2||'_p := \sup_{||y_j||_{p'} \le 1, j=1,2} \begin{vmatrix} \sum_{k} x_{1k} y_{1k} & \sum_{k} x_{1k} y_{2k} \\ \sum_{k} x_{2k} y_{1k} & \sum_{k} x_{2k} y_{2k} \end{vmatrix}.$$

Meanwhile, Nur and Gunawan's 2-norm is given by

$$\|x_1, x_2\|_{g,p} = \sup_{\|y_j\|_p \le 1, j = 1, 2} \left| \begin{array}{cc} \|y_1\|_p^{2-p} \sum_k |y_{1k}|^{p-1} \mathrm{sgn}(y_{1k}) x_{1k} & \|y_2\|_p^{2-p} \sum_k |y_{2k}|^{p-1} \mathrm{sgn}(y_{2k}) x_{1k} \\ \|y_1\|_p^{2-p} \sum_k |y_{1k}|^{p-1} \mathrm{sgn}(y_{1k}) x_{2k} & \|y_2\|_p^{2-p} \sum_k |y_{2k}|^{p-1} \mathrm{sgn}(y_{2k}) x_{2k} \end{array} \right|.$$

Remark 2.3. Using properties of determinants, the above 2-norm may be rewritten as

$$\|x_1, x_2\|_{g,p} = \sup_{\|y_j\|_{\infty} \le 1, j = 1, 2} \frac{1}{2} \prod_{j=1}^{2} \|y_j\|_p^{2-p} \sum_{k_1} \sum_{k_2} \left| \begin{array}{cc} |y_{1k_1}|^{p-1} sgn\left(y_{1k_1}\right) & |y_{1k_2}|^{p-1} sgn\left(y_{1k_2}\right) \\ |y_{2k_2}|^{p-1} sgn\left(y_{2k_2}\right) & |y_{2k_2}|^{p-1} sgn\left(y_{2k_2}\right) \end{array} \right| \left| \begin{array}{cc} x_{1k_1} & x_{1k_2} \\ x_{2k_1} & x_{2k_2} \end{array} \right|.$$

For p = 2, we observe that

$$||x_1, x_2||_{g,2} = \sup_{||y_i||_2 \le 1, \ j=1,2} \frac{1}{2} \sum_{k_1, k_2} \left| \begin{array}{cc} y_{1k_1} & y_{1k_2} \\ y_{2k_1} & y_{2k_2} \end{array} \right| \left| \begin{array}{cc} x_{1k_1} & x_{1k_2} \\ x_{2k_1} & x_{2k_2} \end{array} \right|.$$

One may then verify that the three 2-norms $\|\cdot,\cdot\|_2$, $\|\cdot,\cdot\|_2'$ and $\|\cdot,\cdot\|_{g,2}$ are identical (see [6, 12]).

For other values of p, we have the following theorem.

Theorem 2.4. For every $x_1, x_2 \in \ell^p$ $(1 \le p < \infty)$, we have

$$2^{\frac{1}{p}-1} \|x_1, x_2\|_p \le \|x_1, x_2\|_{g,p} \le \|x_1, x_2\|_p' \le 2^{\frac{1}{p}} \|x_1, x_2\|_p.$$

Proof. For j = 1, 2, let $y_j \in \ell^p$ with $||y_j||_p \le 1$. Take $u_j = (u_{jk})$ with $u_{jk} = ||y_j||_p^{2-p} |y_{jk}|^{p-1} \operatorname{sgn}(y_{jk})$. We observe that $u_j \in \ell^{p'}$ with $||u_j||_{p'} = ||y_j||_p$. As a consequence, we have $||x_1, x_2||_{g,p} \le ||x_1, x_2||_p$. By using Theorem 1.2, we obtain

$$||x_1,x_2||_{g,p} \le ||x_1,x_2||_p' \le 2^{\frac{1}{p}} ||x_1,x_2||_p.$$

Next, assume that $\{x_1, x_2\}$ is linearly independent. Using the process in (2.1), we obtain the left *g*-orthogonal set $\{x_1^*, x_2^*\}$. Then, by Theorem 2.2, we have

$$2^{\frac{1}{p}-1} \|x_1, x_2\|_p \le V(x_1, x_2) = \|x_1^*\|_p \|x_2^*\|_p.$$

For j = 1, 2, let $y_j = \frac{x_j^*}{\|x_j^*\|_p}$, so that $\|y_j\|_p = 1$. It follows from the properties of semi-inner product g and matrix determinants that

$$\begin{vmatrix} g(y_{1},x_{1}) & g(y_{2},x_{1}) \\ g(y_{1},x_{2}) & g(y_{2},x_{2}) \end{vmatrix} = \begin{vmatrix} \frac{1}{\|x_{1}^{*}\|_{p}} g(x_{1}^{*},x_{1}^{*}) & \frac{1}{\|x_{2}^{*}\|_{p}} g(x_{2}^{*},x_{1}^{*}) \\ \frac{1}{\|x_{1}^{*}\|_{p}} g(x_{1}^{*},x_{2}^{*}) & \frac{1}{\|x_{2}^{*}\|_{p}} g(x_{2}^{*},x_{2}^{*}) \end{vmatrix}$$

$$= \|x_{1}^{*}\|_{p} \|x_{2}^{*}\|_{p} = V(x_{1},x_{2})$$

$$\geq 2^{\frac{1}{p}-1} \|x_{1},x_{2}\|_{p}.$$

By the definition of $\|\cdot,\cdot\|_{g,p}$, we conclude that $\|x_1,x_2\|_{g,p} \ge 2^{\frac{1}{p}-1} \|x_1,x_2\|_p$. Combining with the previous inequalities, we have

$$2^{\frac{1}{p}-1} \|x_1, x_2\|_p \le \|x_1, x_2\|_{g,p} \le \|x_1, x_2\|_p' \le 2^{\frac{1}{p}} \|x_1, x_2\|_p.$$

Note that if $\{x_1, x_2\}$ is a linearly dependent set, then all the 2-norms are equal 0, and so we have the equalities.

Corollary 2.5. For $1 \le p < \infty$, the three 2-norms $\|\cdot,\cdot\|_{g,p}$, $\|\cdot,\cdot\|_p'$, and $\|\cdot,\cdot\|_p$ are pairwise equivalent.

Since $(\ell^p, \|\cdot, \cdot\|_p)$ is a 2-Banach space [1], we obtain the following corollary.

Corollary 2.6. For $1 \le p < \infty$, the 2-normed space $(\ell^p, \|\cdot, \cdot\|_{g,p})$ is a 2-Banach space.

2.2. The equivalence between two *n*-norms

All results in above subsection can be extended to *n*-normed spaces for any $n \ge 2$. Suppose that g is a semi-inner product on $(X, \|\cdot\|)$. Consider the following mapping $\|\cdot, \dots, \cdot\|_g$ on $X \times \dots \times X$:

$$||x_{1},...,x_{n}||_{g} = \sup_{||y_{j}|| \le 1, j=1,...,n} \begin{vmatrix} g(y_{1},x_{1}) & \cdots & g(y_{n},x_{1}) \\ \vdots & \ddots & \vdots \\ g(y_{1},x_{n}) & \cdots & g(y_{n},x_{n}) \end{vmatrix} = \sup_{||y_{j}|| \le 1, j=1,...,n} \det[g(y_{j},x_{i})].$$
(2.2)

If $||y_j|| \le 1$ for j = 1, ..., n, then $\det[g(y_j, x_i)] \le n! \prod_{i=1}^n ||x_i||$. Note that the factor n! comes from the number of terms in the expansion of $\det[g(y_j, x_i)]$. The following fact tells us that $||\cdot, ..., \cdot||_g$ is a finite number.

Fact 2.7. The inequality

$$||x_1,\ldots,x_n||_g \le n! \prod_{i=1}^n ||x_i||$$

holds whenever $x_1, \ldots, x_n \in X$.

Moreover, we have the following result.

Proposition 2.8. The mapping (2.2) defines an n-norm on X.

Proof. It is obvious that, if $\{x_1, \ldots, x_n\}$ is linearly dependent, then we have $\|x_1, \ldots, x_n\|_g = 0$. Conversely, if $\|x_1, \ldots, x_n\|_g = 0$, then the rows of the matrix $[g(y_j, x_i)]$ are linearly dependent for every $y_1, \ldots, y_n \in X$ with $\|y_j\| \le 1$, $j = 1, \ldots, n$. This happens only if x_1, \ldots, x_n are linearly dependent.

Next, by using the properties of supremum and matrix determinants, we obtain the invariance of $\|x_1, \dots, x_2\|_g$ under permutation. Furthermore, we have $\|\alpha x_1, \dots x_n\|_g = |\alpha| \|x_1, \dots, x_n\|_g$ for $\alpha \in \mathbb{R}$.

Finally, for arbitrary $x_0, x_1, \dots x_n \in X$, we obtain

$$||x_{0}+x_{1},...,x_{n}||_{g} = \sup_{||y_{j}|| \leq 1, \ j=1,...,n} \begin{vmatrix} g(y_{1},x_{0}+x_{1}) & \cdots & g(y_{n},x_{0}+x_{1}) \\ \vdots & \ddots & \vdots \\ g(y_{1},x_{n}) & \cdots & g(y_{n},x_{n}) \end{vmatrix}$$

$$\leq \sup_{||y_{j}|| \leq 1, \ j=1,...,n} \begin{vmatrix} g(y_{1},x_{0}) & \cdots & g(y_{n},x_{0}) \\ \vdots & \ddots & \vdots \\ g(y_{1},x_{n}) & \cdots & g(y_{n},x_{n}) \end{vmatrix} + \sup_{||y_{j}|| \leq 1, \ j=1,...,n} \begin{vmatrix} g(y_{1},x_{1}) & \cdots & g(y_{n},x_{1}) \\ \vdots & \ddots & \vdots \\ g(y_{1},x_{n}) & \cdots & g(y_{n},x_{n}) \end{vmatrix}$$

$$= ||x_{0},...,x_{n}||_{g} + ||x_{1},...,x_{n}||_{g}.$$

This completes the proof.

The following theorem holds for an inner product space $(X, \langle \cdot, \cdot \rangle)$.

Theorem 2.9. If $(X, \langle \cdot, \cdot \rangle)$ is a real inner product space, then the two n-norms $\|\cdot, \dots, \cdot\|_g$ in (2.2) and $\|\cdot, \dots, \cdot\|_s$ given by

$$||x_1,\ldots,x_n||_s := \begin{vmatrix} \langle x_1,x_1 \rangle & \cdots & \langle x_n,x_1 \rangle \\ \vdots & \ddots & \vdots \\ \langle x_1,x_n \rangle & \cdots & \langle x_n,x_n \rangle \end{vmatrix}^{\frac{1}{2}}$$

are identical.

Proof. On the inner product space X, the functional $g(\cdot,\cdot)$ is identical with the inner product $\langle \cdot,\cdot \rangle$. Therefore,

$$||x_1, \dots, x_n||_g = \sup_{||y_j|| \le 1, j = 1, \dots, n} \begin{vmatrix} \langle y_1, x_1 \rangle & \cdots & \langle y_n, x_1 \rangle \\ \vdots & \ddots & \vdots \\ \langle y_1, x_n \rangle & \cdots & \langle y_n, x_n \rangle \end{vmatrix}.$$

Now, applying the generalized Cauchy-Schwarz inequality [21] and Hadamard's inequality [22], we get

$$||x_1,\ldots,x_n||_g \le \sup_{\|y_j\|\le 1, j=1,\ldots,n} ||x_1,\ldots,x_n||_s ||y_1,\ldots,y_n||_s \le ||x_1,\ldots,x_n||_s.$$

Conversely, suppose that $\{x_1, \dots, x_n\}$ is linearly independent. Using the Gram-Schmidt process, we get the orthogonal set $\{x'_1, \dots, x'_n\}$. Because the determinant of the Gram matrix of a linearly independent set being equal to the Gram matrix of the associated orthogonal set (obtained using Gram-Schmidt process), we have $\|x_1, \dots, x_n\|_s = \|x'_1, \dots, x'_n\|_s = \|x'_1\| \cdots \|x'_n\|$. For $j = 1, \dots, n$, let $y_j = \frac{x'_j}{\|x'_j\|}$, so that $\|y_j\| = 1$. Then, by the properties of the inner product and matrix determinants, we obtain

$$\begin{vmatrix} \langle y_1, x_1 \rangle & \cdots & \langle y_n, x_1 \rangle \\ \vdots & \ddots & \vdots \\ \langle y_1, x_n \rangle & \cdots & \langle y_n, x_n \rangle \end{vmatrix} = \begin{vmatrix} \langle y_1, x_1' \rangle & \cdots & \langle y_n, x_1' \rangle \\ \vdots & \ddots & \vdots \\ \langle y_1, x_n' \rangle & \cdots & \langle y_n, x_n' \rangle \end{vmatrix} = \frac{1}{\|x_1'\| \cdots \|x_n'\|} \begin{vmatrix} \langle x_1', x_1' \rangle & \cdots & \langle x_n', x_1' \rangle \\ \vdots & \ddots & \vdots \\ \langle x_1', x_n' \rangle & \cdots & \langle x_n', x_n' \rangle \end{vmatrix}$$

$$= \|x_1'\| \cdots \|x_n'\| = \|x_1, \dots, x_n\|_{S}.$$

Thus, $||x_1, \dots, x_n||_g \ge ||x_1, \dots, x_n||_s$. Hence we conclude that $||x_1, \dots, x_n||_g = ||x_1, \dots, x_n||_s$ whenever $\{x_1, \dots, x_n\}$ is linearly independent. If $\{x_1, \dots, x_n\}$ is linearly dependent, then $||x_1, \dots, x_n||_g = ||x_1, \dots, x_n||_s = 0$.

Remark 2.10. Note that, in an inner product space, we have the well-known Hadamard's inequality [22]

$$||x_1,\ldots,x_n||_g = ||x_1,\ldots,x_n||_s \le ||x_1||\cdots||x_n||,$$

which is better than that in Fact ??.

For $X = \ell^p$ ($1 \le p < \infty$), we rewrite the formula in (2.2) as

$$\|x_1, \dots, x_n\|_{g,p} = \sup_{\|y_j\|_p \le 1, j=1, \dots, n} \begin{vmatrix} g(y_1, x_1) & \cdots & g(y_n, x_1) \\ \vdots & \ddots & \vdots \\ g(y_1, x_n) & \cdots & g(y_n, x_n) \end{vmatrix}.$$

Substituting $g(y_j, x_i) = ||y_j||_p^{2-p} \sum_k |y_{jk}|^{p-1} \operatorname{sgn}(y_{jk}) x_{ik}$ and using the properties of determinants, we have

$$||x_{1},...,x_{n}||_{g,p} = \sup_{||y_{j}||_{p} \leq 1, j=1,...,n} \left| \begin{array}{c} ||y_{1}||_{p}^{2-p} \sum_{k} |y_{1k}|^{p-1} \operatorname{sgn}(y_{1k}) x_{1k} & \cdots & ||y_{n}||_{p}^{2-p} \sum_{k} |y_{nk}|^{p-1} \operatorname{sgn}(y_{nk}) x_{1k} \\ \vdots & \ddots & \vdots \\ ||y_{1}||_{p}^{2-p} \sum_{k} |y_{1k}|^{p-1} \operatorname{sgn}(y_{1k}) x_{nk} & \cdots & ||y_{n}||_{p}^{2-p} \sum_{k} |y_{nk}|^{p-1} \operatorname{sgn}(y_{nk}) x_{nk} \\ ||y_{1}||_{p}^{2-p} \sum_{k} |y_{1k}|^{p-1} \operatorname{sgn}(y_{1k}) x_{nk} & \cdots & ||y_{n}||_{p}^{2-p} \sum_{k} |y_{nk}|^{p-1} \operatorname{sgn}(y_{nk}) x_{nk} \\ ||y_{1}||_{p}^{2-p} \sum_{k} |y_{1k}|^{p-1} \operatorname{sgn}(y_{1k}) x_{nk} & \cdots & ||y_{n}||_{p}^{2-p} \sum_{k} |y_{nk}|^{p-1} \operatorname{sgn}(y_{nk}) x_{nk} \\ ||y_{1}||_{p}^{2-p} \sum_{k} |y_{1k}|^{p-1} \operatorname{sgn}(y_{1k}) x_{nk} & \cdots & ||y_{n}||_{p}^{2-p} \sum_{k} |y_{nk}|^{p-1} \operatorname{sgn}(y_{nk}) x_{nk} \\ ||y_{1}||_{p}^{2-p} \sum_{k} |y_{1k}|^{p-1} \operatorname{sgn}(y_{1k}) x_{nk} & \cdots & ||y_{n}||_{p}^{2-p} \sum_{k} |y_{nk}|^{p-1} \operatorname{sgn}(y_{nk}) x_{nk} \\ ||y_{1}||_{p}^{2-p} \sum_{k} |y_{1k}|^{p-1} \operatorname{sgn}(y_{1k}) x_{nk} & \cdots & ||y_{n}||_{p}^{2-p} \sum_{k} |y_{nk}|^{p-1} \operatorname{sgn}(y_{nk}) x_{nk} \\ ||y_{1}||_{p}^{2-p} \sum_{k} |y_{1k}|^{p-1} \operatorname{sgn}(y_{1k}) x_{nk} & \cdots & ||y_{n}||_{p}^{2-p} \sum_{k} |y_{nk}|^{p-1} \operatorname{sgn}(y_{nk}) x_{nk} \\ ||y_{1}||_{p}^{2-p} \sum_{k} |y_{1k}|^{p-1} \operatorname{sgn}(y_{1k}) x_{nk} & \cdots & ||y_{n}||_{p}^{2-p} \sum_{k} |y_{nk}|^{p-1} \operatorname{sgn}(y_{nk}) x_{nk} \\ ||y_{1}||_{p}^{2-p} \sum_{k} |y_{1k}|^{p-1} \operatorname{sgn}(y_{1k}) x_{nk} & \cdots & ||y_{n}||_{p}^{2-p} \sum_{k} |y_{nk}|^{p-1} \operatorname{sgn}(y_{nk}) x_{nk} \\ ||y_{1}||_{p}^{2-p} \sum_{k} |y_{1k}|^{p-1} \operatorname{sgn}(y_{1k}) x_{nk} & \cdots & ||y_{n}||_{p}^{2-p} \sum_{k} |y_{nk}|^{p-1} \operatorname{sgn}(y_{nk}) x_{nk} \\ ||y_{1}||_{p}^{2-p} \sum_{k} |y_{1k}|^{p-1} \operatorname{sgn}(y_{1k}) x_{nk} & \cdots & ||y_{n}||_{p}^{2-p} \sum_{k} |y_{1k}|^{p-1} \operatorname{sgn}(y_{1k}) x_{nk} \\ ||y_{1}||_{p}^{2-p} \sum_{k} |y_{1k}|^{p-1} \operatorname{sgn}(y_{1k}) x_{nk} & \cdots & ||y_{n}||_{p}^{2-p} \sum_{k} |y_{1k}|^{p-1} \operatorname{sgn}(y_{1k}) x_{nk} \\ ||y_{1}||_{p}^{2-p} \sum_{k} |y_{1k}|^{p-1} \operatorname{sgn}(y_{1k}) x_{nk} & \cdots & ||y_{n}||_{p}^{2-p} \sum_{k} |y_{1k}|^{p-1} \operatorname{sgn}(y_{1k}) x_{nk} \\ ||y_{1}||_{p}^{2-p} \sum_{k} |y_{1k}|^{p-1} \operatorname{sgn}(y_{1k}) x_{nk} & \cdots & ||y_{n}||_{p}^{2-p$$

Corollary 2.11. For p=2, the three n-norms $\|\cdot,\ldots,\cdot\|_2$ in (1.1), $\|\cdot,\ldots,\cdot\|_2'$ in (1.2) and $\|\cdot,\ldots,\cdot\|_{g,2}$ in (2.3) are identical.

For $p \neq 2$, we have the following generalization of Theorem 2.4.

Theorem 2.12. For every $x_1, \ldots, x_n \in \ell^p$ $(1 \le p < \infty)$, we have

$$(n!)^{\frac{1}{p}-1} \|x_1,\ldots,x_n\|_p \leq \|x_1,\ldots,x_n\|_{g,p} \leq \|x_1,\ldots,x_n\|_p' \leq (n!)^{\frac{1}{p}} \|x_1,\ldots,x_n\|_p.$$

Proof. For each j = 1, ..., n, let $y_j \in \ell^p$ with $||y_j||_p \le 1$. Then take $u_j = (u_{jk})$ with $u_{jk} = ||y_j||_p^{2-p} |y_{jk}|^{p-1} \operatorname{sgn}(y_{jk})$. We observe that $u_j \in \ell^{p'}$ with $||u_j||_{p'} = ||y_j||_p \le 1$. As a consequence, we have

$$||x_1,\ldots,x_n||_{g,p} \leq ||x_1,\ldots,x_n||'_p$$
.

By using Theorem 1.2, we obtain

$$||x_1,\ldots,x_n||_{g,p} \leq ||x_1,\ldots,x_n||_p' \leq (n!)^{\frac{1}{p}} ||x_1,\ldots,x_n||_p$$

Conversely, suppose that $\{x_1, ..., x_n\}$ is a linearly independent set. Using $x_1^* = x_1$ and so forth as in (2.1), we obtain the left g -orthogonal set $\{x_1^*, ..., x_n^*\}$. Then, it follows from Theorem 2.2 that

$$(n!)^{\frac{1}{p}-1} \|x_1,\ldots,x_n\|_p \le V(x_1,\ldots,x_n) = \|x_1^*\|_p \cdots \|x_n^*\|_p.$$

For $j=1,\ldots,n$, let $y_j=\frac{x_j^*}{\|x_j^*\|_p}$, so that $\|y_j\|_p=1$. Next, using the properties of matrix determinants and the semi-inner product g, we have

$$\begin{vmatrix} g(y_{1},x_{1}) & \cdots & g(y_{n},x_{1}) \\ \vdots & \ddots & \vdots \\ g(y_{1},x_{n}) & \cdots & g(y_{n},x_{n}) \end{vmatrix} = \begin{vmatrix} \frac{1}{\|x_{1}^{*}\|_{p}} g(x_{1}^{*},x_{1}^{*}) & \cdots & \frac{1}{\|x_{n}^{*}\|_{p}} g(x_{n}^{*},x_{1}^{*}) \\ \vdots & \ddots & \vdots \\ \frac{1}{\|x_{1}^{*}\|_{p}} g(x_{1}^{*},x_{n}^{*}) & \cdots & \frac{1}{\|x_{n}^{*}\|_{p}} g(x_{n}^{*},x_{n}^{*}) \end{vmatrix}$$

$$= \|x_{1}^{*}\|_{p} \cdots \|x_{n}^{*}\|_{p} = V(x_{1},\dots,x_{n})$$

$$\geq (n!)^{\frac{1}{p}-1} \|x_{1},\dots,x_{n}\|_{p},$$

whence $||x_1,...,x_n||_{g,p} \ge (n!)^{\frac{1}{p}-1} ||x_1,...,x_n||_p$. Combining with the previous inequalities, we obtain

$$(n!)^{\frac{1}{p}-1} \|x_1,\ldots,x_n\|_p \leq \|x_1,\ldots,x_n\|_{g,p} \leq \|x_1,\ldots,x_n\|_p' \leq (n!)^{\frac{1}{p}} \|x_1,\ldots,x_n\|_p.$$

If $\{x_1, \dots, x_n\}$ is linearly dependent, then all the *n*-norms vanish and so we have the equalities.

Corollary 2.13. For $1 \le p < \infty$, the three n-norms $\|\cdot, \dots, \cdot\|_{g,p}$, $\|\cdot, \dots, \cdot\|_p$ and $\|\cdot, \dots, \cdot\|_p$ are equivalent.

Knowing that the space $(\ell^p, \|\cdot, \dots, \cdot\|_p)$ is an *n*-Banach space in [16], we have a generalization of Corollary 2.6 as follows.

Corollary 2.14. For $1 \le p < \infty$, the space $(\ell^p, \|\cdot, \dots, \cdot\|_{g,p})$ is an n-Banach space.

3. Concluding remarks

In this paper, a new *n*-norm is defined using a semi-inner product g on ℓ^p for $1 \le p < \infty$. Accordingly, on the space ℓ^p $(1 \le p < \infty)$, we have three different *n*-norms, namely Gähler's *n*-norm $\|\cdot,\ldots,\cdot\|_p$ defined in [8]-[10], Gunawan's *n*-norm $\|\cdot,\ldots,\cdot\|_p$ defined in [16], and $\|\cdot,\ldots,\cdot\|_{g,p}$ defined here in (2.3). In Corollary 2.13, we have just seen that the three *n*-norms on ℓ^p are equivalent. As expected, the case where p=2 is special. Here, the three *n*-norms on ℓ^2 are identical.

In addition to the above three *n*-norms, we also have a formula for another *n*-norm using the semi-inner product *g* on ℓ^p $(1 \le p < \infty)$, namely

$$||x_1,...,x_n||_{g,p}^{\circ} = \sup_{||y_1,...,y_n||_p \le 1} \begin{vmatrix} g(y_1,x_1) & \cdots & g(y_n,x_1) \\ \vdots & \ddots & \vdots \\ g(y_1,x_n) & \cdots & g(y_n,x_n) \end{vmatrix}.$$

Since $g(y_j, x_i) = ||y_j||_p^{2-p} \sum_k |y_{jk}|^{p-1} \text{sgn}(y_{jk}) x_{ik}$, we obtain

$$||x_{1},...,x_{n}||_{g,p}^{\circ}| = \left[\sup_{\|y_{1},...,y_{n}\|_{p} \leq 1} \frac{1}{n!} \prod_{j=1}^{n} ||y_{j}||_{p}^{2-p} \times \left[\sum_{k_{1}}...\sum_{k_{n}} \left| \begin{array}{ccc} |y_{1k_{1}}|^{p-1} \operatorname{sgn}(y_{1k_{1}}) & \cdots & |y_{1k_{n}}|^{p-1} \operatorname{sgn}(y_{1k_{n}}) \\ \vdots & \ddots & \vdots \\ |y_{nk_{1}}|^{p-1} \operatorname{sgn}(y_{nk_{1}}) & \cdots & |y_{nk_{n}}|^{p-1} \operatorname{sgn}(y_{nk_{n}}) & | \begin{array}{ccc} x_{1k_{1}} & \cdots & x_{1k_{n}} \\ \vdots & \ddots & \vdots \\ x_{nk_{1}} & \cdots & x_{nk_{n}} \end{array} \right] \right].$$

Note that, for p=2, we have $||x_1,\ldots,x_n||_{g,2}=||x_1,\ldots,x_n||_{g,2}^\circ$. For other values of p, we can show that

$$||x_1,\ldots,x_n||_{g,p} \leq (n!)^{2-\frac{1}{p}} ||x_1,\ldots,x_n||_{g,p}^{\circ}.$$

Indeed, assuming that x_1, \ldots, x_n are linearly independent, let x_1^*, \ldots, x_n^* be the vectors obtained from x_1, \ldots, x_n through the process in (2.1). By taking $y_j = \frac{x_j^*}{\sqrt[n]{\|x_1^*, \dots, x_n^*\|_p}}$ $(j = 1, \dots, n)$, we obtain $\|y_1, \dots, y_n\|_p = 1$. Next, using the properties of matrix determinants and the semi-inner product g, we have

$$\begin{vmatrix} g(y_{1},x_{1}) & \cdots & g(y_{n},x_{1}) \\ \vdots & \ddots & \vdots \\ g(y_{1},x_{n}) & \cdots & g(y_{n},x_{n}) \end{vmatrix} = \begin{vmatrix} \frac{1}{\sqrt[n]{|x_{1}^{*},...,x_{n}^{*}||_{p}}} g(x_{1}^{*},x_{1}^{*}) & \cdots & \frac{1}{\sqrt[n]{|x_{1}^{*},...,x_{n}^{*}||_{p}}} g(x_{n}^{*},x_{1}^{*}) \\ \vdots & \ddots & \vdots \\ \frac{1}{\sqrt[n]{|x_{1}^{*},...,x_{n}^{*}||_{p}}} g(x_{1}^{*},x_{n}^{*}) & \cdots & \frac{1}{\sqrt[n]{|x_{1}^{*},...,x_{n}^{*}||_{p}}} g(x_{n}^{*},x_{n}^{*}) \end{vmatrix}$$

$$= \frac{\|x_{1}^{*}\|_{p}^{2} \dots \|x_{n}^{*}\|_{p}^{2}}{\|x_{1}^{*},...,x_{n}^{*}\|_{p}}.$$

Since $||x_1,...,x_n||_p \le (n!)^{1-\frac{1}{p}} ||x_1^*||_p \cdots ||x_n^*||_p$ by Theorem 2.2 and $||x_1^*,...,x_n^*||_p = ||x_1,...,x_n||_p$, we obtain

$$||x_1,\ldots,x_n||_{g,p}^{\circ} \geq (n!)^{\frac{2}{p}-2} ||x_1,\ldots,x_n||_{p}.$$

Moreover, using Theorem 2.12, we have

$$||x_1,\ldots,x_n||_{g,p} \leq (n!)^{2-\frac{1}{p}} ||x_1,\ldots,x_n||_{g,p}^{\circ}.$$

It follows from this inequality that the convergence of a sequence in $\|\cdot, \dots, \cdot\|_{g,p}^{\circ}$ implies the convergence in $\|\cdot, \dots, \cdot\|_{g,p}$, and hence also in $\|\cdot,\ldots,\cdot\|_p$. Unfortunately, up to now, we do not know if the converse is true.

Acknowledgement

This work is supported by ITB Research and Innovation Program 2019.

References

- [1] J. R. Giles, Classes of semi-inner product spaces, Trans. Amer. Math. Soc., 129-3 (1967), 436-446.
- S. S. Dragomir, Semi-inner Products and Applications, Nova Science Publishers, 2004.
- [3] P. M. Miličić, Sur le g-angle dans un espace norme, Mat. Vesnik, 45 (1993), 43-48.
- [4] M. Nur, H. Gunawan, A new orthogonality and angle in a normed space, Aequationes Math., 93 (2019), 547-555.
- [5] M. Nur, H.Gunawan, O. Neswan, A formula for the g-angle between two subspaces of a normed space, Beitr. Algebra Geom., 59-1 (2018), 133–143.
 [6] M. Nur, H. Gunawan, A note on the formula of the g-angle between two subspaces in a normed space, (Feb. 2019) arXiv:1809.01909v2 [math.FA].
 [7] S. Gähler, Lineare 2-normierte räume, Math. Nachr., 28 (1964), 1–43.

- [8] S. Gähler, Untersuchungen über verallgemeinerte m-metrische räume. I", Math. Nachr., 40 (1969), 165–189.
 [9] S. Gähler, Untersuchungen über verallgemeinerte m-metrische räume. II", Math. Nachr., 40 (1969), 229–264.
- [10] S. Gähler, Untersuchungen über verallgemeinerte m-metrische räume. III, Math. Nachr., 41 (1970), 23–26.
- [11] S. Ekariani, H. Gunawan, M. Idris, A contractive mapping theorem on the n-normed space of p-summable, J. Math. Anal., 41 (2013), 1–7.
- [12] S. M. Gozali, H. Gunawan, O. Neswan, On n-norms and bounded n-linear functionals in a Hilbert space, Ann. Funct. Anal., 1 (2010), 72–79.
- [13] H. Gunawan, On n-inner products, n-norms, and the Cauchy-Schwarz inequality, Sci. Math. Japon., 55 (2002), 53-60.
- [14] H. Gunawan, H. Mashadi, On n-normed spaces, Int. J. Math. Math. Sci. 27 (2001), 631–639.
- [15] H. Gunawan, W. Setya-Budhi, M. Mashadi, S.Gemawati, On volumes of n-dimensional parallelepipeds in ℓ^p spaces, Univ. Beograd Publ. Elektrotehn. Fak. Ser. Mat., 16 (2005), 48–54.
- [16] H. Gunawan, The space of p-summable sequences and its natural n-norms, Bull. Austral. Math. Soc., 64 (2001), 137–147.
- [17] Ş. Konca, M. Idris, Equivalence among three 2-norms on the space of p-summable sequences, J. Inequal. Spec. Funct., 7(4), (2016) 218–224.
- [18] A. Mutaqin, H. Gunawan, Equivalence of n-norms on the space of p-summable sequences, J. Indones. Math. Soc., 16 (2010), 39–49.
- [19] R. A. Wibawa-Kusumah, H. Gunawan, Two equivalent n-norms on the space of p-summable sequences, Period. Math. Hungar., 67–1 (2013), 63–69.
- [20] P. M. Miličić, On the Gram-Schmidt projection in normed spaces, Univ. Beograd Publ. Elektrotehn. Fak. Ser. Mat., 4 (1993), 89–96.
- [21] S. Kurepa, On the Buniakowsky-Cauchy-Schwarz inequality, Glas. Mat. III Ser., 21(1) (1966), 147–158.
- [22] F. R. Gantmacher, *The Theory of Matrices*, AMS Chelsea Publishing, 1, 2000.