

RESEARCH ARTICLE

Generalization of functions of bounded Mocanu variation with respect to 2k-symmetric conjugate points

Rasoul Aghalary*, Jafar Kazemzadeh

Department of Mathematics, Faculty of Science, Urmia University, Urmia, Iran

Abstract

In this paper, by using convolution we generalize the class of analytic functions of bounded Mocanu variation with respect to 2k-symmetric conjugate points and study some of its basic properties. Our results generalize many research works in the literature.

Mathematics Subject Classification (2010). 30C45, 30C80

Keywords. bounded radius rotation, bounded boundary rotation, bounded Mocanu variation, 2k-symmetric conjugate points

1. Introduction

Let \mathcal{A} be the class of analytic functions f defined on the unit disc $E = \{z \in \mathbb{C} : |z| < 1\}$, normalized by f(0) = f'(0) - 1 = 0 and of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n, \qquad (z \in E).$$
 (1.1)

Also, suppose that S, K, S^* , and C denote the subclasses of \mathcal{A} which are univalent, close-toconvex, starlike, and convex in E respectively. We denote by $P_m(\gamma)$ the class of functions p(z) analytic in the unit disc E satisfying the properties p(0) = 1 and, for $z = re^{i\theta}, m \geq 2$,

$$\int_{0}^{2\pi} \left| Re \frac{p(z) - \gamma}{1 - \gamma} \right| d\theta \le m\pi, \qquad (0 \le \gamma < 1).$$
(1.2)

The class $P_m(\gamma)$ for $\gamma = 0$ and $0 \le \gamma < 1$ has been introduced and investigated by Pinchuk [13], and Padmanabhan and Parvatham [12] (see also [11]), respectively. We note that $P_m(0) = P_m$, and $P_2(\gamma) = P(\gamma)$ is the class of analytic function with positive real part greater than γ . For m = 2 and $\gamma = 0$, we have the class P of functions with positive real part.

We can rewrite (1.2) as

$$p(z) = \frac{1}{2} \int_0^{2\pi} \frac{1 + (1 - 2\gamma)ze^{-it}}{1 - ze^{-it}} d\mu(t),$$

^{*}Corresponding Author.

Email addresses: raghalary@yahoo.com, r.aghalary@urmia.ac.ir (R. Aghalary),

j.kazemzadeh.teacher@gmail.com; j.kazemzadeh@urmia.ac.ir (J. Kazemzadeh)

Received: 03.10.2018; Accepted: 30.08.2019

where $\mu(t)$ is a function with bounded variation on $[0, 2\pi]$ such that

$$\int_{0}^{2\pi} d\mu(t) = 2$$
 and $\int_{0}^{2\pi} |d\mu(t)| \le m$.

Also, for $p \in P_m(\gamma)$, we can write from (1.2)

$$p(z) = \left(\frac{m}{4} + \frac{1}{2}\right)p_1(z) - \left(\frac{m}{4} - \frac{1}{2}\right)p_2(z), \qquad p_1, p_2 \in P_2(\gamma), z \in E.$$

It is known [7] that $P_m(\gamma)$ is a convex set. Also $p \in P_m(\gamma)$ is in $P_2(\gamma) = P(\gamma)$ for $|z| < r_1$, where

$$r_1 = \frac{1}{2}[m - \sqrt{m^2 - 4}].$$

We say that $f \in \mathcal{A}$ is subordinate to $F \in \mathcal{A}$, and we write $f(z) \prec F(z)$ (or simply $f \prec F$), if there exists a function

 $\omega\in\Omega:=\{\omega\in\mathcal{A}:|\omega(z)|\leq |z|\quad (z\in E)\},$

such that $f(z) = F(\omega(z))$. In particular, if F is univalent in E, we have the following equivalence

$$f(z) \prec F(z) \quad \iff \quad [f(0) = F(0) \land f(E) \subset F(E)].$$

Recently Mocanu introduced the class $\mathcal{M}(\alpha)$ of functions $f \in \mathcal{A}$ such that $\frac{f(z)f'(z)}{z} \neq 0$ for $z \in E$ and

$$Re\left\{\alpha\frac{zf'(z)}{f(z)} + (1-\alpha)\frac{(zf'(z))'}{f'(z)}\right\} > 0 \qquad (z \in E)$$

In particular, $S^* := \mathcal{M}(1), K := \mathcal{M}(0)$ are the well-known classes of starlike functions and convex functions, respectively. Also, Wang et al. [17] (see also [18]) introduced the class $\mathcal{K}_{sc}^{(k)}(\alpha, \varphi)$ of functions $f \in \mathcal{A}$ such that

$$\alpha \frac{zf'(z)}{f_{2k}(z)} + (1-\alpha)\frac{(zf'(z))'}{f'_{2k}(z)} \prec \varphi(z), \qquad (z \in E),$$

where $\varphi(z) \in P$, $k \geq 2$ is a fixed positive integer and $f_{2k}(z)$ is defined by the following equality

$$f_{2k}(z) = \frac{1}{2k} \sum_{\nu=0}^{k-1} [\varepsilon^{-\nu} f(\varepsilon^{\nu} z) + \varepsilon^{\nu} \overline{f(\varepsilon^{\nu} \overline{z})}], \qquad (\varepsilon = \exp(\frac{2\pi i}{k})).$$

Also, Noor et al. [5] (see also, [1], [6], [7], [8], [9]) introduced and investigated class $R_s^k(\gamma)$ of analytic functions of bounded radius rotation of order γ with respect to symmetrical points if and only if

$$\frac{2zf'(z)}{f(z) - f(-z)} \in P_k(z), \qquad (z \in E).$$

Motivated by the aforementioned classes, and [1], [2], [3], [15], [16], we now introduce and investigate the following classes $\mathcal{M}_{\lambda,\mu}^k(\Phi,\xi,h)$ and $\mathcal{CM}_{\lambda,\mu}^k(\Phi,\xi,\mathbf{h})$ associated with functions of bounded variation with respect to 2k- symmetric conjugate points.

Let h be convex and symmetric with respect to the real axis with $h(0) = 1, \mu \ge 1$, and define

$$\mathcal{K}_{\mu}(h) := \{ \mu q_1 + (1 - \mu)q_2 : q_1, q_2 \prec h \}.$$

We note that the class $\mathcal{P} := \mathcal{K}_1\left(\frac{1+z}{1-z}\right)$ is the well-known class of Carathéodory functions.

It is easy to verify that

(i) $\mathfrak{K}_{\mu}(h)$ is convex set,

(ii) if $1 \le \mu \le \lambda$ then $\mathcal{K}_{\mu}(h) \subset \mathcal{K}_{\lambda}(h)$,

(iii) Let $h'(0) \neq 0$ and $f(z) = 1 + \sum_{n=1}^{\infty} a_n z^n \in \mathcal{K}_{\mu}(h)$ then for $z = re^{i\theta}$,

$$|a_n| \le (2\mu - 1)|h'(0)|, \qquad (n \ge 1), \tag{1.3}$$

$$\frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^2 d\theta \le \frac{1 + [(2\mu - 1)^2 |h'(0)|^2 - 1]r^2}{1 - r^2},\tag{1.4}$$

$$\frac{1}{2\pi} \int_0^{2\pi} |f'(re^{i\theta})| d\theta \le \frac{(2\mu - 1)|h'(0)|}{(1 - r)^2}.$$
(1.5)

Throughout this paper we assume that $\phi, \varphi, \xi \in \mathcal{A}$ and ϕ, φ, ξ are symmetric with respect to the real axis.

Definition 1.1. Let $\lambda \in R$ and $\Phi = (\phi, \varphi)$. We denote by $\mathcal{M}^k_{\lambda,\mu}(\Phi, \xi, h)$ the class of functions $f \in \mathcal{A}$ such that

$$(1-\lambda)\frac{(\xi*\phi)*f}{(\xi*\varphi)*f_{2k}} + \lambda\frac{\phi*f}{\varphi*f_{2k}} \in \mathcal{K}_{\mu}(h),$$
(1.6)

where * denotes the Hadamard product (or convolution) and $f_{2k}(z)$ is defined by

$$f_{2k}(z) = \frac{1}{2k} \sum_{\nu=0}^{k-1} [\varepsilon^{-\nu} f(\varepsilon^{\nu} z) + \varepsilon^{\nu} \overline{f(\varepsilon^{\nu} \overline{z})}], \qquad (\varepsilon = \exp(\frac{2\pi i}{k})).$$

Moreover, let us define

$$\begin{split} &\mathcal{M}^k_{\lambda,\mu}(\Phi,h) := \mathcal{M}^k_{\lambda,\mu}(\Phi,\xi_1,h), \qquad \mathcal{M}^k_{\lambda,\mu}(\varphi,h) := \mathcal{M}^k_{\lambda,\mu}((\varphi_1,\varphi_2),h), \\ &\mathcal{W}^k_{\mu}(\Phi,h) := \mathcal{M}^k_{1,\mu}(\Phi,z,h), \qquad \mathcal{W}^k_{\mu}(\varphi,h) := \mathcal{W}^k_{\mu}((z\varphi',\varphi),h), \end{split}$$

where

$$\xi_1(z) = z + \sum_{n=2}^{\infty} \frac{z^n}{n}, \qquad \varphi_1 = z\varphi'(z), \qquad \varphi_2 = z\varphi'_1, \qquad (z \in E).$$
 (1.7)

Definition 1.2. Let $\mathbf{m} = (\mu_1, \mu_2)$ with $\mu_1, \mu_2 \ge 1$ and let h_1, h_2 be convex analytic functions that are symmetric with respect to the real axis so that $h_1(0) = h_2(0) = 1$. Suppose that $\mathbf{h} = (h_1, h_2)$. We say that a function $f \in \mathcal{A}$ belongs to the class $\mathcal{CM}^k_{\lambda,\mu}(\Phi, \xi, \mathbf{h})$ if there exists $g \in \mathcal{W}^k_{\mu_2}(\varphi, h_2)$ such that

$$(1-\lambda)\frac{(\xi*\phi)*f}{(\xi*\varphi)*g_{2k}} + \lambda\frac{\phi*f}{\varphi*g_{2k}} \in \mathcal{K}_{\mu_1}(h_1),$$
(1.8)

where $g_{2k}(z)$ is defined by

$$g_{2k}(z) = \frac{1}{2k} \sum_{\nu=0}^{k-1} [\varepsilon^{-\nu} g(\varepsilon^{\nu} z) + \varepsilon^{\nu} \overline{g(\varepsilon^{\nu} \overline{z})}], \qquad (\varepsilon = \exp(\frac{2\pi i}{k})).$$

Moreover, suppose that

$$\begin{split} & \mathbb{C}\mathcal{M}^k_{\lambda,\mu}(\Phi,\mathbf{h}) := \mathbb{C}\mathcal{M}^k_{\lambda,\mu}(\Phi,\xi_1,\mathbf{h}), \qquad \mathbb{C}\mathcal{M}^k_{\lambda,\mu}(\varphi,\mathbf{h}) := \mathbb{C}\mathcal{M}^k_{\lambda,\mu}(((\varphi_2,\varphi_1),\mathbf{h})), \\ & \mathbb{C}\mathcal{W}^k_{\mu}(\Phi,h) := \mathbb{C}\mathcal{M}^k_{1,\mu}(\Phi,z,h), \qquad \mathbb{C}\mathcal{W}^k_{\mu}(\varphi,\mathbf{h}) := \mathbb{C}\mathcal{M}^k_{1,\mu}((z\varphi',\varphi),\mathbf{h}), \end{split}$$

where ξ_1, φ_1 and φ_2 are defined by (1.7).

These general classes of functions reduce to the well-known classes by judicious choices of the parameters. In particular, the class $\mathcal{M}^k_{\lambda,\mu}(\varphi,h)$ contains the functions $f \in \mathcal{A}$ such that

$$(1-\lambda)\frac{z(\varphi*f)'(z)}{(\varphi*f_{2k})(z)} + \lambda\left(\frac{(z(\varphi*f)')'(z)}{(\varphi*f_{2k})'(z)}\right) \in \mathcal{K}_{\mu}(h).$$

The classes

$$R^k_{\mu}(h) := \mathcal{M}^k_{1,\mu}(\Phi,\xi,h), \qquad V^k_{\mu}(h) := \mathcal{M}^k_{0,\mu}(\Phi,\xi,h)$$

are the general classes of bounded radius rotation functions with respect to 2k-symmetric conjugate points and bounded boundary rotation functions with respect to 2k-symmetric conjugate points, respectively.

In our investigation we need the following lemmas.

Lemma 1.3 (see [4]). Let q be a convex analytic function in E. Also suppose that p is an analytic function in the unit disc and $P: E \mapsto \mathbb{C}$ be a function such that ReP(z) > 0 for $z \in E$. Then

$$p(z) + P(z)zp'(z) \prec q(z) \Rightarrow p(z) \prec q(z).$$

Lemma 1.4 (see [4]). Let $\beta, \gamma \in \mathbb{C}$ and h is convex (univalent) function in E with

$$h(0) = 1$$
 and $Re(\beta h(z) + \gamma) > 0$, $(z \in E)$.

If p is analytic in E with p(0) = 1, then subordination

$$p(z) + \frac{zp'(z)}{\beta p(z) + \gamma} \prec h(z)$$

implies that

$$p(z) \prec h(z).$$

Lemma 1.5. Let p and ψ be analytic functions in E with p(0) = 1 and $Re\psi(z) > 0$ for $z \in E$. If

$$p(z) + \psi(z)zp'(z) \in \mathcal{K}_m(h)$$

then $p(z) \in \mathcal{K}_m(h)$.

Proof. From the definition of $\mathcal{K}_m(h)$, there exist two analytic functions q_1, q_2 with $q_1 \prec h$ and $q_2 \prec h$ such that

$$p(z) + \psi(z)zp'(z) = mq_1(z) + (1-m)q_2(z).$$
(1.9)

Suppose that p_1 and p_2 are the solutions of the Cauchy problems

$$y(z) + \psi(z)zy'(z) = q_1(z), \qquad y(0) = 1,$$
 (1.10)

and

$$y(z) + \psi(z)zy'(z) = q_2(z), \qquad y(0) = 1,$$
 (1.11)

respectively. In the view of (1.10) and (1.11) we rewrite (1.9) as

$$p(z) + \psi(z)zp'(z) = m[p_1(z) + \psi(z)zp'_1(z)] + (1-m)[p_2(z) + \psi(z)zp'_2(z)],$$

or equivalently,

$$[p(z) - mp_1(z) - (1 - m)p_2(z)] + z\psi(z)[p'(z) - mp'_1(z) - (1 - m)p'_2(z)] = 0.$$
(1.12)

Now if we define $\eta(z) = p(z) - mp_1(z) - (1 - m)p_2(z)$, then $\eta(0) = 0$ and (1.12) yields

$$\eta(z) + \psi(z)z\eta'(z) = 0, \qquad \eta(0) = 0.$$
 (1.13)

But it is clear that Cauchy problem (1.13) has only the solution $\eta(z) = 0$. Hence $p(z) = mp_1(z) + (1-m)p_2(z)$. For completing the proof we show that $p_1, p_2 \prec h$. From the equation (1.9) we can write

$$p_1(z) + \psi(z)zp'_1(z) \prec h(z).$$

Since $Re\psi(z) > 0$, applying Lemma 1.3 we obtain $p_1(z) \prec h(z)$. Similarly we have $p_2(z) \prec h(z)$ and this means that $p \in \mathcal{K}_m(\gamma)$ and the proof is complete. \Box

Lemma 1.6. Let $\eta, f \in A$ with $\eta(z) = z + \sum_{n=2}^{\infty} a_n z^n$ and $f(z) = z + \sum_{n=2}^{\infty} b_n z^n$. Also suppose that η is symmetric with respect to the real axis. Then

$$(\eta * f_{2k})(z) = (\eta * f)_{2k}(z).$$

Proof. By the definition of f_{2k} we have

$$f_{2k}(z) = \frac{1}{2k} \sum_{\nu=0}^{k-1} [\varepsilon^{-\nu} f(\varepsilon^{\nu} z) + \varepsilon^{\nu} \overline{f(\varepsilon^{\nu} \overline{z})}]$$
$$= z + \sum_{n=2}^{\infty} \left[\frac{1}{2k} \sum_{\nu=0}^{k-1} \left(b_n \varepsilon^{\nu(n-1)} + \overline{b_n} \varepsilon^{\nu(1-n)} \right) z^n \right]$$

But η is symmetric with respect to the real axis, so $\overline{a_n} = a_n$ for all $n \ge 2$ and it yields

$$(\eta * f_{2k})(z) = z + \sum_{n=2}^{\infty} \left[\frac{1}{2k} \sum_{\nu=0}^{k-1} \left(a_n b_n \varepsilon^{\nu(n-1)} + a_n \overline{b_n} \varepsilon^{\nu(1-n)} \right) z^n \right]$$
$$= z + \sum_{n=2}^{\infty} \left[\frac{1}{2k} \sum_{\nu=0}^{k-1} \left(a_n b_n \varepsilon^{\nu(n-1)} + \overline{a_n b_n} \varepsilon^{\nu(1-n)} \right) z^n \right]$$
$$= (\eta * f)_{2k}(z).$$

Hence the proof is complete.

For $\alpha < 1$, we denote by $R(\alpha)$ the class of all analytic functions $f \in \mathcal{A}$ such that

$$f(z) * \frac{z}{(1-z)^{2(1-\alpha)}} \in S^*(\alpha).$$

The class $R(\alpha)$ is the class of prestarlike functions of order α introduced and investigated by Ruscheweyh [14].

Lemma 1.7 (see [14]). Let $f \in \mathcal{R}(\alpha)$, $g \in S^*(\alpha)$. Then

$$\frac{f*(qg)}{f*g}(E) \subseteq \overline{co}\left\{q(E)\right\},\,$$

for $q \in \mathcal{A}$.

2. Basic properties of $\mathcal{M}^k_{\lambda,\mu}(\Phi,\xi,h)$ and $\mathcal{CM}^k_{\lambda,\mu}(\Phi,\xi,\mathbf{h})$

Theorem 2.1. Let $f \in \mathcal{M}^k_{\lambda,\mu}(\Phi,\xi,h)$. Then the function

$$\psi(z) = f_{2k}(z) \tag{2.1}$$

•

belongs to $\mathfrak{M}^k_{\lambda,\mu}(\Phi,\xi,h)$ in E.

Proof. Let $f \in \mathfrak{M}^k_{\lambda,\mu}(\Phi,\xi,h)$. Then from Definition 1.1 we have

$$(1-\lambda)\frac{(\xi*\phi)*f}{(\xi*\varphi)*f_{2k}} + \lambda\frac{\phi*f}{\varphi*f_{2k}} \in \mathcal{K}_{\mu}(h), \quad \text{for} \quad z \in E,$$

or

$$(1-\lambda)\frac{(\xi*\phi*f)(z)}{(\xi*\varphi*f_{2k})(z)} + \lambda\frac{(\phi*f)(z)}{(\varphi*f_{2k})(z)} \in \mathcal{K}_{\mu}(h), \quad \text{for} \quad z \in E.$$
(2.2)

Replacing z by $\varepsilon^{\upsilon} z (\upsilon = 0, 1, 2, ..., k - 1)$ in (2.2) leads to

$$(1-\lambda)\frac{(\xi*\phi*f)(\varepsilon^{\upsilon}z)}{(\xi*\varphi*f_{2k})(\varepsilon^{\upsilon}z)} + \lambda\frac{(\phi*f)(\varepsilon^{\upsilon}z)}{(\varphi*f_{2k})(\varepsilon^{\upsilon}z)} \in \mathcal{K}_{\mu}(h), \quad \text{for} \quad z \in E.$$
(2.3)

We note that

$$\frac{(\xi * \varphi * f_{2k})(\varepsilon^{\upsilon} z)}{(\xi * \varphi * f_{2k})(\varepsilon^{\upsilon} \overline{z})} = \varepsilon^{-\upsilon}(\xi * \varphi * f_{2k})(z), \qquad (\varphi * f_{2k})(\varepsilon^{\upsilon} z) = \varepsilon^{-\upsilon}(\varphi * f_{2k})(z),$$

$$\overline{(\varphi * f_{2k})(\varepsilon^{\upsilon} \overline{z})} = \varepsilon^{-\upsilon}(\varphi * f_{2k})(z). \qquad (2.4)$$

Thus, in the view of (2.3) and (2.4) we obtain

$$(1-\lambda)\frac{(\xi*\phi*f)(\varepsilon^{\nu}z)}{\varepsilon^{\nu}(\xi*\varphi*f_{2k})(z)} + \lambda\frac{(\phi*f)(\varepsilon^{\nu}z)}{\varepsilon^{\nu}(\varphi*f_{2k})(z)} \in \mathcal{K}_{\mu}(h)$$
(2.5)

and

$$(1-\lambda)\frac{\overline{(\xi\ast\phi\ast f)(\varepsilon^{\upsilon}\overline{z})}}{\varepsilon^{-\upsilon}(\xi\ast\varphi\ast f_{2k})(z)} + \lambda\frac{\overline{(\phi\ast f)(\varepsilon^{\upsilon}\overline{z})}}{\varepsilon^{-\upsilon}(\varphi\ast f_{2k})(z)} \in \mathcal{K}_{\mu}(h).$$
(2.6)

Since $\mathcal{K}_{\mu}(h)$ is a convex set, summing (2.5) and (2.6) leads to

$$(1-\lambda)\frac{\frac{1}{2}[\varepsilon^{\upsilon}(\xi*\phi*f)(\varepsilon^{\upsilon}z)+\varepsilon^{-\upsilon}\overline{(\xi*\phi*f)(\varepsilon^{\upsilon}\overline{z})}]}{(\xi*\varphi*f_{2k})(z)} +\lambda\frac{\frac{1}{2}[\varepsilon^{\upsilon}(\phi*f)(\varepsilon^{\upsilon}\overline{z})+\varepsilon^{-\upsilon}\overline{(\phi*f)(\varepsilon^{\upsilon}z)}]}{(\varphi*f_{2k})(z)} \in \mathcal{K}_{\mu}(h).$$

$$(2.7)$$

Putting v = 0, 1, 2, ..., k - 1 in (2.7) and summing the resulting equations, yields

$$(1-\lambda)\frac{\frac{1}{2k}\sum_{\nu=0}^{k-1}[\varepsilon^{\nu}(\xi\ast\phi\ast f)(\varepsilon^{\nu}z)+\varepsilon^{-\nu}\overline{(\xi\ast\phi\ast f)(\varepsilon^{\nu}\overline{z})}]}{(\xi\ast\varphi\ast f_{2k})(z)}$$
$$+\lambda\frac{\frac{1}{2k}\sum_{\nu=0}^{k-1}[\varepsilon^{\nu}(\phi\ast f)(\varepsilon^{\nu}\overline{z})+\varepsilon^{-\nu}\overline{(\phi\ast f)(\varepsilon^{\nu}z)}]}{(\varphi\ast f_{2k})(z)}\in\mathcal{K}_{\mu}(h),$$

and hence $\psi \in \mathfrak{M}^k_{\lambda,\mu}(\Phi,\xi,h)$ in E.

Putting $\lambda = 0, 1$ on the Theorem 2.1 we have the following results for the classes $R^k_{\mu}(h)$ and $V^k_{\mu}(h)$.

Corollary 2.2. Let $f \in R^k_{\mu}(h)$. Then the function $\psi(z) = f_{2k}(z)$ belongs to $R^k_{\mu}(h)$ in E. **Corollary 2.3.** Let $f \in V^k_{\mu}(h)$. Then the function $\psi(z) = f_{2k}(z)$ belongs to $V^k_{\mu}(h)$ in E. **Theorem 2.4.** Let $0 < \alpha \le 1$, $h_2 = \frac{1+(1-2\alpha)z}{1-z}$ and $\mu_2 = 1$. Then

$$\mathfrak{CM}^k_{\lambda,\mu}(\varphi, \boldsymbol{h}) \subseteq \mathfrak{CM}^k_{\mu}(\varphi, \boldsymbol{h})$$

Proof. Let $f \in \mathfrak{CM}^k_{\lambda,\mu}(\varphi, \mathbf{h})$. Then by Definition 1.2 there exists a function $g \in \mathcal{W}^k_1(\varphi, h_2)$ such that

$$(1-\lambda)\frac{z(\varphi*f)'(z)}{(\varphi*g_{2k})(z)} + \lambda\left(\frac{(z(\varphi*f)')'(z)}{(\varphi*g_{2k})'(z)}\right) \in \mathcal{K}_{\mu_1}(h_1)$$

In the view of $g \in \mathcal{W}_1^k(\varphi, h_2)$ and applying Theorem 2.1 we know that $g_{2k} \in \mathcal{W}_1^k(\varphi, h_2)$, i.e.

$$q(z) = \frac{z(\varphi * g_{2k})'(z)}{(\varphi * g_{2k})(z)} \in \mathcal{K}_1(h_2).$$
(2.8)

Or, equivalently $q(z) \prec h_2(z)$. By setting

$$p(z) = \frac{z(\varphi * f)'(z)}{(\varphi * g_{2k})(z)}$$

we get

$$zp'(z) = z \frac{(z(\varphi * f)')'(z)(\varphi * g_{2k})(z) - z(\varphi * g_{2k})'(z)(\varphi * f)'(z)}{(\varphi * g_{2k})^2(z)}$$
(2.9)
$$= z \frac{(z(\varphi * f)')'(z)}{(\varphi * g_{2k})(z)} - \frac{z(\varphi * f)'(z)}{(\varphi * g_{2k})(z)}q(z)$$
$$= \frac{(z(\varphi * f)')'(z)}{(\varphi * g'_{2k})(z)}q(z) - \frac{z(\varphi * f)'(z)}{(\varphi * g_{2k})(z)}q(z).$$

1211

Therefore in the view of $f \in \mathfrak{CM}_{\lambda,\mu}^k(\varphi, \mathbf{h})$ and (2.9) we conclude that

$$(1-\lambda)\frac{z(\varphi*f)'(z)}{(\varphi*g_{2k})(z)} + \lambda\left(\frac{(z(\varphi*f)')'(z)}{(\varphi*g_{2k})'(z)}\right) = p(z) + \lambda\frac{zp'(z)}{q(z)} \in \mathcal{K}_{\mu_1}(h_1).$$

Now from the relation (2.8) it is clear that Req(z) > 0, so applying Lemma 1.5, we get $p(z) \in \mathcal{K}_{\mu_1}(h_1)$ and the proof is complete.

Theorem 2.5. Let $\Psi \in \mathcal{R}(\alpha)$, $0 < \alpha \leq 1$, $h_2(z) = \frac{1 + (1 - 2\alpha)z}{1 - z}$ and $\mu_2 = 1$. Then $f \in \mathcal{CW}^k_\mu(\varphi, h) \Longrightarrow f \in \mathcal{CW}^k_\mu(\Psi * \varphi, h)$.

Proof. Let $f \in \mathcal{CW}_{\mu}^{k}(\varphi, \mathbf{h})$. Then by Definition 1.2 there exists a function $g \in \mathcal{W}_{1}^{k}(\varphi, h_{2})$ such that

$$\frac{z(\varphi * f)'(z)}{(\varphi * g_{2k})(z)} = \mu_1 q_1 + (1 - \mu_1) q_2, \qquad (2.10)$$

where $q_1, q_2 \prec h_1$. In the view of $g \in W_1^k(\varphi, h_2)$ and applying Theorem 2.1 we know that $g_{2k} \in W_1^k(\varphi, h_2)$, i.e,

$$q(z) = \frac{z(\varphi * g_{2k})'(z)}{(\varphi * g_{2k})(z)} \in \mathcal{K}_1(h_2).$$
(2.11)

Or, equivalently $\varphi * g_{2k}$ is starlike of order α . Set $T(z) = \varphi * g_{2k}$, then by using the properties of convolution we can rewrite (2.10) as

$$\frac{z(\Psi * \varphi * f)'(z)}{(\Psi * \varphi * g_{2k})(z)} = \mu_1 \frac{(\Psi * q_1 T)(z)}{(\Psi * T)(z)} + (1 - \mu_1) \frac{(\Psi * q_2 T)(z)}{(\Psi * T)(z)}.$$
(2.12)

Now applying Lemma 1.7 leads to $\frac{(\Psi * q_1 T)(z)}{(\Psi * T)(z)} \prec q_1(z)$ and $\frac{(\Psi * q_2 T)(z)}{(\Psi * T)(z)} \prec q_2(z)$. Hence from (2.12) we conclude the result.

By using similar argument in the proof of Theorem 2.4 we obtain the following result and we omit its proof.

Theorem 2.6.

$$\mathcal{M}_{\lambda,1}^k(\varphi,h) \subseteq \mathcal{W}_1^k(\varphi,h).$$
(2.13)

Theorem 2.7. Let $0 < \lambda \leq 1$ and $f \in \mathfrak{M}^k_{\lambda,\mu}(\varphi,h)$. Then there exists a function $k \in \mathfrak{K}_{\mu}(h)$ such that

$$f_{2k}(z) = \left[\frac{1}{\lambda} \int_0^z u^{\frac{1-\lambda}{\lambda}} \exp\left(\frac{1}{\lambda} \int_0^u \frac{h(t)-1}{t} dt\right) du\right]^\lambda * \Psi, \qquad (2.14)$$

where $\Psi * \varphi = \frac{z}{1-z}$ and

$$h(z) = \frac{1}{2k} \sum_{\nu=0}^{k-1} [k(\varepsilon^{\nu} z) + \overline{k(\varepsilon^{\nu} \overline{z})}].$$
(2.15)

Proof. Since $f \in \mathcal{M}^k_{\lambda,\mu}(\varphi,h)$, there exists a function $k \in \mathcal{K}_{\mu}(h)$ such that

$$(1-\lambda)\frac{z(\varphi*f)'(z)}{(\varphi*f_{2k})(z)} + \lambda\left(\frac{(z(\varphi*f)')'(z)}{(\varphi*f_{2k})'(z)}\right) = k(z)$$

$$(2.16)$$

By using similar arguments given in the proof of Theorem 2.4 to (2.16) we obtain

$$(1-\lambda)\frac{z(\varphi * f_{2k})'(z)}{(\varphi * f_{2k})(z)} + \lambda\left(\frac{(z(\varphi * f_{2k})')'(z)}{(\varphi * f_{2k})'(z)}\right) = \frac{1}{2k}\sum_{\nu=0}^{k-1}[k(\varepsilon^{\nu}z) + \overline{k(\varepsilon^{\nu}\overline{z})}] = h(z). \quad (2.17)$$

Let us define F as

$$(1-\lambda)\frac{z(\varphi*f_{2k})'(z)}{(\varphi*f_{2k})(z)} + \lambda\left(\frac{(z(\varphi*f_{2k})')'(z)}{(\varphi*f_{2k})'(z)}\right) = \frac{zF'(z)}{F(z)},$$

then

$$(\varphi * f_{2k})(z) = \left(\frac{1}{\lambda} \int_0^z \frac{(F(t))^{\frac{1}{\lambda}}}{t} dt\right)^{\lambda}, \qquad (2.18)$$

and the function F is analytic with F(0) = 0 and from (2.18) we can write

$$\frac{zF'(z)}{F(z)} = h(z).$$

Now by solving the last equation and inserting the solution in the equality (2.16) we get the desired result.

Theorem 2.8. Let $0 < \lambda \leq 1$ and $f \in \mathcal{M}_{\lambda,\mu}^k(\varphi, h)$. Then there exists a function $k \in \mathcal{K}_{\mu}(h)$ such that

$$zf'(z) = \frac{1}{\lambda^{\lambda}} \frac{\int_0^z t^{\frac{1-\lambda}{\lambda}} \exp(\frac{1}{\lambda} \int_0^t \frac{h(v)-1}{v} dv) k(t) dt}{(\int_0^1 u^{\frac{1-\lambda}{\lambda}} \exp(\frac{1}{\lambda} \int_0^u \frac{h(t)-1}{t} dt) du)^{1-\lambda}} *\Psi,$$
(2.19)

where $\Psi * \varphi = \frac{z}{1-z}$ and h is given by (2.15).

Proof. Suppose that $f \in \mathcal{M}^k_{\lambda,\mu}(\varphi,h)$, we can get

$$(1-\lambda)\frac{z(\varphi*f)'(z)}{(\varphi*f_{2k})(z)} + \lambda\left(\frac{(z(\varphi*f)')'(z)}{(\varphi*f_{2k})'(z)}\right) \in \mathcal{K}_{\mu}(h).$$

so there exists a function $k \in \mathcal{K}_{\mu}(h)$ such that

$$(1-\lambda)\frac{z(\varphi*f)'(z)}{(\varphi*f_{2k})(z)} + \lambda\left(\frac{(z(\varphi*f)')'(z)}{(\varphi*f_{2k})'(z)}\right) = k(z).$$

Taking $F(z) = z(\varphi * f)'(z)$ and $G(z) = (\varphi * f_{2k})(z)$ in the above equation yields

$$(1-\lambda)\frac{F(z)}{G(z)} + \lambda \frac{F'(z)}{G'(z)} = k(z),$$

or

$$F'(z) + \frac{1-\lambda}{\lambda} \frac{G'(z)}{G(z)} F(z) = \frac{k(z)G'(z)}{\lambda}.$$
(2.20)

Now solving the Cauchy problem (2.20) and considering (2.14) we get our result and the proof is complete. $\hfill \Box$

Let L(r, f) denote the length of the image of the circle |z| = r under f. We prove the following.

Theorem 2.9. Let $h'_1(0) \neq 0, \mu_2 = 1, h_2(z) = \frac{1+z}{1-z}$, and $f \in CW^k_{\mu}(\varphi, h)$. Then, for 0 < r < 1,

$$L(r,\varphi*f) \le 2\pi(2\mu_1 - 1)|h_1'(0)| \frac{1}{(1-r)^{\frac{k+2}{k}}}.$$
(2.21)

Proof. Using Theorem 2.1 and in the view of the definition of class $\mathcal{CW}^k_{\mu}(\varphi, \mathbf{h})$ there exists a function $g \in \mathcal{W}^k_1(\varphi, \frac{1+z}{1-z})$ such that

$$z(\varphi * f)'(z) = \psi(z)p(z), \qquad \psi = \varphi * g_{2k} \in S^*, \quad p \in \mathcal{K}_1(h_1).$$
(2.22)

Now for $z = re^{i\theta}$, we have

$$L(r, \varphi * f) = \int_0^{2\pi} |z(\varphi * f)'(z)| d\theta$$
$$= \int_0^{2\pi} |\psi(z)p(z)| d\theta.$$

Hence, using the Hölder's inequality, we obtain

$$L(r,\varphi*f) \le 2\pi \left(\frac{1}{2\pi} \int_0^{2\pi} |\psi(z)|^2 d\theta\right)^{\frac{1}{2}} \left(\frac{1}{2\pi} \int_0^{2\pi} |p(z)|^2 d\theta\right)^{\frac{1}{2}}.$$
 (2.23)

For $p \in \mathcal{K}_{\mu_1}(h_1)$, from (1.4) we have

$$\frac{1}{2\pi} \int_0^{2\pi} |p(z)|^2 d\theta \le \frac{1 + [(2\mu_1 - 1)^2 |h_1'(0)|^2 - 1]r^2}{1 - r^2}.$$
(2.24)

Also for k-fold symmetric function ψ it is known that [10]

$$|\psi(z)| \le \frac{|z|}{(1-|z|^k)^{\frac{2}{k}}}.$$
(2.25)

Using (2.24) and (2.25) in (2.23), it follows that

$$L(r, \varphi * f) \le 2\pi \left(\frac{1 + [(2\mu_1 - 1)^2 |h_1'(0)|^2 - 1]r^2}{1 - r^2} \right)^{\frac{1}{2}} \left(\frac{r}{(1 - r^k)^{\frac{2}{k}}} \right)$$
$$\le 2\pi (2\mu_1 - 1) |h_1'(0)| \frac{1}{(1 - r)^{1 + \frac{2}{k}}}.$$

This completes the proof.

Theorem 2.10. Let $h'_1(0) \neq 0$ and $f \in CW^k_{\mu}(\varphi, h)$ with $\mu_2 = 1, h_2(z) = \frac{1+z}{1-z}$. Then, for 0 < r < 1,

$$|a_n| \le 2\pi (2\mu_1 - 1)n^{\frac{2}{k}},\tag{2.26}$$

where a_n are the coefficients of $\varphi * f$.

Proof. Since, with $z = re^{i\theta}$, Cauchy Theorem gives

$$na_n = \frac{1}{2\pi r^n} \int_0^{2\pi} z(\varphi * f)'(z) e^{-in\theta} d\theta,$$

then

$$n|a_n| \le \frac{1}{2\pi r^n} \int_0^{2\pi} |z(\varphi * f)'(z)| d\theta = \frac{1}{2\pi r^n} L(r, \varphi * f).$$

Using Theorem 2.9 and putting $r = 1 - \frac{1}{n}, (n \to \infty)$, we obtain the required result. \Box

Acknowledgment. The authors would like to express their thanks to the reviewers for many valuable advices regarding a previous version of this paper.

References

- J. Dziok and K.I. Noor, Classes of analytic functions related to a combination of two convex functions, J. Math. Inequal. 11 (2), 413–427, 2017.
- J. Dziok, Characterizations of analytic functions associated with functions of bounded variation, Ann. Pol. Math. 109, 199–207, 2013.
- [3] J. Dziok, Classes of functions associated with bounded Mocanu variation, J. Inequal. Appl. 2013, Art. No. 349, 2013.
- [4] S.S. Miller and P.T. Mocanu, Differential Subordinations Theory and Applications, Marcel Dekker Inc, New York, 2000.
- [5] K.I. Noor and S. Mustafa, Some classes of analytic functions related with functions of bounded radius rotation with respect to symmetrical points, J. Math. Inequal. 3 (2), 267–276, 2009.
- [6] K.I. Noor and S. Hussain, On certain analytic functions associated with Ruscheweyh derivatives and bounded Mocanu variation, J. Math. Anal. Appl. 340 (2), 1145–1152, 2008.

1214

- K.I. Noor, On subclasses of close-to-convex functions of higher order, Inter. J. Math. Math. Sci. 15, 279–290, 1992.
- [8] K.I. Noor and S.N. Malik, On generalized bounded Mocanu variation associated with conic domain, Math. Comput. Modelling. 55 (3-4), 844–852, 2012.
- [9] K.I. Noor and A. Muhammad, On analytic functions with generalized bounded Mocanu variation, Appl. Math. Comput. 196 (2), 802–811, 2008.
- [10] G. Kohr, Geometric function theory in one and higher dimensions, Marcel Dekker Inc, New York, 2003.
- [11] R. Parvatham and S. Radha, On α-starlike and α-close-to-convex functions with respect to n-symetric points, Indian J. Pure Appl. Math. 16 (9), 1114–1122, 1986.
- [12] K. Padmanabhan and R. Parvatham, Properties of a class of functions with bounded boundary rotation, Ann. Polon. Math. 31, 311–323, 1975.
- [13] B. Pinchuk, Functions with bounded boundary rotation, Isr. J. Math. 10, 7–16, 1971.
- [14] S. Ruscheweyh, Convolutions in Geometric Function Theory. Sem. Math. Sup. 83, Presses de l'Université de Montréal, Montreal, 1982.
- [15] Z.-G. Wang, C.-Y. Gao, and S.-M. Yuan, On certain subclasses of close-to-convex and quasi-convex functions with respect to k-symmetric points, J. Math. Anal. Appl. 322, 97–106, 2006.
- [16] Z.-G. Wang and C.-Y. Gao, On starlike and convex functions with respect to 2ksymmetric conjugate points, Tamsui Oxf. J. Math. Sci. 24, 277–287, 2008.
- [17] Z.-G. Wang and Y.-P. Jiang, Some properties of certain subclasses of close-to-convex and guasi-convex functions with respect to 2k-symmetric conjugate points, Bull. Iran. Math. Soc. 36 (2), 217–238, 2010.
- [18] S.M. Yuan and Z.M. Liu, Some properties of α-convex and α-quasiconvex functions with respect to n-symetric points, Appl. Math. Comput. 188 (2), 1142–1150, 2007.