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Abstract 

In this study, we investigated the space curves in Euclidean 3-space whose tangent lines at each point 

intersect a given straight line passing the origin and intersect a fixed point, and we gave some 

characterizations in these cases. 
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1. Introduction  

The space curves whose principal normals intersecting a given straight line were first 

investigated by G. Pirondini, and further considered by E. Cesaro [1]. The corresponding 

question in affine space had been introduced by B. Su in 1929, He classified the curves and 

gave some remarkable results in affine 3-space by using equi-affine frame [3]. 

Let 3: E  be unit speed curve and  )(),(),( sBsNsT is the Frenet frame of ).(s )(sT ,

)(sN  and )(sB  are called the unit tangent, principal normal and binormal vectors 

respectively. Frenet formulae are given by 
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where  s  and  s  are called the curvature and the torsion of the curve ).(s  A space 

curve  s  is determined by its curvature  s  and its torsion  s , uniqely [2, 4]. 

2.  The Space Curves Whose Tangents Intersect a Fixed Line  

Let 3: E  be a curve with arclength parameter and l  be the line passing the origin. 

We assume that the tangents lines intersect the fixed l directed constant and unit vector 

u at each point of the curve ,then we can write the following relation  

ussTss ).()()()(                                                                                          (2) 

where uss ).()(    ve )(s  are the differentiable vector depending s so since )(s  is a 

line then we quaranteed  0  . By taking the first and the second derivatives of (2), 

we get 

ussNsssTs )()()()()())(1(                                                   (3) 

 
 
 

us

sBsss

sNsssss

sTsss

)(

)()()()(

)()()()()(2)(

)()()()( 2
































                                         (4) 

by using (2) and (4). If the tangents of the curve  s  intersect a fixed point on l  then, 

0  and also 0)( s  and css )( . In this case,   is the involute of  s . 

Conversely,  s  is involute of  , then  s  is a line intersecting a fixed point of fixed line 

l , so following corollary is concerned. 

Corallary 2.1: The tangents of the curve  s  intersect a fixed point if and only if   is the 

involute of   and  s  is a line. 

If 0 and 0  then from (4), we have  

 0)()()( 2  sss                                                             (5) 

0)()()()(2)(  sssss                                                      (6) 

0)()()( sss                                                                 (7) 
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Thus, we can say that there is no solution in the case 0  for 0)( s  by considering 

(6), so there is no curve whose tangent lines intersect a fixed line. 

Let 0 then from (3) and (4), we have                                     

0)())(1()())()()(( 2  ssssss                                               (8) 

0)()()()())()()()(2)((  sssssssss                                         (9) 

0)()()( sss                                                                   (10) 

 It is clear from (10) that  s  has to be planar, from (8), we get the solution 
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Rewrite (11) in (9), 
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and the solution of (12) is, 
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Here, )(s  is the real solution iff 12 c ,so the real solution of (12) is 

)cos(2
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and from (11), )(s  is 
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              (16) 

and 1c  is an arbitrary constant. For any 2c and nonzero constant )(s in (13), )(s  is  
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Hence following corallary is concerned. 

Teorem 2.1: Let  s  be a planar curve with non-constant curvature and the tangent lines 

at each point of  s , intersect fixed line l  then 
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Corallary 2.2: If  s  is a planar curve with constant nonzero curveture and the tangent 

lines at each points of   s  intersect fixed line l ,then  
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