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1. Introduction
Let A be the class of analytic functions f defined on the unit disc E = {z ∈ C : |z| < 1},

normalized by f(0) = f ′(0) − 1 = 0 and of the form

f(z) = z +
∞∑

n=2
anz

n, (z ∈ E). (1.1)

Also, suppose that S,K, S∗, and C denote the subclasses of A which are univalent, close-to-
convex, starlike, and convex in E respectively. We denote by Pm(γ) the class of functions
p(z) analytic in the unit disc E satisfying the properties p(0) = 1 and, for z = reiθ,m ≥ 2,∫ 2π

0

∣∣∣∣Rep(z) − γ

1 − γ

∣∣∣∣ dθ ≤ mπ, (0 ≤ γ < 1). (1.2)

The class Pm(γ) for γ = 0 and 0 ≤ γ < 1 has been introduced and investigated by Pinchuk
[13], and Padmanabhan and Parvatham [12] (see also [11]), respectively. We note that
Pm(0) = Pm, and P2(γ) = P (γ) is the class of analytic function with positive real part
greater than γ. For m = 2 and γ = 0, we have the class P of functions with positive real
part.

We can rewrite (1.2) as

p(z) = 1
2

∫ 2π

0

1 + (1 − 2γ)ze−it

1 − ze−it
dµ(t),
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where µ(t) is a function with bounded variation on [0, 2π] such that∫ 2π

0
dµ(t) = 2 and

∫ 2π

0
|dµ(t)| ≤ m.

Also, for p ∈ Pm(γ), we can write from (1.2)

p(z) = (m
4

+ 1
2

)p1(z) − (m
4

− 1
2

)p2(z), p1, p2 ∈ P2(γ), z ∈ E.

It is known [7] that Pm(γ) is a convex set. Also p ∈ Pm(γ) is in P2(γ) = P (γ) for |z| < r1,
where

r1 = 1
2

[m−
√
m2 − 4].

We say that f ∈ A is subordinate to F ∈ A, and we write f(z) ≺ F (z) (or simply f ≺ F ),
if there exists a function

ω ∈ Ω := {ω ∈ A : |ω(z)| ≤ |z| (z ∈ E)},

such that f(z) = F (ω(z)). In particular, if F is univalent in E, we have the following
equivalence

f(z) ≺ F (z) ⇐⇒ [f(0) = F (0) ∧ f(E) ⊂ F (E)].

Recently Mocanu introduced the class M(α) of functions f ∈ A such that f(z)f ′(z)
z 6= 0 for

z ∈ E and

Re

{
α
zf ′(z)
f(z)

+ (1 − α)(zf ′(z))′

f ′(z)

}
> 0 (z ∈ E).

In particular, S∗ := M(1), K := M(0) are the well-known classes of starlike functions and
convex functions, respectively. Also, Wang et al. [17] (see also [18]) introduced the class
K

(k)
sc (α, φ) of functions f ∈ A such that

α
zf ′(z)
f2k(z)

+ (1 − α)(zf ′(z))′

f ′
2k(z)

≺ φ(z), (z ∈ E),

where φ(z) ∈ P , k ≥ 2 is a fixed positive integer and f2k(z) is defined by the following
equality

f2k(z) = 1
2k

k−1∑
υ=0

[ε−υf(ευz) + ευf(ευz)], (ε = exp(2πi
k

)).

Also, Noor et al. [5] (see also, [1], [6], [7], [8], [9]) introduced and investigated class Rk
s (γ)

of analytic functions of bounded radius rotation of order γ with respect to symmetrical
points if and only if

2zf ′(z)
f(z) − f(−z)

∈ Pk(z), (z ∈ E).

Motivated by the aforementioned classes, and [1], [2], [3], [15], [16], we now introduce and
investigate the following classes Mk

λ,µ(Φ, ξ, h) and CMk
λ,µ(Φ, ξ,h) associated with functions

of bounded variation with respect to 2k- symmetric conjugate points.

Let h be convex and symmetric with respect to the real axis with h(0) = 1, µ ≥ 1, and
define

Kµ(h) := {µq1 + (1 − µ)q2 : q1, q2 ≺ h}.

We note that the class P := K1

(1 + z

1 − z

)
is the well-known class of Carathéodory functions.

It is easy to verify that
(i) Kµ(h) is convex set,
(ii) if 1 ≤ µ ≤ λ then Kµ(h) ⊂ Kλ(h),
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(iii) Let h′(0) 6= 0 and f(z) = 1 +
∑∞

n=1 anz
n ∈ Kµ(h) then for z = reiθ,

|an| ≤ (2µ− 1)|h′(0)|, (n ≥ 1), (1.3)
1

2π

∫ 2π

0
|f(reiθ)|2dθ ≤ 1 + [(2µ− 1)2|h′(0)|2 − 1]r2

1 − r2 , (1.4)

1
2π

∫ 2π

0
|f ′(reiθ)|dθ ≤ (2µ− 1)|h′(0)|

(1 − r)2 . (1.5)

Throughout this paper we assume that ϕ, φ, ξ ∈ A and ϕ, φ, ξ are symmetric with respect
to the real axis.

Definition 1.1. Let λ ∈ R and Φ = (ϕ, φ). We denote by Mk
λ,µ(Φ, ξ, h) the class of

functions f ∈ A such that

(1 − λ) (ξ ∗ ϕ) ∗ f
(ξ ∗ φ) ∗ f2k

+ λ
ϕ ∗ f
φ ∗ f2k

∈ Kµ(h), (1.6)

where * denotes the Hadamard product (or convolution) and f2k(z) is defined by

f2k(z) = 1
2k

k−1∑
υ=0

[ε−υf(ευz) + ευf(ευz)], (ε = exp(2πi
k

)).

Moreover, let us define
Mk

λ,µ(Φ, h) := Mk
λ,µ(Φ, ξ1, h), Mk

λ,µ(φ, h) := Mk
λ,µ((φ1, φ2), h),

Wk
µ(Φ, h) := Mk

1,µ(Φ, z, h), Wk
µ(φ, h) := Wk

µ((zφ′, φ), h),
where

ξ1(z) = z +
∞∑

n=2

zn

n
, φ1 = zφ′(z), φ2 = zφ′

1, (z ∈ E). (1.7)

Definition 1.2. Let m = (µ1, µ2) with µ1, µ2 ≥ 1 and let h1, h2 be convex analytic func-
tions that are symmetric with respect to the real axis so that h1(0) = h2(0) = 1. Suppose
that h = (h1, h2). We say that a function f ∈ A belongs to the class CMk

λ,µ(Φ, ξ,h) if
there exists g ∈ Wk

µ2(φ, h2) such that

(1 − λ) (ξ ∗ ϕ) ∗ f
(ξ ∗ φ) ∗ g2k

+ λ
ϕ ∗ f
φ ∗ g2k

∈ Kµ1(h1), (1.8)

where g2k(z) is defined by

g2k(z) = 1
2k

k−1∑
υ=0

[ε−υg(ευz) + ευg(ευz)], (ε = exp(2πi
k

)).

Moreover, suppose that
CMk

λ,µ(Φ,h) := CMk
λ,µ(Φ, ξ1,h), CMk

λ,µ(φ,h) := CMk
λ,µ(((φ2, φ1),h)),

CWk
µ(Φ, h) := CMk

1,µ(Φ, z, h), CWk
µ(φ,h) := CMk

1,µ((zφ′, φ),h),
where ξ1, φ1 and φ2 are defined by (1.7).

These general classes of functions reduce to the well-known classes by judicious choices
of the parameters. In particular, the class Mk

λ,µ(φ, h) contains the functions f ∈ A such
that

(1 − λ)z(φ ∗ f)′(z)
(φ ∗ f2k)(z)

+ λ

((z(φ ∗ f)′)′(z)
(φ ∗ f2k)′(z)

)
∈ Kµ(h).

The classes
Rk

µ(h) := Mk
1,µ(Φ, ξ, h), V k

µ (h) := Mk
0,µ(Φ, ξ, h)
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are the general classes of bounded radius rotation functions with respect to 2k-symmetric
conjugate points and bounded boundary rotation functions with respect to 2k-symmetric
conjugate points, respectively.

In our investigation we need the following lemmas.

Lemma 1.3 (see [4]). Let q be a convex analytic function in E. Also suppose that p is an
analytic function in the unit disc and P : E 7→ C be a function such that ReP (z) > 0 for
z ∈ E. Then

p(z) + P (z)zp′(z) ≺ q(z) ⇒ p(z) ≺ q(z).

Lemma 1.4 (see [4]). Let β, γ ∈ C and h is convex (univalent) function in E with
h(0) = 1 and Re(βh(z) + γ) > 0, (z ∈ E).

If p is analytic in E with p(0) = 1, then subordination

p(z) + zp′(z)
βp(z) + γ

≺ h(z)

implies that
p(z) ≺ h(z).

Lemma 1.5. Let p and ψ be analytic functions in E with p(0) = 1 and Reψ(z) > 0 for
z ∈ E. If

p(z) + ψ(z)zp′(z) ∈ Km(h),
then p(z) ∈ Km(h).

Proof. From the definition of Km(h), there exist two analytic functions q1, q2 with q1 ≺ h
and q2 ≺ h such that

p(z) + ψ(z)zp′(z) = mq1(z) + (1 −m)q2(z). (1.9)
Suppose that p1 and p2 are the solutions of the Cauchy problems

y(z) + ψ(z)zy′(z) = q1(z), y(0) = 1, (1.10)
and

y(z) + ψ(z)zy′(z) = q2(z), y(0) = 1, (1.11)
respectively. In the view of (1.10) and (1.11) we rewrite (1.9) as

p(z) + ψ(z)zp′(z) = m[p1(z) + ψ(z)zp′
1(z)] + (1 −m)[p2(z) + ψ(z)zp′

2(z)],
or equivalently,

[p(z) −mp1(z) − (1 −m)p2(z)] + zψ(z)[p′(z) −mp′
1(z) − (1 −m)p′

2(z)] = 0. (1.12)
Now if we define η(z) = p(z) −mp1(z) − (1 −m)p2(z), then η(0) = 0 and (1.12) yields

η(z) + ψ(z)zη′(z) = 0, η(0) = 0. (1.13)
But it is clear that Cauchy problem (1.13) has only the solution η(z) = 0. Hence p(z) =
mp1(z) + (1 − m)p2(z). For completing the proof we show that p1, p2 ≺ h. From the
equation (1.9) we can write

p1(z) + ψ(z)zp′
1(z) ≺ h(z).

Since Reψ(z) > 0, applying Lemma 1.3 we obtain p1(z) ≺ h(z). Similarly we have
p2(z) ≺ h(z) and this means that p ∈ Km(γ) and the proof is complete. �
Lemma 1.6. Let η, f ∈ A with η(z) = z +

∑∞
n=2 anz

n and f(z) = z +
∑∞

n=2 bnz
n. Also

suppose that η is symmetric with respect to the real axis. Then
(η ∗ f2k)(z) = (η ∗ f)2k(z).
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Proof. By the definition of f2k we have

f2k(z) = 1
2k

k−1∑
υ=0

[ε−υf(ευz) + ευf(ευz)]

= z +
∞∑

n=2

[
1
2k

k−1∑
υ=0

(
bnε

υ(n−1) + bnε
υ(1−n)

)
zn

]
.

But η is symmetric with respect to the real axis, so an = an for all n ≥ 2 and it yields

(η ∗ f2k)(z) = z +
∞∑

n=2

[
1
2k

k−1∑
υ=0

(
anbnε

υ(n−1) + anbnε
υ(1−n)

)
zn

]

= z +
∞∑

n=2

[
1
2k

k−1∑
υ=0

(
anbnε

υ(n−1) + anbnε
υ(1−n)

)
zn

]
= (η ∗ f)2k(z).

Hence the proof is complete. �

For α < 1, we denote by R(α) the class of all analytic functions f ∈ A such that

f(z) ∗ z

(1 − z)2(1−α) ∈ S∗(α).

The class R(α) is the class of prestarlike functions of order α introduced and investigated
by Ruscheweyh [14].

Lemma 1.7 (see [14]). Let f ∈ R(α), g ∈ S∗(α). Then

f ∗ (qg)
f ∗ g

(E) ⊆ co {q(E)} ,

for q ∈ A.

2. Basic properties of Mk
λ,µ(Φ, ξ, h) and CMk

λ,µ(Φ, ξ, h)

Theorem 2.1. Let f ∈ Mk
λ,µ(Φ, ξ, h). Then the function

ψ(z) = f2k(z) (2.1)

belongs to Mk
λ,µ(Φ, ξ, h) in E.

Proof. Let f ∈ Mk
λ,µ(Φ, ξ, h). Then from Definition 1.1 we have

(1 − λ) (ξ ∗ ϕ) ∗ f
(ξ ∗ φ) ∗ f2k

+ λ
ϕ ∗ f
φ ∗ f2k

∈ Kµ(h), for z ∈ E,

or

(1 − λ) (ξ ∗ ϕ ∗ f)(z)
(ξ ∗ φ ∗ f2k)(z)

+ λ
(ϕ ∗ f)(z)

(φ ∗ f2k)(z)
∈ Kµ(h), for z ∈ E. (2.2)

Replacing z by ευz (υ = 0, 1, 2, ..., k − 1) in (2.2) leads to

(1 − λ) (ξ ∗ ϕ ∗ f)(ευz)
(ξ ∗ φ ∗ f2k)(ευz)

+ λ
(ϕ ∗ f)(ευz)

(φ ∗ f2k)(ευz)
∈ Kµ(h), for z ∈ E. (2.3)

We note that

(ξ ∗ φ ∗ f2k)(ευz) = ευ(ξ ∗ φ ∗ f2k)(z), (φ ∗ f2k)(ευz) = ευ(φ ∗ f2k)(z),

(ξ ∗ φ ∗ f2k)(ευz) = ε−υ(ξ ∗ φ ∗ f2k)(z), (φ ∗ f2k)(ευz) = ε−υ(φ ∗ f2k)(z). (2.4)
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Thus, in the view of (2.3) and (2.4) we obtain

(1 − λ) (ξ ∗ ϕ ∗ f)(ευz)
ευ(ξ ∗ φ ∗ f2k)(z)

+ λ
(ϕ ∗ f)(ευz)
ευ(φ ∗ f2k)(z)

∈ Kµ(h) (2.5)

and
(1 − λ) (ξ ∗ ϕ ∗ f)(ευz)

ε−υ(ξ ∗ φ ∗ f2k)(z)
+ λ

(ϕ ∗ f)(ευz)
ε−υ(φ ∗ f2k)(z)

∈ Kµ(h). (2.6)

Since Kµ(h) is a convex set, summing (2.5) and (2.6) leads to

(1 − λ)
1
2 [ευ(ξ ∗ ϕ ∗ f)(ευz) + ε−υ(ξ ∗ ϕ ∗ f)(ευz)]

(ξ ∗ φ ∗ f2k)(z)
(2.7)

+λ
1
2 [ευ(ϕ ∗ f)(ευz) + ε−υ(ϕ ∗ f)(ευz)]

(φ ∗ f2k)(z)
∈ Kµ(h).

Putting υ = 0, 1, 2, ..., k − 1 in (2.7) and summing the resulting equations, yields

(1 − λ)
1

2k

∑k−1
υ=0[ευ(ξ ∗ ϕ ∗ f)(ευz) + ε−υ(ξ ∗ ϕ ∗ f)(ευz)]

(ξ ∗ φ ∗ f2k)(z)

+ λ
1

2k

∑k−1
υ=0[ευ(ϕ ∗ f)(ευz) + ε−υ(ϕ ∗ f)(ευz)]

(φ ∗ f2k)(z)
∈ Kµ(h),

and hence ψ ∈ Mk
λ,µ(Φ, ξ, h) in E. �

Putting λ = 0, 1 on the Theorem 2.1 we have the following results for the classes Rk
µ(h)

and V k
µ (h).

Corollary 2.2. Let f ∈ Rk
µ(h). Then the function ψ(z) = f2k(z) belongs to Rk

µ(h) in E.

Corollary 2.3. Let f ∈ V k
µ (h). Then the function ψ(z) = f2k(z) belongs to V k

µ (h) in E.

Theorem 2.4. Let 0 < α ≤ 1, h2 = 1+(1−2α)z
1−z and µ2 = 1. Then

CMk
λ,µ(φ,h) ⊆ CMk

µ(φ,h).

Proof. Let f ∈ CMk
λ,µ(φ,h). Then by Definition 1.2 there exists a function g ∈ Wk

1(φ, h2)
such that

(1 − λ)z(φ ∗ f)′(z)
(φ ∗ g2k)(z)

+ λ

((z(φ ∗ f)′)′(z)
(φ ∗ g2k)′(z)

)
∈ Kµ1(h1).

In the view of g ∈ Wk
1(φ, h2) and applying Theorem 2.1 we know that g2k ∈ Wk

1(φ, h2),
i.e,

q(z) = z(φ ∗ g2k)′(z)
(φ ∗ g2k)(z)

∈ K1(h2). (2.8)

Or, equivalently q(z) ≺ h2(z).
By setting

p(z) = z(φ ∗ f)′(z)
(φ ∗ g2k)(z)

,

we get

zp′(z) = z
(z(φ ∗ f)′)′(z)(φ ∗ g2k)(z) − z(φ ∗ g2k)′(z)(φ ∗ f)′(z)

(φ ∗ g2k)2(z)
(2.9)

= z
(z(φ ∗ f)′)′(z)
(φ ∗ g2k)(z)

− z(φ ∗ f)′(z)
(φ ∗ g2k)(z)

q(z)

= (z(φ ∗ f)′)′(z)
(φ ∗ g′

2k)(z)
q(z) − z(φ ∗ f)′(z)

(φ ∗ g2k)(z)
q(z).
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Therefore in the view of f ∈ CMk
λ,µ(φ,h) and (2.9) we conclude that

(1 − λ)z(φ ∗ f)′(z)
(φ ∗ g2k)(z)

+ λ

((z(φ ∗ f)′)′(z)
(φ ∗ g2k)′(z)

)
= p(z) + λ

zp′(z)
q(z)

∈ Kµ1(h1).

Now from the relation (2.8) it is clear that Req(z) > 0, so applying Lemma 1.5, we get
p(z) ∈ Kµ1(h1) and the proof is complete. �

Theorem 2.5. Let Ψ ∈ R(α), 0 < α ≤ 1, h2(z) = 1+(1−2α)z
1−z and µ2 = 1. Then

f ∈ CWk
µ(φ,h) =⇒ f ∈ CWk

µ(Ψ ∗ φ,h).

Proof. Let f ∈ CWk
µ(φ,h). Then by Definition 1.2 there exists a function g ∈ Wk

1(φ, h2)
such that

z(φ ∗ f)′(z)
(φ ∗ g2k)(z)

= µ1q1 + (1 − µ1)q2, (2.10)

where q1, q2 ≺ h1. In the view of g ∈ Wk
1(φ, h2) and applying Theorem 2.1 we know that

g2k ∈ Wk
1(φ, h2), i.e,

q(z) = z(φ ∗ g2k)′(z)
(φ ∗ g2k)(z)

∈ K1(h2). (2.11)

Or, equivalently φ ∗ g2k is starlike of order α. Set T (z) = φ ∗ g2k, then by using the
properties of convolution we can rewrite (2.10) as

z(Ψ ∗ φ ∗ f)′(z)
(Ψ ∗ φ ∗ g2k)(z)

= µ1
(Ψ ∗ q1T )(z)
(Ψ ∗ T )(z)

+ (1 − µ1)(Ψ ∗ q2T )(z)
(Ψ ∗ T )(z)

. (2.12)

Now applying Lemma 1.7 leads to (Ψ∗q1T )(z)
(Ψ∗T )(z) ≺ q1(z) and (Ψ∗q2T )(z)

(Ψ∗T )(z) ≺ q2(z). Hence from
(2.12) we conclude the result. �

By using similar argument in the proof of Theorem 2.4 we obtain the following result
and we omit its proof.

Theorem 2.6.
Mk

λ,1(φ, h) ⊆ Wk
1(φ, h). (2.13)

Theorem 2.7. Let 0 < λ ≤ 1 and f ∈ Mk
λ,µ(φ, h). Then there exists a function k ∈ Kµ(h)

such that

f2k(z) =
[ 1
λ

∫ z

0
u

1−λ
λ exp

( 1
λ

∫ u

0

h(t) − 1
t

dt

)
du

]λ

∗ Ψ, (2.14)

where Ψ ∗ φ = z
1−z and

h(z) = 1
2k

k−1∑
υ=0

[k(ευz) + k(ευz)]. (2.15)

Proof. Since f ∈ Mk
λ,µ(φ, h), there exists a function k ∈ Kµ(h) such that

(1 − λ)z(φ ∗ f)′(z)
(φ ∗ f2k)(z)

+ λ

((z(φ ∗ f)′)′(z)
(φ ∗ f2k)′(z)

)
= k(z) (2.16)

By using similar arguments given in the proof of Theorem 2.4 to (2.16) we obtain

(1 − λ)z(φ ∗ f2k)′(z)
(φ ∗ f2k)(z)

+ λ

((z(φ ∗ f2k)′)′(z)
(φ ∗ f2k)′(z)

)
= 1

2k

k−1∑
υ=0

[k(ευz) + k(ευz)] = h(z). (2.17)

Let us define F as

(1 − λ)z(φ ∗ f2k)′(z)
(φ ∗ f2k)(z)

+ λ

((z(φ ∗ f2k)′)′(z)
(φ ∗ f2k)′(z)

)
= zF ′(z)

F (z)
,
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then

(φ ∗ f2k)(z) =
(

1
λ

∫ z

0

(F (t))
1
λ

t
dt

)λ

, (2.18)

and the function F is analytic with F (0) = 0 and from (2.18) we can write
zF ′(z)
F (z)

= h(z).

Now by solving the last equation and inserting the solution in the equality (2.16) we get
the desired result. �

Theorem 2.8. Let 0 < λ ≤ 1 and f ∈ Mk
λ,µ(φ, h). Then there exists a function k ∈ Kµ(h)

such that

zf ′(z) = 1
λλ

∫ z
0 t

1−λ
λ exp( 1

λ

∫ t
0

h(v)−1
v dv)k(t)dt

(
∫ 1

0 u
1−λ

λ exp( 1
λ

∫ u
0

h(t)−1
t dt)du)1−λ

∗ Ψ, (2.19)

where Ψ ∗ φ = z
1−z and h is given by (2.15).

Proof. Suppose that f ∈ Mk
λ,µ(φ, h), we can get

(1 − λ)z(φ ∗ f)′(z)
(φ ∗ f2k)(z)

+ λ

((z(φ ∗ f)′)′(z)
(φ ∗ f2k)′(z)

)
∈ Kµ(h),

so there exists a function k ∈ Kµ(h) such that

(1 − λ)z(φ ∗ f)′(z)
(φ ∗ f2k)(z)

+ λ

((z(φ ∗ f)′)′(z)
(φ ∗ f2k)′(z)

)
= k(z).

Taking F (z) = z(φ ∗ f)′(z) and G(z) = (φ ∗ f2k)(z) in the above equation yields

(1 − λ)F (z)
G(z)

+ λ
F ′(z)
G′(z)

= k(z),

or
F ′(z) + 1 − λ

λ

G′(z)
G(z)

F (z) = k(z)G′(z)
λ

. (2.20)

Now solving the Cauchy problem (2.20) and considering (2.14) we get our result and the
proof is complete. �

Let L(r, f) denote the length of the image of the circle |z| = r under f . We prove the
following.

Theorem 2.9. Let h′
1(0) 6= 0, µ2 = 1, h2(z) = 1+z

1−z , and f ∈ CWk
µ(φ,h). Then, for

0 < r < 1,

L(r, φ ∗ f) ≤ 2π(2µ1 − 1)|h′
1(0)| 1

(1 − r)
k+2

k

. (2.21)

Proof. Using Theorem 2.1 and in the view of the definition of class CWk
µ(φ,h) there exists

a function g ∈ Wk
1(φ, 1+z

1−z ) such that

z(φ ∗ f)′(z) = ψ(z)p(z), ψ = φ ∗ g2k ∈ S∗, p ∈ K1(h1). (2.22)

Now for z = reiθ, we have

L(r, φ ∗ f) =
∫ 2π

0
|z(φ ∗ f)′(z)|dθ

=
∫ 2π

0
|ψ(z)p(z)|dθ.
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Hence, using the Hölder’s inequality, we obtain

L(r, φ ∗ f) ≤ 2π
( 1

2π

∫ 2π

0
|ψ(z)|2dθ

) 1
2
( 1

2π

∫ 2π

0
|p(z)|2dθ

) 1
2
. (2.23)

For p ∈ Kµ1(h1), from (1.4) we have
1

2π

∫ 2π

0
|p(z)|2dθ ≤ 1 + [(2µ1 − 1)2|h′

1(0)|2 − 1]r2

1 − r2 . (2.24)

Also for k-fold symmetric function ψ it is known that [10]

|ψ(z)| ≤ |z|
(1 − |z|k)

2
k

. (2.25)

Using (2.24) and (2.25) in (2.23), it follows that

L(r, φ ∗ f) ≤ 2π
(

1 + [(2µ1 − 1)2|h′
1(0)|2 − 1]r2

1 − r2

) 1
2
(

r

(1 − rk)
2
k

)

≤ 2π(2µ1 − 1)|h′
1(0)| 1

(1 − r)1+ 2
k

.

This completes the proof. �

Theorem 2.10. Let h′
1(0) 6= 0 and f ∈ CWk

µ(φ,h) with µ2 = 1, h2(z) = 1+z
1−z . Then, for

0 < r < 1,
|an| ≤ 2π(2µ1 − 1)n

2
k , (2.26)

where an are the coefficients of φ ∗ f .

Proof. Since, with z = reiθ, Cauchy Theorem gives

nan = 1
2πrn

∫ 2π

0
z(φ ∗ f)′(z)e−inθdθ,

then
n|an| ≤ 1

2πrn

∫ 2π

0
|z(φ ∗ f)′(z)|dθ = 1

2πrn
L(r, φ ∗ f).

Using Theorem 2.9 and putting r = 1 − 1
n , (n −→ ∞), we obtain the required result. �
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