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Abstract

In this paper, we have obtained spinor with two complex components representations of
Involute Evolute curves in E3. Firstly, we have given the spinor equations of Frenet vectors
of two curves which are parameterized by arc-length and have an arbitrary parameter.
Moreover, we have chosen that these curves are Involute Evolute curves and have matched
these curves with different spinors. Then, we have investigated the answer of question
”How are the relationships between the spinors corresponding to the Involute Evolute curves
in E3?”. Finally, we have given an example which crosscheck to theorems throughout this
study.

1. Introduction

The theory of spinors, especially used in applications to electron spin and theory of relativity in quantum mechanics, was expressed by B.
L. van der Waerden in 1929. The introduction of spinors is one of the most difficult topics in quantum mechanics. Even if the spin-1/2 is
considered, some fundamental sections of spinors, such as the effects of rotation on spinors, turn out to be difficult to explain. Spinors appear
to be closely related to the theory of the electromagnetic theory. According to physicists spinors are multilinear transformations. Thanks to
this feature, spinors are mathematical entities somewhat like tensors and allow a more general treatment of the notion of invariance under
rotation and Lorentz boosts. Spinors can also be used without reference to relativity, but they arise naturally in discussions of the Lorentz
group. Moreover, for a spinor it can be say that it is the most basic sort of mathematical object that can be Lorentz-transformed, [1]-[3]. On the
other hand, the basic knowledge of spinor theory is based on earlier years, indeed, if we consider the relationship between spinors and Euler’s
parameters it is date back to 1776. Spinors are vectorial objects and there is no their multilinear features for mathematicians. Also, spinors
have one-index. In discussing vectors and tensors there are two ways in which we can proceed; the geometrical and analytical. To use the geo-
metrical approach, we describe each kind of quantity in terms of its magnitudes and directions; in the analytical treatment, we use components.

Spinors were first studied by Elie Cartan in a geometrical sense. Cartan was one of the founders of Lie group theory which is one of the most
important topics of mathematics and which has many physical applications. So, Cartan’s study is a very impressive reference in terms of the
geometry of the spinors since this gives the spinor representation of the basic geometric definitions [1]. In geometrical meaning, another
study was made by Vivarelli. In that study, Vivarelli established a one-to-one linear relationship between the quaternions and spinors. In
addition, using the relationship between the rotations in quaternions and three-dimensional Euclidean space, Vivarelli actually obtained the
spinor representation of the rotations in Euclidean space, [4]. Castillo, on the other hand, examined the spinor formulation of the curve
theory, one of the important subjects of differential geometry. In that study, Castillo gave a spinor corresponding to a mutually orthogonal
vector triads in three-dimensional Euclidean space and thus obtained a spinor representation of the Frenet frame and curvatures of a curve,
[5]. Based on that study, Kişi and Tosun obtained the spinor formulation of the Darboux frame on a directed surface in three-dimensional
Euclidean space, [6]. Similarly, in [7], the spinor Bishop equations of the curves in E3 have been expressed.

Ketenci et. al investigated the answer of question ”How does a spinor correspond to a mutually orthogonal vector triad in three dimensional
Minkowski space E3

1?”. Thus, they introduced hyperbolic spinors. Based on this, they matched the hyperbolic spinors which have hyperbolic
components up with Frenet frame of a curve in Minkowski space E3

1, [8]. Then, Erişir et. al obtained the spinor representation of the Bishop
frame, an alternative frame, of a curve in the three-dimensional Minkowski space, and the spinor formulation of the relationship between
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Frenet frame and Bishop frame, [9]. Also, the Darboux frame on the oriented surface in E3
1 was obtained by the aid of hyperbolic spinors,

[10]. Moreover, in [11] Tarakçıoǧlu et. al considered the Vivarelli’s study and they gave a different approach to the relationship between
the split quaternions and rotations in Minkowski space R3

1. In addition, they obtained an automorphism of the split quaternion algebra H’
corresponding to a rotation in R3

1. Then, they gave the relationship between the hyperbolic spinors and rotations in R3
1.

In this paper, we have studied on spinors with two complex components and we have given spinor representations of Involute Evolute curves
in E3. Firstly, we have introduced spinor representation of Frenet vectors of any unit-speed curve in three dimensional Euclidean space
E3. Then, we have obtained spinor equations of the curve which is not parameterized by arc-length and considered the Involute Evolute
curves corresponding the different spinors. Thus, we have investigated the answer of question ”How are the relations between the spinors
corresponding to the Involute Evolute curves in E3?”. Finally, we have given an example.

2. Preliminaries

2.1. Involute Evolute curves in E3

It is well known that if a curve is differentiable at the each point of an open interval then a set of mutually orthogonal unit vectors can be
constructed. These vectors are called tangent T, normal N and binormal B unit vectors or the Serret-Frenet frame, collectively. So, let us
consider that the regular curve (α) which is the differentiable function so that α : I→ E3, (I ⊆ R) has the arbitrary parameter t. Moreover,
for ∀t ∈ I the Frenet vectors on the point α(t) of the curve (α) are given by {T(t),N(t),B(t)}. So, these Frenet vectors are obtained by the
following equations

T = 1
‖α ′‖α ′,

N = B×T,
B = 1

‖α ′×α ′′‖ (α
′×α ′′)

where ” ′ ” is the derivative with respect to arbitrary parameter t, κ and τ are the curvature and torsion of this curve (α), [12].

Moreover, the Frenet derivative formulas of this curve (α) are given by

T′ = ‖α ′‖κN,
N′ = ‖α ′‖(−κT+ τB) ,
B′ =−‖α ′‖τN,

(2.1)

[12].

Now, we know that if there is equation ‖α ′ (s)‖= 1 for ∀s ∈ I on the point α(s) of the curve α : I→ E3, (I ⊆ R), the curve (α) is called as
the curve parameterized by arc-length parameter s. So, the Frenet vectors of the curve (α) parameterized by arc-length parameter can be
obtained by

T = α ′,
N = 1

‖α ′′‖α ′′,

B = T×N
(2.2)

where ” ′ ” is the derivative with respect to arc-length parameter s. Moreover, the Frenet formulas of this curve are as

T′ = κN,
N′ =−κT+ τB,
B′ =−τN,

(2.3)

[12].

The Involute Evolute curves in E3 are well known and one of the most studied curve pairs in elementary differential geometry. So, for the
Involute Evolute curves, the following definition and theorems can be given.

Definition 2.1. Let the curve α : I→ E3 be parameterized by arc-length parameter and the curve β : I→ E3 be any curve which has an
arbitrary parameter. Moreover, the Frenet frames of these curves (α) and (β ) are considered that {T,N,B} and {T∗,N∗,B∗}, respectively.
So, if there is equation

〈T, T∗〉= 0,

then the curve (β ) is called the involute of the curve (α) and the curve (α) is called the evolute of the curve (β ), [12].

Theorem 2.2. Let the curve β ,α : I→ E3 be consider Involute Evolute curves, respectively. Then, the distance between mutual points of
these curves is

d(α(s), β (s)) = |c− s| .

So, it can be written

β (s) = α(s)+(c− s)T(s), (2.4)

[12].
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Theorem 2.3. Let the Frenet frames of the Involute Evolute curves (β ,α) be {T∗,N∗,B∗} and {T,N,B}, respectively. So, the relationship
between these Frenet frames is

T∗ = N,

N∗ = 1√
κ2+τ2 (−κT+ τB,)

B∗ = 1√
κ2+τ2 (τT+κB,)

(2.5)

[12].

Theorem 2.4. Let the Frenet curvatures of the Involute Evolute curves (β ,α) be κ∗,τ∗ and κ,τ , respectively. So, the relationship between
these Frenet curvatures is

κ∗ =
√

κ2+τ2

|(c−s)κ|
τ∗ = κτ ′−κ ′τ

|(c−s)κ|(κ2+τ2)

[12].

2.2. Spinors

In this section, spinors introduced by Cartan [1], which is a basic study in geometric sense, are given. Afterwards, the spinors in the study
given by Del Castillo and Barrales are mentioned, [5].

Consider that x = (x1, x2, x3) ∈ C3 is the isotropic vector and C3 is the three-dimensional complex vector space. So, we obtain
x1

2 + x2
2 + x3

2 = 0. The set of isotropic vectors in the vector space C3 forms a two-dimensional surface in the space C2. If this
two-dimensional surface is parameterized by ξ1 and ξ2 coordinates, then x1 = ξ1

2−ξ2
2, x2 = i(ξ1

2 +ξ2
2), x3 =−2ξ1ξ2 is obtained. It is

seen from the solution of this equation that ξ1 =±
√

x1−ix2
2 , ξ2 =±

√
−x1−ix2

2 . It is seen that; in the complex vector space C3, each isotropic

vector corresponds to two vectors, (ξ1, ξ2) and (−ξ1, −ξ2) in the space C2. Conversely; both vectors so given in space C2 correspond to
the same isotropic vector x. Cartan expressed that the two-dimensional complex vectors ξ = (ξ1, ξ2) described in this way are called as
spinors. In addition, Cartan emphasized that spinors are not only two-dimensional complex vectors, but also represent a three-dimensional
complex isotropic vectors, [1].

Consider the SO(3), the group of rotations around the origin in the three-dimensional real vector space R3, and the SU (2), the group
of 2x2 dimensional unitary matrices. As is known, the SO(3) group is homomorphic to the SU (2) group, [5, 13, 14]. By means of this
homomorphism and spinors introduced by Cartan, the isotropic vector a+ ib is matched with spinor

ξ =

(
ξ1
ξ2

)
where a, b ∈ R3. So, we have x1 = ξ1

2−ξ2
2, x2 = i(ξ1

2 +ξ2
2) and x3 =−2ξ1ξ2 where a+ ib = (x1, x2, x3) ∈ C3, [1, 5]. As it is known,

Pauli matrices form a basis for 2x2-dimensional Hermitian and unitary matrices. Using the Pauli matrices and the matrix C =

(
0 1
−1 0

)
,

the matrices σ are generated as σ1 =

(
1 0
0 −1

)
, σ2 =

(
i 0
0 i

)
and σ3 =

(
0 −1
−1 0

)
, [5, 15]. On the other hand, the mate ξ̂ of

the spinor ξ is obtained as

ξ̂ =−
(

0 1
−1 0

)
ξ =−

(
0 1
−1 0

)(
ξ1
ξ2

)
=

(
−ξ2
ξ1

)
.

Throughout this information, we obtain that

a+ ib = ξ tσξ ,

c =−ξ̂ tσξ

where a+ ib is the isotropic vector in the space C3 and c ∈ R3, [5].

When necessary operations are considered, it is seen that the vectors a, b and c are equal in length and these vectors are mutually orthogonal,
[5]. Moreover, the following proposition can be given.

Proposition 2.5. Let two arbitrary spinors be ξ and φ . Then, the following statements are hold;

i) φ tσξ =−φ̂ tσξ̂

ii) ̂λφ +µξ = λ φ̂ +µξ̂

iii) ˆ̂ξ =−ξ

iv) φ tσξ = ξ tσφ

where λ , µ ∈ C, [5].



Fundamental Journal of Mathematics and Applications 151

Now, let a curve parameterized by arc-length be α : I→ E3, (I ⊆ R). So, ‖α ′ (s)‖= 1 where s is the arc-length parameter of the curve (α).
Moreover, we consider that the Frenet vectors of this curve are {N,B,T} and the spinor ξ corresponds to the Frenet vectors {N,B,T}. Thus,
the following equations

N+ iB = ξ tσξ = (ξ1
2−ξ2

2, i(ξ1
2 +ξ2

2), −2ξ1ξ2),

T =−ξ̂ tσξ = (ξ1ξ2 +ξ1ξ2, i(ξ1ξ2−ξ1ξ2), |ξ1|2−|ξ2|2)
(2.6)

can be written where ξ
t
ξ = 1 since these vectors are mutually orthogonal, [5]. Moreover, the following theorem can be given.

Theorem 2.6. If the spinor ξ with two complex components represents the triad {N,B,T} of a curve parameterized by its arc-length s the
Frenet equations are equivalent to the single spinor equation

dξ

ds
=

1
2
(−iτξ +κξ̂ )

where κ and τ denote the curvature and torsion of the curve, respectively, [5].

3. Main theorems and proofs

In this section, first of all, we have expressed that the spinor representations of each Frenet vectors {N,B,T} of a unit-speed curve (α),
separately. In addition that, we have considered that the curve (β ) which has not arc-length parameter and a different spinor is corresponded
to the Frenet vectors {N∗,B∗,T∗} of this curve. Moreover, we have given the spinor equations of this curve. Then, we have regarded that
the curves (β ,α) are Involute Evolute curves and obtained the relationship between spinors corresponding to these curves with theorems.
Finally, we have given an example.

Let α : I→ E3 be arbitrary unit-speed curve and the Frenet vectors of this curve be {N,B,T}. So, the following theorem can be given.

Theorem 3.1. Let the Frenet vectors of the unit-speed curve α : I→ E3 be {N,B,T}. We assume that the spinor ξ is corresponded to this
curve (α), So, the spinor equations of these Frenet vectors are

T =−ξ̂ tσξ ,

N = 1
2

(
ξ tσξ − ξ̂ tσξ̂

)
,

B =− i
2

(
ξ tσξ + ξ̂ tσξ̂

)
.

Proof. Let the spinor ξ be correspond to the Frenet curve {N,B,T} of unit-speed curve (α). Then, considering the equations (2.2) and (2.6)
for the tangent vector on the point α (s) of (α) the following equation

T = α
′ =−ξ̂

t
σξ (3.1)

can be written. If we calculate the derivative of the equation (3.1) and make necessary arrangement, we obtain that

α
′′ =

κ

2

(
ξ

t
σξ − ξ̂

t
σξ̂

)
.

On the other hand, let us consider the equation (2.2), So, we obtain that the spinor equation of the normal vector N of the curve (α) is obtain
that

N =
1
2

(
ξ

t
σξ − ξ̂

t
σξ̂

)
. (3.2)

Similarly, using the equations (2.3), (3.1) and (3.2), we have

N′ =
1
2

[
−iτ

(
ξ

t
σξ + ξ̂

t
σξ̂

)
+2κξ̂

t
σξ

]
and

1
2

[
−iτ

(
ξ

t
σξ + ξ̂

t
σξ̂

)
+2κξ̂

t
σξ

]
=−κ

(
−ξ̂

t
σξ

)
+ τB.

And finally, the spinor equation of the binormal tangent of the curve (α) is

B =− i
2

(
ξ

t
σξ + ξ̂

t
σξ̂

)
. (3.3)

So, the proof ends.

Indeed, if we consider the first equality in the equation (2.6), we see that N = Re(ξ tσξ ) and B = Im(ξ tσξ ). So, considering complex
numbers we obtain that

N = 1
2

(
ξ tσξ +ξ tσξ

)
,

B =− i
2

(
ξ tσξ −ξ tσξ

)
.
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Finally, using the Proposition 2.5, we reach the equations (3.2) and (3.3).

Moreover, the spinor equations of these vectors can be written in terms of components as follows since they will be used operations after that

T =
(

ξ1ξ2 +ξ1ξ2, i(ξ1ξ2−ξ1ξ2), |ξ1|2−|ξ2|2
)
,

N = 1
2

(
ξ1

2−ξ2
2−ξ2

2
+ξ1

2
, i
(

ξ1
2 +ξ2

2−ξ1
2−ξ2

2)
,−2ξ1ξ2−2ξ1ξ2

)
,

B =− i
2

(
ξ1

2−ξ2
2 +ξ2

2−ξ1
2
, i
(

ξ1
2 +ξ2

2 +ξ1
2
+ξ2

2)
,−2ξ1ξ2 +2ξ1ξ2

)
.

(3.4)

On the other hand, let us take any curve (β ) which is not parameterized by arc length. Moreover, let the Frenet vectors of this curve be
{N∗, B∗,T∗} and the different spinor corresponding the curve (β ) be φ . So, similar to the equation (2.6), we can write

N∗+ iB∗ = φ tσφ ,

T∗ =−φ̂ tσφ .

So, the spinor equations of this curve (β ) can be written by components as

T∗ = (φ1φ2 +φ1φ2, i(φ1φ2−φ1φ2), |φ1|2−|φ2|2),
N∗ = 1

2

(
φ1

2−φ2
2 +φ1

2−φ2
2
, i
(

φ1
2 +φ2

2−φ1
2−φ2

2
)
,−2

(
φ1φ2 +φ1φ2

))
,

B∗ =− i
2

(
φ1

2−φ2
2 +φ2

2−φ1
2
, i
(

φ1
2 +φ2

2 +φ1
2
+φ2

2
)
,−2

(
φ1φ2−φ1φ2

)) (3.5)

for the curve (β ). In addition that, the equation (3.5) provides the equation (2.1). So, we can give the following theorem.

Theorem 3.2. Let the Frenet vectors of the curve (β ) which is not parameterized by arc length be {N∗, B∗,T∗} and the spinor corresponding
to this curve be φ . So, the Frenet equation of this curve in terms of a single spinor equation is written by

dφ

ds
=
‖β ′‖

2
(−iτ∗φ +κ

∗
φ̂).

Proof. Let the Frenet vectors {N∗, B∗,T∗} of the curve (β ) be correspond to the spinor φ . We know that
{

φ , φ̂
}

is the basis for the spinor
with two complex components. So, it can be written

dφ

ds
= f φ +gφ̂ (3.6)

where the functions f and g are arbitrary, complex-valued functions. On the other hand, using the equations (2.1), (3.5) and (3.6) we obtain
that

∥∥β
′∥∥(−κ

∗T∗− iτ∗ (N∗+ iB∗)) = 2 f (N∗+ iB∗)−2gT∗.

So, we have

f =
−iτ∗ ‖β ′‖

2
, g =

κ∗ ‖β ′‖
2

. (3.7)

Finally, if we consider the equations (3.6) and (3.7), we obtain that the Frenet vectors of the curve (β ) in terms of a single spinor equation as

dφ

ds
=
‖β ′‖

2
(−iτ∗φ +κ

∗
φ̂)

where κ∗ and τ∗ are curvature and torsion of curve (β ).

Now, we express the spinor representation of Involute Evolute curves. Let us consider the curves α, β : I→ E3 and the Frenet vectors
{T, N, B} and {T∗, N∗, B∗} of the curves (α) and (β ), respectively. Moreover, the curves (β , α) are considered that Involute Evolute
curves and the spinors φ and ξ are corresponded to the Involute Evolute curves (β , α), respectively. So, we can give the following theorem.

Theorem 3.3. Let the curves β ,α : I→E3 be Involute Evolute curves which have the Frenet vectors {N∗, B∗,T∗} and {N,B,T}, respectively.
Moreover, the spinors corresponding to the Frenet vectors of these curves (α) and (β ) are considered as ξ and φ , respectively. So, the
relationship between the spinor equations of Involute Evolute curves is

φξ
t
φ =Cφφ

t
ξ̂

where C =

(
0 1
−1 0

)
.

Proof. We consider that the curves α, β : I→ E3 are Involute Evolute curves which have the Frenet vectors {N,B,T} and {N∗, B∗,T∗},
respectively. So, we know that relationship between the tangent vectors of these curves is 〈T, T∗〉= 0. Thus, using this relation and the first
equations in the equations (3.4), (3.5), we obtain(

ξ1ξ2 +ξ1ξ2

)(
φ1φ2 +φ1φ2

)
− (ξ1ξ2−ξ1ξ2)(φ1φ2−φ1φ2)+

(
|ξ1|2−|ξ2|2

)(
|φ1|2−|φ2|2

)
= 0
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and

2ξ1ξ2φ1φ2 +2ξ1ξ2φ1φ2 + |ξ1|2|φ1|2−|ξ1|2|φ2|2−|ξ2|2|φ1|2 + |ξ2|2|φ2|2 = 0. (3.8)

Also, if the equation (3.8) is written as matrix product, the following equation can be written

(
ξ1 ξ2

)( φ1
φ2

)(
ξ1 ξ2

)( φ1
φ2

)
+
(

ξ1 ξ2
)( φ2
−φ1

)(
φ1 φ2

)( ξ2
−ξ1

)
= 0

where the spinors ξ and φ are written as column matrix like these ξ =

(
ξ1
ξ2

)
and φ =

(
φ1
φ2

)
. Finally, we have

φξ
t
φ =Cφφ

t
ξ̂

where C =

(
0 1
−1 0

)
.

So, we obtain the spinor equations of Involute Evolute curves. After that, we will call the spinors corresponding to Involute Evolute curves as
Involute Evolute spinors. The other relationship between Involute Evolute spinors can be given following theorem.

Theorem 3.4. Let the curves β ,α : I→ E3 be Involute Evolute curves and the spinors corresponding to the Frenet vectors of these curves
are considered as φ and ξ , respectively. So, the relationship between Involute Evolute spinors is

ξ
t
φξ

t
φ =

1
2
.

Proof. We know that for the spinors ξ and φ there is relationship |ξ1|2+ |ξ2|2 = 1 and |φ1|2+ |φ2|2 = 1 since the Frenet vectors corresponding
to these spinors are unit vectors. So, we can write(

|ξ1|2 + |ξ2|2
)(
|φ1|2 + |φ2|2

)
= 1.

So, we have

|ξ1|2|φ1|2 + |ξ1|2|φ2|2 + |ξ2|2|φ1|2 + |ξ2|2|φ2|2 = 1. (3.9)

If we use the equations (3.8) and (3.9), we obtain(
ξ1φ1 +ξ2φ2

)(
ξ2φ2 +ξ1φ1

)
=

1
2
.

Moreover, if the last equation is written by matrix product by the help of ξ =

(
ξ1
ξ2

)
,φ =

(
φ1
φ2

)
, the equation can be obtain

ξ
t
φξ

t
φ =

1
2
.

Now, the expression of the Involute Evolute spinors in terms of each other can be written as follows.

Theorem 3.5. Let the spinors φ and ξ be Involute Evolute spinors. So, the expression of spinor φ in terms of the spinor ξ is

φ1
2 = κ−iτ

2
√

κ2+τ2

(
ξ1− ξ̄2

)2

φ2
2 = κ−iτ

2
√

κ2+τ2

(
ξ̄1 +ξ2

)2 .

Proof. We consider that the equations (3.4) and (3.5) are written in the second equation of (2.5). So, we find the equations

1
2

(
φ1

2−φ2
2− φ̄

2
2 + φ̄

2
1

)
=

1√
κ2 + τ2

(
−κ

(
ξ1ξ2 +ξ1ξ2

)
− i

τ

2

(
ξ1

2−ξ2
2 +ξ2

2−ξ1
2))

, (3.10)

1
2

(
φ1

2 +φ2
2− φ̄

2
1 − φ̄

2
2

)
=

1√
κ2 + τ2

(
−κ

(
ξ1ξ2−ξ1ξ2

)
− i

τ

2

(
ξ1

2 +ξ2
2 +ξ1

2
+ξ2

2))
(3.11)

and

−φ1φ2− φ̄1φ̄2 =
1√

κ2 + τ2

(
−κ

(
ξ1ξ̄1−ξ2ξ2

)
+ iτ

(
ξ1ξ2−ξ1ξ2

))
. (3.12)

Similarly, if the equations (3.4) and (3.5) are written in the third equation of (2.5), we find that

− i
2

(
φ1

2−φ2
2 + φ̄

2
2 − φ̄

2
1

)
=

1√
κ2 + τ2

(
τ

(
ξ1ξ2 +ξ1ξ2

)
− i

κ

2

(
ξ1

2−ξ2
2 +ξ2

2−ξ1
2))

, (3.13)
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− i
2

(
φ1

2 +φ2
2 + φ̄

2
1 + φ̄

2
2

)
=

1√
κ2 + τ2

(
τ

(
ξ1ξ2−ξ1ξ2

)
− i

κ

2

(
ξ1

2 +ξ2
2 +ξ1

2
+ξ2

2))
(3.14)

and

i
(
φ1φ2− φ̄1φ̄2

)
=

1√
κ2 + τ2

(
τ

(
ξ1ξ̄1−ξ2ξ2

)
− iκ

(
−ξ1ξ2 +ξ1ξ2

))
. (3.15)

If we consider the equations (3.10) and (3.13), we obtain

φ1
2−φ2

2 =
κ− iτ

2
√

κ2 + τ2

((
ξ1−ξ2

)2
−
(

ξ1 +ξ2

)2
)
.

Similarly, from the equations (3.11) and (3.14), we have

φ1
2 +φ2

2 =
κ− iτ

2
√

κ2 + τ2

((
ξ1−ξ2

)2
+
(

ξ1 +ξ2

)2
)
.

Finally, from the equations (3.12) and (3.15), we get

φ1φ2 =
κ− iτ

2
√

κ2 + τ2

(
ξ1−ξ2

)(
ξ1 +ξ2

)
.

So, we can write

φ1
2 = κ−iτ

2
√

κ2+τ2

(
ξ1− ξ̄2

)2
,

φ2
2 = κ−iτ

2
√

κ2+τ2

(
ξ̄1 +ξ2

)2
.

Now, we give an example.

Example 3.6. Let the unit-speed curve α : I→ E3 be α (s) =
(

1√
2

coss, 1√
2

sins, 1√
2

s
)

. So, if we use the equation (2.2), for the Frenet

vectors {T,N,B} of the curve (α), we calculate as

T(s) =
(
− 1√

2
sins, 1√

2
coss, 1√

2

)
,

N(s) = (−coss,−sins, 0) ,

B(s) =
(

1√
2

sins, − 1√
2

coss, 1√
2

)
.

(3.16)

Moreover, from the equation (2.3) we obtain the curvature and torsion of this curve as

κ =
1√
2
, τ =

1√
2
.

Now, we consider that the Frenet vectors {N,B,T} are corresponded to the spinor ξ . So, from the equations (3.4) and (3.16), we get

ξ1 =
1
2

√
2+
√

2
2
(√

1− coss+ i
√

1+ coss
)
,

ξ2 =− 1
2

√
2+
√

2
2
(√

1+ coss+ i
√

1− coss
)
,

In addition that, from Theorem 2.6, we have dξ

ds =
√

2
4

(
−iξ + ξ̂

)
.

Now, we regard that the involute curve of unit-speed curve (α) is (β ) which has not arc-length parameter. So, if we look the equation (2.4),
then the curve (β ) is written by

β (s) =
1√
2
(coss− (c− s)sins,sins+(c− s) coss,c) .

Then, we obtain the Frenet vectors and curvature, torsion of this curve

T∗ (s) = (−coss,−sins,0) ,
N∗ (s) = (sins,−coss,0) ,
B∗ (s) = (0,0,1)

and

κ
∗ =

√
2

(c− s)
, τ

∗ = 0.

Finally, we get the spinor corresponded to involute curves

φ1 =
1
2
(√

1+ sins+ i
√

1− sins
)
,

φ2 =− 1
2
(√

1− sins+ i
√

1+ sins
)
.

So, the Frenet equation of this curve in terms of a single spinor equation is written by dφ

ds = 1
2 φ̂ .
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