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Abstract
We present a new double-step iteration method for solving the systems of linear equations
that arise from finite difference discretizations of the complex Helmholtz equations. Con-
vergence analysis of the method is discussed. An upper bound on the spectral radius of the
iteration matrix of the method is presented and the parameter which minimizes this upper
bound is computed. The proposed method is compared theoretically and numerically with
some existing methods.
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1. Introduction
The Helmholtz equations arise in many physical applications, e.g. scattering problems,

electromagnetics, and acoustics (see [1,10]). Discretization of the 2-D and 3-D Helmholtz
equations by means of finite difference methods lead to complex symmetric systems of
linear equations.

The complex Helmholtz equation in 2-D and 3-D can be written as{
−△u + σ1u + iσ2u = f, in Ω,

u = g, on ∂Ω,
(1.1)

where

△ ≡
d∑

j=1

∂2

∂x2
j

, d = 2, 3,

σ1 ∈ R, σ2 ≥ 0, Ω = [0, 1]d, and i =
√

−1. The discretization of the equation above in 2-D
(d = 2), using the second order central difference scheme on an (m + 2) × (m + 2) grid of
Ω with mesh-size h = 1/(m + 1) leads to a system of linear equations with the coefficient
matrix A = W + iT ∈ Cn×n, such that n = m2, and

W = K + σ1h2(Im ⊗ Im) and T = σ2h2(Im ⊗ Im),
with K = Im ⊗ Vm + Vm ⊗ Im and Vm = tridiag(−1, 2, −1) ∈ Rm×m. Here, ⊗ and
Im denote the Kronecker product and the identity matrix of order m, respectively. The
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matrix K is symmetric positive definite, since Vm is symmetric positive definite and the
Kronecker products with Im keep the eigenvalues the same, but raise the multiplicities
of the eigenvalues m times. For σ1 ≥ 0, the sum of a symmetric positive definite matrix
with a symmetric positive semidefinite one is also symmetric positive definite. Hence, W
is symmetric positive definite. If σ1 < 0, then the matrix W is not necessarily symmetric
positive definite. However, when the mesh-size h is small enough, then the matrix W
is symmetric positive definite. On the other hand, the matrix T is symmetric positive
semidefinite.

Similar to the 2-D case, discretization of the 3-D complex Helmholtz equation using the
second order central difference scheme on an (m + 2) × (m + 2) × (m + 2) grid of Ω with
mesh-size h = 1/(m + 1) results in a system of linear equations with the coefficient matrix
A = W + iT ∈ Cn×n, where n = m3,

W = K + σ1h2(Im ⊗ Im ⊗ Im) and T = σ2h2(Im ⊗ Im ⊗ Im),
with K = Im⊗Im⊗Vm+Vm⊗Im⊗Im+Im⊗Vm⊗Im and Vm = tridiag(−1, 2, −1) ∈ Rm×m.
Similar to the 2-D case, the matrix T is symmetric positive semidefinite and, for small
values of h, the matrix W is symmetric positive definite.

To summarize, in both 2-D and 3-D, a complex system of linear equations of the form
Au = b, (1.2)

is obtained where A = W + iT is symmetric, i.e., W and T are symmetric. Moreover, the
matrix T is symmetric positive semidefinite and, for small values of h, the matrix W is
symmetric positive definite.

In recent years, many efficient iterative methods have been proposed for the numerical
solutions of complex symmetric linear systems. Among these, some notable ones are
the Hermitian/skew-Hermitian splitting (HSS) method [6] due to Bai et al., its modified
version (MHSS) [3], preconditioned version (PMHSS) [4], the combination method of real
and imaginary parts (CRI) [19] due to Wang et al.

Additionally, the second author and his colleagues introduced the scale-splitting (SCSP)
method [13], more recently the second author generalized this to the two-step scale-
splitting (TSCSP) method [17], which we have further generalized into the two parameter
two-step scale-splitting (TTSCSP) method [18] given below formally.
The TTSCSP iteration method [18]: Let u(0) ∈ Cn be given. Generate a sequence
{u(k)} such that

(αW + T )u(k+ 1
2 ) = i(W − αT )u(k) + (α − i)b, (1.3)

(W + βT )u(k+1) = i(βW − T )u(k+ 1
2 ) + (1 − βi)b, (1.4)

for given positive real numbers α and β .
If α = β, then the TTSCSP method becomes TSCSP method. Salkuyeh in [17] showed

that if both of the matrices W and T are symmetric positive definite, then for any positive
α the TSCSP method is convergent. Letting G = W − 1

2 TW − 1
2 and σ(G) be the set of the

eigenvalues of G, in [18], it was proved that

σ(α, β) = max
µ∈σ(G)

{∣∣∣∣ µ − β

1 + βµ

∣∣∣∣} max
µ∈σ(G)

{∣∣∣∣1 − αµ

α + µ

∣∣∣∣}, (1.5)

is an upper bound for the spectral radius of the the TTSCSP iteration matrix and the
conditions on α and β that ensure the convergence of the method were presented.

Axelsson and Kucherov in [2] showed that it is possible to rewrite the system (W +
iT )u = b = p + iq in the form

Au =
[
W −T
T W

] [
x
y

]
=

[
p
q

]
, (1.6)
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which involves only real arithmetic.
Recently, using the idea of [8], Salkuyeh et al. in [16] solved the system (1.6) by the

generalized successive overrelaxation (GSOR) iteration method. A preconditioned version
of the GSOR method was presented by Hezari et al. in [12].

In this paper we present a new double-step method (hereafter, it is referred using the
short-hand DSM) for solving the system (1.2) and investigate its convergence properties.
From theoretical point of view, we compare the proposed method with the TSCSP method
and prove that under some conditions an upper bound on the spectral radius of DSM is
smaller than that of the TSCSP method. Our numerical results show that DSM is superior
to several existing methods

This paper is organized as follows. In Section 2, we present DSM and discuss its
convergence properties. Extreme eigenvalues of the matrix S = W −1T , which are used
for computing the convergence intervals of DSM, are given in Section 3. Inexact version
of DSM is studied in Section 4. Finally, Section 5 is devoted to numerical experiments to
show the effectiveness of the new method. Concluding remarks are given in Section 6.

2. The proposed method, DSM
Inspired by the ideas from the existing methods such as the TSCSP, TTSCSP, and CRI

methods, we introduce DSM. Each iteration of the TSCSP, TTSCSP, and CRI methods
consist of two half steps. In one step, the matrix W plays the role of the shift matrix
and the other step the matrix T . In the finite difference discretization of the Helmholtz
equation the matrix W dominates the matrix T . Hence, in both steps of DSM, we consider
the matrix T as the shift matrix. Letting α > 0, by adding αT to both sides of the complex
system (1.2), we obtain the following equivalent system

(αT + W )u = (α − i)Tu + b. (2.1)
Next, we multiply both sides of Eq. (1.2) by (1 − αi) to obtain

(1 − αi)Au = (1 − αi)b. (2.2)
The last equation can be rewritten as the following fixed-point equation:

(αT + W )u = i(αW − T )u + (1 − αi)b. (2.3)
Now, by alternately iterating between the two systems of fixed-point equations (2.1) and
(2.3), we obtain DSM for solving the complex symmetric linear system (1.2), which is
formally stated next.

DSM: Let u(0) ∈ Cn be an initial guess. For k = 0, 1, 2, . . ., repeat until {u(k)}
converges, compute u(k+1) based on the update rule{

(αT + W )u(k+ 1
2 ) = (α − i)Tu(k) + b,

(αT + W )u(k+1) = i(αW − T )u(k+ 1
2 ) + (1 − αi)b,

(2.4)

where α is a positive real number.
The two subsystems at each iteration of this method require to solve the systems with

the coefficient matrix αT + W . If W and T are symmetric positive semidefinite, with at
least one of them being positive definite, then the matrix αT + W would be symmetric
positive definite. Therefore, the two subsystems of the iteration method can be exactly
solved by the Cholesky factorization or inexactly by the conjugate gradient (CG) method.
Unlike the other methods such as TTSCSP, TSCSCP, MHSS, and CRI we observe that
the coefficient matrices of the two half-steps of the method are the same. Hence, when
these systems are solved exactly, only one Cholesky factorization of αT + W is needed.

It is easy to see that DSM can be reformulated as
u(k+1) = Gαu(k) + Cαb, (2.5)



1248 T.S. Siahkolaei and D.K. Salkuyeh

where
Gα = (1 + αi)(αT + W )−1(αW − T )(αT + W )−1T, (2.6)

and
Cα = (αT + W )−1

(
i(αW − T )(αT + W )−1 + (1 − αi)I

)
.

Lemma 2.1. Let W and T ∈ Rn×n be symmetric positive definite and symmetric positive
semidefinite, respectively. Then, the eigenvalues of the matrix S = W −1T are all real and
nonnegative.

Proof. It follows from S = W − 1
2 (W − 1

2 TW − 1
2 )W

1
2 that the matrices G = W − 1

2 TW − 1
2

and S are similar. Now the result follows from the fact that the matrix G is symmetric
positive semidefinite and its eigenvalues are nonnegative. �

Theorem 2.2. Let the matrices W ∈ Rn×n and T ∈ Rn×n be symmetric positive definite
and symmetric positive semidefinite, respectively. Let also µmin and µmax be the smallest
and largest eigenvalues of the matrix S = W −1T , respectively. Set ξ =

√
1+

√
5

2 ≈ 1.272

and η = 2
√

2 +
√

5 ≈ 4.116.
(i) When 0 < α < ξ, DSM for solving the (1.2) is convergent, if

µmax < r(α) = 2
−α(

√
1 + α2 + 2) +

√
∆

,

where ∆ = (1 + α2)(α2 + 4
√

1 + α2).
(ii) When ξ ≤ α < η, DSM is unconditionally convergent.
(iii) When α ≥ η, DSM for solving (1.2) is convergent, if

µmax < s(α) = −2α + α
√

1 + α2 −
√

∆̂
2(α2 +

√
1 + α2)

,

or

µmin > q(α) = −2α + α
√

1 + α2 +
√

∆̂
2(α2 +

√
1 + α2)

,

where ∆̂ = (1 + α2)(α2 − 4
√

1 + α2).

Proof. We can rewrite the matrix Gα as

Gα = (1 + αi)(αS + I)−1(αI − S)(αS + I)−1S,

where S = W −1T . The eigenvalues of the matrix Gα are of the form

λ = (1 + αi)(α − µ)µ
(αµ + 1)2 , (2.7)

where µ is the eigenvalue of the matrix S. Hence, we obtain

| λ |=
√

1 + α2 |α − µ|µ
(αµ + 1)2 .

Having | λ |< 1, it is equivalent to
√

1 + α2 |α − µ| µ

(αµ + 1)2 < 1.

The latter inequality holds if and only if

− (αµ + 1)2 <
√

1 + α2(α − µ)µ < (αµ + 1)2. (2.8)
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We determine the values of α in terms of the eigenvalues µ so that both of the inequalities
in (2.8) are satisfied. By direct computation, the left-hand side of the above inequality is
equivalent to

(−
√

1 + α2 + α2)µ2 + α(
√

(1 + α2) + 2)µ + 1 > 0. (2.9)
From Lemma 2.1, µ is nonnegative. If µ = 0, then inequality (2.9) holds trivially, so let
us assume µ > 0. Letting x = 1/µ, equation (2.9) can be rewritten as

h(x) = x2 + α(
√

1 + α2 + 2)x + (α2 −
√

1 + α2) > 0. (2.10)
The discriminant of the quadratic equation h(x) = 0 is

∆ = (1 + α2)(α2 + 4
√

1 + α2).
Obviously, ∆ > 0. Hence the quadratic equation h(x) = 0 has two solutions

x1 = −α(
√

1 + α2 + 2) −
√

∆
2

and x2 = −α(
√

1 + α2 + 2) +
√

∆
2

.

Clearly, x1 < 0. Additionally, as x1x2 = α2 −
√

1 + α2 the signs of x2 and
√

1 + α2 − α2

must be the same. It follows that x2 ≤ 0 if and only if
√

1 + α2 − α2 ≤ 0 which happens
when α ≥ ξ :=

√
1+

√
5

2 . Recalling also α > 0 and µ > 0, there are only the following two
possibilities:

• If α ≥ ξ, then h(x) > 0.
• If 0 < α < ξ, then x2 > 0. Therefore, for x > x2 the convergence condition (2.10)

holds true. But the condition x > x2 can equivalently be expressed as µ < r(α) for
all µ ∈ σ(S), where σ(S) is the spectrum of the matrix S. Since µmin ≤ µ ≤ µmax,
the inequality µ < r(α) holds for all µ ∈ σ(S) if µmax < r(α).

The right-hand side of (2.8) holds if and only if

K(µ) = (
√

1 + α2 + α2)µ2 + α(2 −
√

1 + α2)µ + 1 > 0. (2.11)
The discriminant of the quadratic equation K(µ) = 0 is

∆̂ = (1 + α2)(α2 − 4
√

1 + α2).

Therefore, according to the sign of ∆̂, we have two cases
• If 0 < α < η, then α2 − 4

√
1 + α2 < 0. Therefore ∆̂ < 0 and inequality (2.11)

holds true, where η =
√

8 + 4
√

5.

• If α ≥ η, then ∆̂ ≥ 0 and equation K(x) = 0 has the following two nonnegative
solutions

s(α) = α(
√

1 + α2 − 2) −
√

∆̂
2(α2 +

√
1 + α2)

, q(α) = α(
√

1 + α2 − 2) +
√

∆̂
2(α2 +

√
1 + α2)

.

Hence, the convergence condition (2.11) holds if and only if µ < s(α) or µ > q(α).
Therefore it is sufficient to have µmax < s(α) or µmin > q(α).

�
In general it is difficult to find the optimal value of the parameter α and it is problem-

based. In the sequel, we consider an upper bound for the spectral radius of Gα and compute
its minimizer. To do so, from Eq. (2.7) we have

|λ| ≤
√

1 + α2 max
µ∈σ(S)

{ |α − µ|µ
(1 + αµ)2

}
≤

√
1 + α2 max

µ∈σ(S)

{ |α − µ|
1 + αµ

}
max

µ∈σ(S)

{
µ

1 + αµ

}
=: γ(α). (2.12)
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In the next theorem, we find the value of α that minimizes the upper bound γ(α).

Theorem 2.3. Let all the assumptions of Theorem 2.2 hold and
α∗ = arg min

α>0
γ(α).

Then
α∗ = µminµmax − 1 +

√
(1 + µmin2)(1 + µmax2)

µmin + µmax
.

Proof. Let
f(α, µ) = α − µ

1 + αµ
and g(α, µ) = µ

1 + αµ
.

Therefore, we have

α∗ = arg min
α>0

{√
1 + α2 max

µ∈σ(S)
{|f(α, µ)|} max

µ∈σ(S)
{g(α, µ)}

}
.

We first study some properties of the function g(α, µ). The partial derivative of g(α, µ)
with respect to µ is positive, because

∂g(α, µ)
∂µ

= 1
(1 + αµ)2 .

This shows that the function g(α, µ) is increasing with respect to the variable µ, and hence
we get

max
µ∈σ(S)

{g(α, µ)} = µmax
1 + αµmax

.

It follows from Theorem 2 of [18] that

max
µ∈σ(S)

{|f(α, µ)|} = max
{

α − µmin
1 + αµmin

,
µmax − α

1 + αµmax

}
=


µmax − α

1 + αµmax
, α ≤ α∗,

α − µmin
1 + αµmin

, α ≥ α∗,

where α∗ satisfies the relation
α∗ − µmin
1 + α∗µmin

= µmax − α∗

1 + α∗µmax
,

which gives the following positive value for α∗

α∗ = µminµmax − 1 +
√

(1 + µmin2)(1 + µmax2)
µmin + µmax

.

Therefore, from Eq. (2.12) we have

γ(α) =


p1(α) =

√
1 + α2µmax(µmax − α)

(1 + αµmax)2 , α ≤ α∗,

p2(α) =
√

1 + α2µmax(α − µmin)
(1 + αµmin)(1 + αµmax)

, α ≥ α∗.

It is straightforward to verify that

p′
1(α) = −µmax

1 + α2 + µ2
max + α2µ2

max + (α − µmax)2
√

1 + α2(1 + αµmax)3
< 0,

p′
2(α) = µmax

α2µmin + 2µmin + α3 + α3µminµmax + αµ2
min + µ2

minµmax + α3µ2
min√

1 + α2(α + µmax)2(1 + αµmin)2
> 0,

for all α > 0, which show that the functions p1 and p2 are decreasing and increasing,
respectively. Therefore α∗ = arg min

α>0
γ(α). �
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In the sequel, we compare DSM with the TTSCSP iteration method. DSM is a single-
parameter method, hence we compare DSM with the TTSCSP method when α = β, that
is, with the TSCSP iteration method. In general it is difficult to compute the spectral
radius of the TSCSP method and DSM, because they are problem-based. Hence, we
compare the upper bounds on the spectral radii of their iteration matrices. In the next
theorem we prove that under some mild conditions the upper bound on the spectral radius
of DSM is less than or equal to that of the TSCSP method.

Theorem 2.4. Let the conditions of Theorem 2.2 be satisfied, µmin < 1, µmax ≥ 1, and

α̃ = 1 − µmax − 2µminµmax +
√

∆
2(µmax + µmin)

,

where ∆ = (µmax − 1)2 + 4µmax(µmax + µ2
min(µmax − 1)) > 0. Then,

γ(α) ≤ σ(α, α), ∀α ∈ (0, min{α̂, α̃}),

where σ(α, β) is defined in Eq. (1.5), and

α̂ = 1 − µminµmax +
√

(1 + µmin2)(1 + µmax2)
µmin + µmax

.

Proof. From Eq. (1.5) an upper bound for the spectral radius of the TSCSP iteration
method is given by

σ(α, α) = max
µ∈σ(S)

{∣∣∣∣ µ − α

1 + αµ

∣∣∣∣} max
µ∈σ(S)

{∣∣∣∣1 − αµ

α + µ

∣∣∣∣}.

Similar to Theorem 2.3, one can see that

σ(α, α) = max
{1 − αµmin

α + µmin
,
αµmax − 1
α + µmax

}
max

{
α − µmin
1 + αµmin

,
µmax − α

1 + αµmax

}
.

The inequality γ(α) ≤ σ(α, α) is equivalent to√
1 + α2 µmax

α + µmax
≤ max

{1 − αµmin
α + µmin

,
αµmax − 1
α + µmax

}
= η(α). (2.13)

Hence, let us consider η(α), in particular define

g(α) = 1 − αµmin
α + µmin

and h(α) = αµmax − 1
α + µmax

.

The strictly decreasing function g passes through the points (0, 1
µmin

) and ( 1
µmin

, 0), and
y = −µmin is a horizontal asymptote for the function g. Also the function h is a strictly
increasing that passes through the points (0, −1

µmax
) and ( 1

µmax
, 0), and y = µmax is a

horizontal asymptote for the function h (see Figure 1). The intersection point of the
functions h and g satisfies

1 − α̂µmin
α̂ + µmin

= α̂µmax − 1
α̂ + µmax

.

By direct computation we can see that the intersection point, α̂, is equal to

α̂ = 1 − µminµmax +
√

(1 + µmin2)(1 + µmax2)
µmin + µmax

.

Hence, we have

η(α) =


1 − αµmin
α + µmin

, α < α̂,

αµmax − 1
α + µmax

, α ≥ α̂.
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1/
min

*

h( )

-1/
max 1/

max

g( )1/
min

Figure 1. Graph of η(α).

For α < α̂, the inequality (2.13) holds if and only if√
1 + α2 µmax

α + µmax
≤ 1 − αµmin

α + µmin
.

From the fact that
√

1 + α2 ≤ 1 + α, we deduce that the latter inequality holds if

(1 + α) µmax
α + µmax

≤ 1 − αµmin
α + µmin

.

This inequality can be simplified as

q(α) := (µmax + µmin)α2 + (µmax + 2µminµmax − 1)α + µmax(µmin − 1) ≤ 0.

The roots of q(α) = 0 are

α± = 1 − µmax − 2µminµmax ±
√

∆
2(µmax + µmin)

,

where ∆ = (µmax −1)2 +4µmax(µmax +µ2
minµmax −µ2

min) ≥ 0. It is straightforward to verify
that if µmin < 1 and µmax ≥ 1, then α− < 0 and α+ > 0. This completes the proof. �

3. Extreme eigenvalues of S

To employ Theorem 2.2 for the convergence of DSM, we need to compute the extreme
eigenvalues of S. In this section, we obtain the smallest and largest eigenvalues of S for
both the two- or three-dimensional Helmholtz equation. We can see that the eigenvalues
of the matrix

S = W −1T = h2σ2 (h2σ1Im2 + K)−1

are as

µi,j = h2σ2
h2σ1 + ηi,j

,

where ηi,j ’s are the eigenvalues of K. In 2-D, the eigenvalues of the matrix K are given
by (see [14,15])

ηi,j = 4
(

sin2
(

iπ

2(m + 1)

)
+ sin2

(
jπ

2(m + 1)

))
, i, j = 1, 2, . . . , m.

Then we get

ηmin = min
i,j=1,...,m

ηi,j = 8 sin2 π

2(m + 1)
,

ηmax = max
i,j=1,...,m

ηi,j = 8 sin2 mπ

2(m + 1)
= 8 cos2 π

2(m + 1)
.
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Therefore, we obtain

µmin = min
i,j=1,...,m

µi,j = h2σ2
h2σ1 + ηmax

= h2σ2
h2σ1 + 8 cos2 π

2(m+1)
,

µmax = max
i,j=1,...,m

µi,j = h2σ2
h2σ1 + ηmin

= h2σ2
h2σ1 + 8 sin2 π

2(m+1)
.

For 3-D, the eigenvalues of K are given by (see [14,15])

ηi,j,k = 4
(

sin2
(

iπ

2(m + 1)

)
+ sin2

(
jπ

2(m + 1)

)
+ sin2

(
kπ

2(m + 1)

))
,

for i, j, k = 1, 2, . . . , m. Similar to the 2-D case the eigenvalues of S = W −1T =
h2σ2 (h2σ1 + K)−1 are given by

µi,j,k = h2σ2
h2σ1 + ηi,j,k

,

where ηi,j,k’s are the eigenvalues of K. Hence, following the arguments for the 2-D case,
we deduce that

µmin = min
i,j,k=1,...,m

µi,j,k = h2σ2
h2σ1 + 12 cos2 π

2(m+1)
, (3.1)

µmax = max
i,j,k=1,...,m

µi,j,k = h2σ2
h2σ1 + 12 sin2 π

2(m+1)
. (3.2)

4. Inexact DSM
The two half steps at each DSM iteration require the solutions of two systems of linear

equations with the coefficient matrix αT + W . This may be costly and impractical in
practical implementations. To overcome this disadvantage we can solve the two subsys-
tems iteratively. Since W and T are symmetric positive definite and symmetric positive
semidefinite matrices, we conclude that the matrix αT + W is symmetric positive definite
and we can employ CG to solve the two subsystems of DSM.

The subsystems involving DSM are solved by the CG method such that the relative
residual norms are less than ϵk > 0 and ηk > 0 for the inexact solutions of the first and
the second linear systems, respectively. To do so, letting

u(k+ 1
2 ) = u(k) + δ(k),

and substituting it in the first subsystem (2.4), gives

(αT + W )δ(k) = b − (W + iT )u(k) = b − Au(k) = r(k).

In the same way, by setting

u(k+1) = u(k+ 1
2 ) + δ(k+ 1

2 ),

the second subsystem of (2.4) can be written as

(αT + W )δ(k+ 1
2 ) = (1 − αi)r(k+ 1

2 ),

where r(k+ 1
2 ) = b−Au(k+ 1

2 ). Putting the remarks above into use gives the following inexact
version of the DSM algorithm.

The Inexact DSM (IDSM)
(1) Choose an initial guess u(0) and compute r(0) = b − Au(0)

(2) For k = 0, 1, 2, . . . until convergence, Do
(3) Compute r(k) = b − Au(k).
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(4) Solve (αT+W )δ(k) = r(k) by the CG method to compute the approximate
solution δ(k) satisfying ∥r(k) − (αT + W )δ(k)∥2 ≤ ϵk∥r(k)∥2

(5) u(k+ 1
2 ) := u(k) + δ(k)

(6) Compute r(k+ 1
2 ) = b − Au(k+ 1

2 ) and set r(k+ 1
2 ) = (1 − αi)r(k+ 1

2 )

(7) Solve (αT + W )δ(k+ 1
2 ) = r(k+ 1

2 ) by the CG method to compute the
approximate solution δ(k+ 1

2 ) satisfying
∥r(k+ 1

2 ) − (αT + W )δ(k+ 1
2 )∥2 ≤ ηk∥r(k+ 1

2 )∥2
(8) u(k+1) := u(k+ 1

2 ) + δ(k+ 1
2 )

(9) EndDo
Convergence of IDSM can be proved similar to that of the TTSCSP method (see [18]).

5. Numerical experiments
In this section, we apply DSM and its inexact version for solving the Helmholtz equations

(1.2), for different values of σ1 and σ2. The right-hand side vector b is set to be b =
(1 + i)A1, with 1 being the vector of all entries equal to 1. It is shown that DSM is more
efficient than the PMHSS, CRI, and TTSCSP methods. Numerical comparisons of the
inexact version of these algorithms are also performed.

Numerical results are compared in terms of both the number of iterations and the CPU
time which are, respectively, denoted by “Iter” and “CPU” in the tables. In all the tests,
we use a zero vector as an initial guess and the stopping criterion

∥b − Au(k)∥2
∥b∥2

< 10−6,

is always used. In the implementation of DSM, the systems with the coefficient matrix
αT +W is solved using the Cholesky factorization of the matrix. For all the exact methods,
we apply the sparse Cholesky factorization together with the symmetric approximate
minimum degree reordering [15] for solving the subsystems. To do so, we have used the
symamd.m command of Matlab. In all the inexact methods, we apply the CG method (or
its preconditioned version, PCG) for solving the two subsystems with tolerance 10−2. In
all of the inexact 2-D versions of the algorithms we apply the preconditioned CG (PCG)
iteration method in conjunction with the modified incomplete Cholesky factorization as
the preconditioner for solving the subsystems. In the Matlab notation the preconditioner
can be computed using the following command

LC=ichol(C,struct(’michol’,’on’,’type’,’ict’,’droptol’,1e-2));
where C is a given symmetric positive definite matrix.

All runs are implemented in Matlab R2014b with a Laptop with 2.40 GHz central
processing unit (Intel(R) Core(TM) i7-5500), 8 GB memory and Windows 10 operating
system.

5.1. Existing methods used for comparison
In our numerical experiments, we compare the proposed DSM with

1. the two parameter two-step scale-splitting (TTSCSP) method defined in the in-
troduction, as well as

2. the preconditioned Hermitian/skew-Hermitian splitting (PMHSS) method [4], and
3. the combination method of real and imaginary parts (CRI) [19].

The formal definitions of the latter two methods are given below. Note that, in the
definition of the PMHSS method, the matrix V corresponds to a preconditioner and is
supposed to be symmetric positive definite. In our experiments, we always choose V = W ,
which is a standard practice followed in the literature.
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Table 1. Numerical results for the 2-D case with σ1 = −10 and σ2 = 10.

Method m 32 64 128 256 512
DSM αopt 0.74 0.74 0.74 0.74 0.74

Iter 5 5 4 4 4
CPU 0.02 0.03 0.11 0.58 3.74

DSM α∗ 0.42 0.42 0.42 0.42 0.42
Iter 10 9 8 7 6
CPU 0.04 0.06 0.16 0.62 4.89

TTSCSP αopt 0.75 0.71 0.80 0.72 0.68
βopt 0.04 0.03 0.02 0.04 0.01
Iter 5 5 4 4 4
CPU 0.02 0.03 0.15 0.88 4.81

PMHSS αopt 0.78 0.86 0.89 0.91 0.91
Iter 40 40 40 40 40
CPU 0.02 0.07 0.42 2.24 16.85

CRI αopt 0.85 0.71 0.87 0.68 0.56
Iter 15 14 12 11 10
CPU 0.02 0.05 0.27 1.26 8.71

u = A\b CPU 0.005 0.04 0.105 0.45 2.44

The PMHSS iteration method [4]: Given u(0) ∈ Cn , generate a sequence {u(k)}
such that {

(αV + W )u(k+ 1
2 ) = (αV − iT )u(k) + b,

(αV + T )u(k+1) = (αV + iW )u(k+ 1
2 ) − ib,

where α is a given positive real number.

The CRI iteration method [19]: Given u(0) ∈ Cn , generate a sequence {u(k)}
such that {

(αT + W )u(k+ 1
2 ) = (α − i)Tu(k) + b,

(αW + T )u(k+1) = (α + i)Wu(k+ 1
2 ) − ib,

where α is a given positive real number.

5.2. Numerical comparison
In Tables 1 and 2, we list the numerical results on the 2-D complex Helmholtz equation

(1.1) for the exact methods with (σ1, σ2) = (−10, 10) and (σ1, σ2) = (100, 10), respectively.
For all of the methods, the optimal value of α (αopt) were found experimentally and are
the ones resulting in the least numbers of iterations. In these tables, we see that for all
the examples the values of αopt are constant. We also present the numerical results for the
DSM method with parameter α∗ provided by Theorem 2.3. To show the advantages of the
iteration methods over the direct sparse solvers, we present the CPU times of computing
the solution of the system by the backslash command (“\”) of Matlab.

The inexact version of the DSM, TTSCSP, PMHSS, and CRI methods are denoted by
IDSM, ITTSCSP, IPMHSS, and ICRI, respectively. Tables 3 and 4 present the numerical
results of the inexact versions of the methods. In Table 3, for the ITTSCSP and IPMHSS
iteration method for m = 64, the ict function of Matlab encounters a nonpositive pivot
during the computation of the inexact Cholesky factorization. Therefore, we have used a
smaller value of the dropping tolerance (droptol) which have been presented in the table.
Numerical results corresponding to the exact versions of the methods for the 3-D cases
have been reported in Tables 5 and 6. In these tables, recall that n = 83, 163, 323, 643. As
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Table 2. Numerical results for the 2-D case with σ1 = 100 and σ2 = 10.

Method m 32 64 128 256 512
DSM αopt 0.06 0.06 0.06 0.06 0.06

Iter 2 2 2 2 2
CPU 0.01 0.02 0.08 0.38 2.32

DSM α∗ 0.04 0.04 0.04 0.04 0.04
Iter 3 3 2 2 2
CPU 0.02 0.03 0.08 0.39 2.30

TTSCSP αopt 1.40 0.93 0.75 0.65 0.50
βopt 0.01 0.03 0.02 0.01 0.01
Iter 4 4 4 4 4
CPU 0.02 0.03 0.15 0.79 4.85

PMHSS αopt 0.76 0.85 0.89 0.76 0.76
Iter 40 40 40 41 41
CPU 0.02 0.07 0.42 2.28 17.20

CRI αopt 0.51 0.73 0.49 0.36 0.43
Iter 7 6 6 6 5
CPU 0.02 0.04 0.17 0.87 5.21

u = A\b CPU 0.005 0.02 0.10 0.46 2.63

Table 3. Numerical results for the inexact version of the methods for the 2-D
case with σ1 = −10 and σ2 = 10.

Method m 32 64 128 256 512
IDSM αopt 0.74 0.74 0.74 0.74 0.74

Iter 5 5 4 4 4
CPU 0.10 0.17 0.32 1.37 14.89

ITTSCSP αopt 0.74 0.70 0.65 0.72 0.68
βopt 0.04 0.03 0.02 0.04 0.01
Iter 5 6 5 5 5
CPU 0.11 0.16 0.47 1.51 22.55
droptol 1e-2 1e-3 1e-3 1e-3 1e-4

IPMHSS αopt 0.78 0.86 0.90 0.91 0.76
Iter 40 40 40 40 41
CPU 0.18 0.35 1.58 8.26 131.01
droptol 1e-2 1e-3 1e-3 1e-4 1e-4

ICRI αopt 0.85 0.71 0.87 0.74 0.63
Iter 15 14 12 11 10
CPU 0.16 0.30 0.77 3.78 41.63

seen DSM outperforms the other methods in terms of both the number of iterations and
the CPU time, especially for large systems. Tables 7 and 8 present numerical results in
3-D for the IDSM, ITTSCSP, IPMHSS, and ICRI methods.

It is apparent from the tables that DSM is very effective in reducing the number of
iterations, as well as the CPU time; this remark applies both the exact and the inexact
versions. Also, the tables show that the optimal value of the parameter α remains almost
constant with respect to the problem size for both of DSM and IDSM. On the other
hand, we observe that Theorem 2.3 provides good estimates for the optimal values of the
parameter α. Another observation is that in most cases (except in Table 1) the CPU time
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Table 4. Numerical results for the inexact version of the methods for the 2-D
case with σ1 = 100 and σ2 = 10.

Method m 32 64 128 256 512
IDSM αopt 0.06 0.06 0.06 0.06 0.06

Iter 3 2 2 2 2
CPU 0.06 0.07 0.13 0.36 3.00

ITTSCSP αopt 1.02 0.94 0.90 0.85 0.80
βopt 0.03 0.02 0.01 0.01 0.01
Iter 4 5 4 4 4
CPU 0.09 0.13 0.20 0.60 4.99

IPMHSS αopt 0.76 0.85 0.89 0.76 0.76
Iter 40 40 40 41 41
CPU 0.14 0.31 0.64 2.38 22.40

ICRI αopt 0.51 0.73 0.49 0.38 0.32
Iter 7 6 6 6 6
CPU 0.10 0.15 0.25 0.99 9.61

Table 5. Numerical results for the 3-D case with σ1 = −10 and σ2 = 10.

Method m 8 16 32 64
DSM αopt 0.07 0.07 0.07 0.07

Iter 2 2 2 2
CPU 0.01 0.06 1.01 69.75

DSM α∗ 0.05 0.04 0.04 0.04
Iter 3 3 3 2
CPU 0.02 0.07 1.02 69.06

TTSCSP αopt 0.89 0.89 0.89 0.89
βopt 0.05 0.04 0.03 0.02
Iter 4 4 4 4
CPU 0.02 0.11 2.84 2165.19

PMHSS αopt 0.70 0.70 0.70 0.70
Iter 36 39 41 42
CPU 0.03 0.55 17.82 563.42

CRI αopt 1.0 1.0 1.0 1.0
Iter 7 7 7 7
CPU 0.02 0.14 3.95 2176.46

u = A\b CPU 0.004 0.092 3.15 273.09

to compute the solution by the backslash command of Matlab is greater than that of
DSM.

According to the numerical results presented in Tables 1-4 we observe that in all of
the 2-D cases, IDSM is slower than DSM. The main reason for obtaining such results is
that the elapsed CPU time for solving the subsystems by the PCG method is greater then
that of solving these systems using the Cholesky factorizations. This is not the case in
3-D. Indeed, in the 3-D case the Cholesky factor of the matrix αT + W is of high-density
and solving the systems with the Cholesky factor of αT + W (forward and backward
substitutions) increases the CPU time of DSM.

Finally, we consider the Helmholtz equation in both 2-D and 3-D for m = 32 and several
values of σ1 and σ2. In Table 9, we list the optimal values of α along with the values of
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Table 6. Numerical results for the 3-D case with σ1 = 10 and σ2 = 10.

Method m 8 16 32 64
DSM αopt 0.07 0.07 0.07 0.07

Iter 2 2 2 2
CPU 0.01 0.06 1.37 76.36

DSM α∗ 0.05 0.04 0.04 0.04
Iter 3 3 3 2
CPU 0.02 0.07 1.52 76.21

TTSCSP αopt 0.89 0.89 0.89 0.89
βopt 0.05 0.04 0.03 0.02
Iter 4 4 4 4
CPU 0.02 0.11 2.76 1765.45

PMHSS αopt 0.70 0.84 0.77 0.85
Iter 36 38 40 40
CPU 0.02 0.28 8.64 431.11

CRI αopt 1.0 1.0 1.0 1.0
Iter 7 7 7 6
CPU 0.02 0.14 4.01 2084.56

u = A\b CPU 0.01 0.09 3.01 323.57

Table 7. Numerical results for the inexact version of the methods for the 3-D
case with σ1 = −10 and σ2 = 10.

Method m 8 16 32 64
IDSM αopt 0.07 0.07 0.07 0.07

Iter 3 2 2 2
CPU 0.04 0.06 0.32 8.79

ITTSCSP αopt 0.89 0.89 0.89 0.89
βopt 0.05 0.03 0.03 0.02
Iter 4 5 5 4
CPU 0.03 0.08 0.55 15.79

IPMHSS αopt 0.70 0.70 0.70 0.70
Iter 36 39 41 42
CPU 0.05 0.22 1.88 61.81

ICRI αopt 1.0 1.0 1.0 1.0
Iter 7 7 7 7
CPU 0.04 0.10 0.61 20.93

µmax and r(α). In all the cases, we observe αopt < ξ and µmax < r(α). This confirms the
convergence of DSM by the first part of Theorem 2.2.
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Table 8. Numerical results for the inexact version of the methods for the 3-D
case with σ1 = 10 and σ2 = 10.

Method m 8 16 32 64
IDSM αopt 0.07 0.07 0.07 0.07

Iter 3 2 2 2
CPU 0.03 0.05 0.25 5.82

ITTSCSP αopt 0.81 0.60 0.50 0.60
βopt 0.05 0.03 0.03 0.03
Iter 4 4 5 5
CPU 0.03 0.08 0.47 12.17

IPMHSS αopt 0.70 0.84 0.77 0.85
Iter 36 38 40 40
CPU 0.05 0.18 1.64 41.63

CRI αopt 1.0 1.0 1.0 1.0
Iter 7 7 7 6
CPU 0.04 0.09 0.60 14.12

Table 9. Convergence study of DSM for m = 32 and some values of σ1 and σ2.

Method σ1 σ2 α µmax r(α)
2-D case -10 10 0.74 < ξ 1.028 3.823
2-D case 100 10 0.06 < ξ 0.084 1.095
3-D case -10 10 0.07 < ξ 0.511 1.112
3-D case 10 10 0.07 < ξ 0.252 1.112

6. Conclusions
We have presented a new double-step method (DSM) for solving the system of lin-

ear equations that arise from finite difference discretization of the 2-D and 3-D complex
Helmholtz equations. We have provided conditions under which our method is conver-
gent. Numerical results with several parameter values indicate DSM outperforms the
CRI, PMHSS, and TTSCSP methods on the selected set of examples.
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