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1. Introduction

On a normed space (X, || -|)), let g : X> — R be the functional defined by the formula

8(e) 1= 3l e o) + 2 ()]
with

vl = Il
() = lim S

Then, one may check that g satisfies the following properties:

(1) g(x,x) = ||x||* for every x € X;

2) g(ox,By) = aPg(x,y) forevery x,y € X and o, € R;
(3) g(x,x+y) = ||x||> + g(x,y) for every x,y € X;

4) |g(x,y)l < [|x[l Iyl for every x,y € X.

Assuming that the g-functional is linear in the second argument then [y,x] = g(x,y) is a semi-inner product on X.
Note that all vector spaces in text are assumed to be over R. For example, one may observe that the functional

g(x,y) = [Ixl[377 Y IlPsgn () vk, x o= (), = (w) € F
k

is a semi-inner product on /7, 1 < p < oo [1].

Remark 1.1. Note that not all vector spaces have the property that the g-functional is linear in the second argument. If the normed space is
smooth, then the g-functional is linear in the second argument. A normed spaces with the property that the g-functional is linear in the
second argument is referred to as normed spaces of (G)-type [2].
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By using a semi-inner product g, Mili¢i¢ [3] introduced the following orthogonality relation on X: x is said to be g-orthogonal to y, denoted
by x Ly, provided that g(x,y) = 0. For more recent works, see in [4, 5].
Recently, Nur and Gunawan in [6] defined a 2-norm on X by

’x 7x
[x1,x2][g == sup ggyl xlg gEyz xlg
Ijll<t j=121 8WLX2) 812,82
Similarly, we can define an n-norm (with n > 2) using the semi-inner product g on X. An n-norm on X is a mapping ||-,...,-|| : X X -+ xX —
R which satisfies the following four properties:

(1) |lx1,.--,x]| = 0if and only if x1,...,x, are linearly dependent;
(2) ||x1,-., X, is invariant under permutation;
3) |laxy,..., x| = |et]|lxy,...,x,]| for every xj,...,x, € X and for every & € R;

) ||X1,.. ~7xn717y+ZH < ”xlv“ ~7xn717yH + ||)C1,‘. ~7xn717ZH for every x,y,z € X.

The pair (X, ||,...,-||) is called an n-normed space.

The theory of 2-normed spaces was initially introduced by Géhler [7] in the 1960’s. Meanwhile, the theory of n-normed spaces for n > 2 was
developed in [8]-[10]. See [11]-[15] for recent results on this subject.

On the space 7 of p-summable sequences, where 1 < p < oo, the following n-norm

<=

pq L
Xk 0 Xk,

1
[[x1, .. Xl == *.Z"'Z abs| . (1.1)
"k ' '

Xnk, o Xk,

is defined by Gunawan in [16]. As shown in [17, 18], this n-norm is equivalent with the one formulated by Géhler in [8]-[10], namely
Yxuyie o XXk
k k

1,2l o= sup : : , (1.2)

lyill <1, j=1,....;n )
’ %xnkylk %xnkynk

where p’ denotes the dual exponent of p. Precisely, we have the following theorem.

Theorem 1.2. [19] For every xy,...,x, € P (1 < p < o), we have

1 1
(n')p ||X17.. '7x”Hp S HX], o ‘1xﬂH;) S (n[)p HX],. o ,)Can.
In this article, we shall first prove that, on {7 (1 < p < o), the new 2-norm ||-,-||¢ is equivalent with the 2-norm ||-,-||, which is defined in
(1.1). Using this result, we can prove that the 2-normed space (¢7,]|-,-||¢) is complete. We then extend the result for all n > 2.
2. Main results
Before we discuss the equivalence between the two 2-norms on £7 (1 < p < o), we need some definitions. Let (X, || - ||) be a normed space.

We define the g-orthogonal projection of a vector y on a subspace S of X as follows.

Definition 2.1. [20] Let y € X and S = span{xy,...,Xn} be a subspace of X with I'(xy,...,xy) = det[g(x;,x;)] # 0. The g-orthogonal
projection of y on S, which we denote by ys, is defined by

0 X1 Xm
1 glx,y)  glxr,xt) - glxr,xm)
y§ ==~ : . . . )
T(xp,...,%m) : : . :
gom,y)  glm,xt) o g(XmsXm)
and its g-orthogonal complement y — yg is given by
y X1 X
1 glxr,y)  glxr,xr) - glx1,Xm)
Y=VS == . . .
F(Xh...,xm) . . .
gom,y)  glxmyx1) o g(xm,Xm)

Observe here that x; Lo y —ys for every i = 1,...,m. Note that, if § = span {x}, then

g(x,y)
ys = x,
]2

and y — yy is the g-orthogonal complement y on S. It is clear here that x 1, y —yg.
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Next, let xq,...,x, € X be a set of n linearly independent vectors. We may construct a left g-orthogonal sequence X7, ..., x; with x] :=xi,
and
x; =X — (%i)s, s @21
where S;_| = span {x’f, ... ,x;:l} fori=2,...,n. Observe here that x] 1, x; fori < j (see [15, 20]).
For X = (7 (1 < p < o), we have relation for the n-norm ||x1,...,%,||, and the ‘volume’ of the n-dimensional parallelepiped spanned by
n
{x1,...,x,} in €7, namely V (x1,...,x,) = IT ||x}]| p, as follows.
i=1

Theorem 2.2. [19] Let {x1,...,x,} be a set of linearly independent vectors in £P (1 < p < o). Then we have

1 9 1
(D) s xall, SV, .ox,) < ()7 flxr, . oxall,
Jfor any permutation (iy,...,in) of (1,...,n).

Note that the value of V (x1,...,x,) may not be invariant under permutation of (xi,...,x,) because g(-,-) may not be symmetry. The above
theorem states that all possible values of V (x;,, ... ,x;,) lie between two multiples of ||x{,...,x,| ,, independent of the permutation.

2.1. The equivalence between two 2-norms

Let us consider Gunawan’s definition and Géhler’s definition of 2-norm on ¢” (1 < p < o), namely:
1
)17:| p

Y X101k %xlk)@k

Xk X1k,
X2ky X2k,

1.l = [zz (abs

ki ky

and

!
llx1, 22l == sup
Iyl <1,j=1,2 %XZkylk %XZkka

Meanwhile, Nur and Gunawan’s 2-norm is given by

2— _ 2— _
Ivilly PE lyielPtsenie)xie y2llp X [yl P~ Isgn(var)xix
_ 3 3
H'xlrxz”g,p -

P—

sup 0 _ 2 _
Iyl <t,j=12] Ivllp p§|ylk|P Usen(yie)xae 2l p%|y2k|p Lsgn(yor)xok

Remark 2.3. Using properties of determinants, the above 2-norm may be rewritten as

Xk Xk,
X2k X2k,

12 _
il = sup ZEHIHy./H,% "y
H

H)‘ijS],j:l, ki ko

ik [P Lsgn (i) 1v1elP Lsgn (yik,) '
o [P Lsgn (yor,)  1var 1P~ sgn (yor,)

For p =2, we observe that

1 Vi Yik || Xtk Xk

Ixi,x2llgp = sup 3 b b

ele Iyilh<t, j=122 ;% Yok Yok || X2k X2k

One may then verify that the three 2-norms ||-,-||,, ||-,-||> and ||, || g2 are identical (see [6, 12]).

For other values of p, we have the following theorem.

Theorem 2.4. For every x1,x; € P (1 < p < o), we have
19 1
20 lxnxall, < llxsxallgp < llenxall, < 27 [xn,x2 -

Proof. For j=1,2, let y; € P with ||y;||, < 1. Take u; = (u;y) with uy = ||y; 2=p /P~ sgn(y ). We observe that u; € 07" with
J Yj Yillp j Jjk Jjk Yillp " 1Yj g0y jk J

uill,y = ||yjll»- As a consequence, we have ||x;,x x1,x2]’, . By using Theorem 1.2, we obtain
Jllp Yjllp q h X2l p < 172; y using Th 1.2 btai

1
ap < Ilvixall, <27 [lx, x|,

[[x1,%2]

Next, assume that {x1,x} is linearly independent. Using the process in (2.1), we obtain the left g-orthogonal set {x’l‘ ,xﬁ}. Then, by Theorem
2.2, we have

1
20 lxxoll, SV 0r,x2) =[x, [1x), -
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x*

For j=1,2,lety; = HX*jH , so that [|y;||, = 1. It follows from the properties of semi-inner product g and matrix determinants that
il
1 * Lk 1 * Lk
shrx) gham) | _ | TEECA) T 8es)
g(yqu) g(Y27x2) HXTIH g(XTWE) HXEIH g(xﬁ,xé)
P P
il 31, =V 31,x2)
1
19
> 20 lx,xll,-
1
By the definition of ||-,-||,,5, we conclude that ||x;,x2||g,p > 25! ||x1,x2]|p. Combining with the previous inequalities, we have
11 1
20 bl < Hlxnsxallgp < nxell, <27 [l x|
Note that if {x;,x;} is a linearly dependent set, then all the 2-norms are equal 0, and so we have the equalities. O
Corollary 2.5. For 1 < p < oo, the three 2-norms ||-,-||g p. ||,- ||}, and ||-,-|| p are pairwise equivalent.
Since (¢7,]|-,+]|») is a 2-Banach space [1], we obtain the following corollary.
Corollary 2.6. For 1 < p < oo, the 2-normed space (£?,||-,-|s,p) is a 2-Banach space.

2.2. The equivalence between two n-norms

All results in above subsection can be extended to n-normed spaces for any n > 2. Suppose that g is a semi-inner product on (X, || - ||).
Consider the following mapping ||-,...,-||[g on X x --- x X:
gyxt) - glmxn)
(X1, -+ 2|, = sup = sup det[g(yj,xi)]- 2.2)
lyilI<1,j=1,...n lyil<1, j=1,...,n
! 8Onsxn) o g(nsxn) !
n
If |ly;|| < 1 for j=1,...,n, then det[g(y;,x;)] < n! T ||xi||. Note that the factor n! comes from the number of terms in the expansion of
i=1
det[g(y;,x;)]. The following fact tells us that [|,...,-||¢ is a finite number.
Fact 2.7. The inequality
n
lxt,- -l < mt T T Il
i=1
holds whenever xy,...,x, € X.
Moreover, we have the following result.
Proposition 2.8. The mapping (2.2) defines an n-norm on X.
Proof. It is obvious that, if {x{,...,x,} is linearly dependent, then we have ||xi,...,x,||g = 0. Conversely, if ||xi,...,x,||¢ = O, then the

rows of the matrix [g(y;,x;)] are linearly dependent for every yq,...,y, € X with |ly;|| <1, j=1,...,n. This happens only if x{,...,x, are
linearly dependent.

Next, by using the properties of supremum and matrix determinants, we obtain the invariance of ||x1, ..., X3, under permutation. Furthermore,
we have [|axy,...xn |l = |@f [[x1,. .. x|, for @ € R.
Finally, for arbitrary xg,x1,...x, € X, we obtain
gOxo+x1) oo g(ynsXo+x1)
X0 +x1,... 2l = - sup ]
ly;lI<1, j=1,....n
' gOxn) o g(vmxm)
gi,x0) - 8(yn,x0) gyxr) - glmxn)
< sup : : + sup ) :
lyill<1,j=1,...n ' ' Iy <1, j=1,..n ' ’
' 8O,xn) o 8(Ynsn) ' gO,xn) o g(Vnyxn)
=[x, xnllg F X105 X0l
This completes the proof. O

The following theorem holds for an inner product space (X, (-, -)).
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Theorem 2.9. If (X,(-,-)) is a real inner product space, then the two n-norms ||-,...,-||g in (2.2) and |-, ...,-||s given by

1

(xr,x1) o {xyxr) |2
||)617 e 7-anA‘ =
<xlaxn> <xn7xn>

are identical.
Proof. On the inner product space X, the functional g(-,-) is identical with the inner product (-, -). Therefore,

<y17x1> <yn7x1>
[[x1, . %0l = sup :

[y;lI<1, j=1,ccom : . :
' <y17-xn> <yn7xn>

Now, applying the generalized Cauchy-Schwarz inequality [21] and Hadamard’s inequality [22], we get

[[x15- - 2l < sup e, xalsllye, - dnlls < flxsxnls
[ylI<1,j=1,...;n
Conversely, suppose that {x|,...,x,} is linearly independent. Using the Gram-Schmidt process, we get the orthogonal set {x’1 yees X}
Because the determinant of the Gram matrix of a linearly independent set being equal to the Gram matrix of the associated orthogonal
set (obtained using Gram-Schmidt process), we have |[x1,...,xn|ls = [|x], ..., % |ls = [|X][| - [|x,]|. For j=1,....n, lety; = Hi{\l , so that
J
|ly;l| = 1. Then, by the properties of the inner product and matrix determinants, we obtain
<y|7xl> <yﬂ7xl> <yl’x,1> <yﬂ7x/1> | <x/17x/1> <x£wx/1>
S R R S e poey v | R
<y17xn> <yﬂ7xn> <ylaxn> <yn7xn> <x17xn> <xmxn>
= [l el =l -l
Thus, [|x1,...,%||g > ||x1, ..., %a||s. Hence we conclude that ||x1,...,x,||g = |1, ..., %,||s whenever {xi,...,x,} is linearly independent.
If {x1,...,x,} is linearly dependent, then ||xy,...,x,[lg = ||x1,...,Xs|ls = 0. O
Remark 2.10. Note that, in an inner product space, we have the well-known Hadamard’s inequality [22]
1o xnllg = llers - xalls < el [,
which is better than that in Fact ??.
For X = (P (1 < p < ), we rewrite the formula in (2.2) as
gb,x1) o glmex)
Hxh'“vxn“g,p:H i sup : .
yill ,<1,j=1,....n
/’ 8Oxn) o 8(nsxn)
Substituting g(y;,x;) = Hyj||f,_p2 |y %P~ 'sgn(y ji)xi and using the properties of determinants, we have
k
2— — 2— _
lIy1llp p§|ylk|P Bsen(yu)xie - |vallp p%|ynk|p Lsgn (v ) xix
H-x17"'7xn|g1p H ‘ Sup N . .
yill ,<1,j=1,...n - _ - _
o Il Zlyael” senuma - lalp™ Zlyael”™ senme)
n n X1k o Xk,
= s (3170 S M § (13 Y €% IR 23)
Iyl <1, =1 =1 ko k=)
Xnk, o Xk,
Corollary 2.11. For p =2, the three n-norms ||-,....-|l2 in (1.1), ||-,...,-||5 in (1.2) and ||-,...,-||g2 in (2.3) are identical.

For p # 2, we have the following generalization of Theorem 2.4.

Theorem 2.12. For every xy,...,x, € (P (1 < p < ), we have

19 1
()7 et Xally < [t Xallgp < Iyl < ()7 1l
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Proof. Foreach j=1,...,n,lety; € {¥ with ||y;||, < 1. Then take u; = (u ;) with u j = HyjH%,*p\yjk|P’1sgn(yjk)‘ We observe that u; € v
with [Ju;]|,» = [|y;llp < 1. As a consequence, we have
ot sl < sl
By using Theorem 1.2, we obtain
1
[x1seesnllgp < 6ty xally, < (D)7 e, xallp-

Conversely, suppose that {x;,...,x,} is a linearly independent set. Using x| = x; and so forth as in (2.1), we obtain the left g -orthogonal set
{x’l‘, X } Then, it follows from Theorem 2.2 that

1
1y
() e Xall, SV xm) =l -
Forj=1,...,n,lety; = H;ju , so that ||y}, = 1. Next, using the properties of matrix determinants and the semi-inner product g, we have
jlip
1 * % 1 * %
gix) o glmx) TT, 8047) T, 80X
g1xn) o g(vnin) PR N - G
= ¥l lxll, = V0rnseoooxn)
1
> (n)r ||x17.,.7x,,\|p,
1
whence ||x1,...,%||gp > (n!)Tf1 [IX15. .., %]/ p. Combining with the previous inequalities, we obtain
1 1
()2 lxn, sl < s xnllgp < el < ()7 x, -l
If {x1,...,x,} is linearly dependent, then all the n-norms vanish and so we have the equalities. O

Corollary 2.13. For 1 < p < o, the three n-norms ||-,...,-|| |; and ||-,...,||, are equivalent.

g’ ”77‘

Knowing that the space (¢7,]|-,...,-||,) is an n-Banach space in [16], we have a generalization of Corollary 2.6 as follows.

Corollary 2.14. For 1 < p < oo, the space (0P, ||-,...,+||q,p) is an n-Banach space.

3. Concluding remarks

In this paper, a new n-norm is defined using a semi-inner product g on ¢ for 1 < p < e, Accordingly, on the space #” (1 < p < =), we
have three different n-norms, namely Gihler’s n-norm |-,...,-||), defined in [8]-[10], Gunawan’s n-norm ||-,..., ||, defined in [16], and
[I-s---,|lg,p defined here in (2.3). In Corollary 2.13, we have just seen that the three n-norms on ¢ are equivalent. As expected, the case
where p = 2 is special. Here, the three n-norms on £ are identical.

In addition to the above three n-norms, we also have a formula for another n-norm using the semi-inner product g on ¢7 (1 < p < o), namely

gi,x) o gvmexr)
X1, -y Xn |2,7,,:H supH .
V1yeeVnll, <1
] r g xn) o 8(nsxn)
. 2— _ .
Since g(y;,xi) = [[v;lp p§|}’jk|p 'sgn(yji)xix, we obtain
o 1~ 2—p
e A . 1 | (IE
[ytseynll, <1 =1
i P sen (i) 0 Dl tsen i) || X o Xk,
5> L B
: " |ynk| |p71 sgn (ynkl) T ‘ynk,, |pilsgn (ynk,,) Xnk, s Xpk,
Note that, for p = 2, we have ||xy,...,xu|lg2 = ||x1,. .. 7xn||§ » For other values of p, we can show that

21
Hxl,~~~7x11||g,p < (I’l’) pHxl""’an;.b’
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Indeed, assuming that x,...,x, are linearly independent, let x7, ..., x; be the vectors obtained from xp,...,x, through the process in (2.1).
By taking y; = ﬁ j=1,...,n), we obtain ||y,...,y,||, = 1. Next, using the properties of matrix determinants and the semi-inner
XiseXnllp
product g, we have
1 * Lk 1 * Lk
— o (x7],x v (X, x
gonx) o gbmx) i, S ) T, S0 )
’ . i 1 ' * % 1 * %
x e x [ —
8(vi,xn) 8(yn,%n) T8 8

(13 s 1

Hx’fv---vx}?”p '
1 .
Since [[x1,..., x|, < (n!)1 P Hx’f“p |[x31l,, by Theorem 2.2 and [|x{, ..., x; [, = [[x1, ..., %nl|p, we obtain
2
HX],...,X,,”;F 2 (n!)p ”xl»“wanp'
Moreover, using Theorem 2.12, we have
21
[ty xnllgp < (D77 lxt, e Xallg -

It follows from this inequality that the convergence of a sequence in [|-, ..., |3 ,
[I-,--.,||p- Unfortunately, up to now, we do not know if the converse is true.

implies the convergence in |[|-,...,"|

¢,p» and hence also in
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