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A B S T R A C T 

A renewal process is a counting process which counts the number of renewals that occurs as a function of 

time, wherein the durations between successive renewals are random variables independent of one 

another, with identical F distributions. The mean value function data is frequently needed in applications 

of renewal processes. For the renewal function, open expressions depending on distribution function F 

can be calculated from each other. However, even though the distribution function F is known, the renewal 

function cannot be obtained analytically except for a few distributions. In this study, in the case that F is 

totally unknown, life table management and Kaplan-Meier estimator were used depending on random 

right-censored sampling for the estimation of F value. Then, for the estimation of the renewal function 

value in the random right-censored data, nonparametric estimators were proposed and the problem of how 

to calculate these estimators were discussed. 

 

© 2019. Turkish Journal Park Academic. All rights reserved.  

 

1. Introduction 

The renewal theory has numerous applications, in a broad 
range of applied probability problems and is used for the 
modelling of subsequent repairs of a broken machine or 
relocations in reliability problems. The renewal theory is also 
proven to be a powerful tool in the planning problems of the 
number of workers. The renewal process wherein is used for 
modelling the sequence of the departure of a job given by 
assignment. 

Let be {Xn, n=1, 2, ….} a non-negative, independent set of 
random variables having the same F distribution function, and 
let F(0)= P(Xn=0)<1, that is Xn be not equal to zero with a 
possibility. 

Let Xn: (n-1) be the time interval passing until renewals n after 
the renewal.  

So=0, Sn= X1+….+ Xn, n≥1, where Sn is the random variable and n 
is the time interval until the renewal is made.  

Let N(t)=sup{n:Sn≤t}  , for each t≥0. N(t) is the number of 
renewals up to time t, that is, the number of those between the 

time interval [0, t]. The renewal random variable of N(t) and 
the stochastic process of {N(t), t≥0}, which are defined so, are 
also called a “renewal process” [1-6]. 

{N(t), t≥0} being a renewal process,  the M mean value function 
given by M(t)=E(N(t)), t≥0, is called a renewal function [7, 8]. 
Where, M(t) is the number of renewals made in time interval 
[0, t]. 

   𝐼𝑘 = {
1,     𝑆𝑘 ≤ 𝑡
0,     𝑆𝑘 > 𝑡

  and 𝑁(𝑡) = ∑ 𝐼𝑘
∞
𝑘=1  so when 

E(N(t))=(∑ 𝐼𝑘
∞
𝑘=1 ) = ∑ 𝐸(𝐼𝑘) =

∞
𝑘=1 ∑ 𝑃(𝑆𝑘 ≤ 𝑡)

∞
𝑘=1 = ∑ 𝐹𝑘

∗
(𝑡)∞

𝑘=1                                                                               

                                                                                                                       (1) 

Then  

𝑀(𝑡) = ∑ 𝐹𝑘
∗
(𝑡)∞

𝑘=1  ,        t≥ 0                                                         (2) 

By using equality (2), it is easily obtained that M is a right-
continuous and non-decreasing function. However, when  
lim
∞
𝑀(𝑡) = ∞, where renewal function M has all the features of 

a distribution function except not converging to 1 for 𝑡 → ∞.  

Theorem 1 Let be a finite non-arithmetic distribution function 
with F and a second momentum  𝜇2. So [9], 
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 lim
𝑡→∞

(𝑀(𝑡) +
𝑡

𝜇
) =

𝜇2

2𝜇2
                                                                         (3) 

Theorem 2. “The Blackwell Theorem” is very useful for 
calculating M(t) for the big values of the asymptotic expression 
t given for M(t) and also for the estimation of M(t) when F is 

known. Let µ and  𝜎2 be 𝑐2 =
𝜎2

𝜇2
  to show the expected values 

and variance of F distribution, where c, is the variation 
coefficient of F.  

In this case, 𝑀(𝑡) ≈
𝑡

𝜇
+
1

2
(𝑐2 − 1)   can be derived from the 

asymptotic expression (3) for the sufficiently large t. When F is 
a mean exponential distribution function µ, that is, c=1, the 
above asymptotic expansion is equal to M(t) itself for every   
𝑡 ≥ 0 .  If c2 is not too large or too small, this asymptotic 
expansion is true for some values of t in practice. Quantitative 

studies show that the expansion 
𝑡

𝜇
+
1

2
(𝑐2 − 1)   can be used for 

M(t) in practice for 𝑡 ≥ 𝑡0, where [9] 

𝑡𝑜 =

{
 
 

 
 
3

2
𝑐2𝜇,                     𝑐2 > 1 

𝜇,                    0.2 <  𝑐2 ≤ 1
𝜇

2𝑐
,                 0 <  𝑐2 ≤ 0.2   

 

When 𝑐2 → 0, the expansion deteriorates. The relative error in 
the approach is typically below 5% for 𝑡 ≥ 𝑡0 and mostly below 
2%. 

2. Right random censoring 

Censoring is to ignore the data that cannot be known exactly 
and observed for any reasons due to a number of limitations, 
such as time and cost [10]. For example, the death of an 
individual from a different cause such as traffic accident within 
the period of his/her treatment. 

Different kinds of censoring are given in the literature [11]. 
Some of them are as follows: 

• Right Censoring 

• Type I Censoring (censoring of time) 

• Random Censoring (random censoring of time) 

• Type II Censoring (partial censoring) 

• Left Censoring 

• Dual Censoring 

• Range Censoring 

We are only concerned with random right censoring of the 
above kinds of censorings in this study. This censoring status 
is discussed in detail in the following section. 

2.1. Life table methods and product-limit (Kaplan-Meier) 
estimate 

Let’s suppose that F is unknown for a renewal process whose 
distribution function of time ranges passed between renewals 
is F. Let’s consider a sample of n units that was randomly right 

censored from the F distribution, let the observations be 
classified so as to know from what ranges the components are 
deteriorated or censored and let their lives and censoring 
ranges be not known. As the time axis being an upper limit on 
ao=0, ak=t, ak+1=∞ and t observation , be divided k+1 pieces of  
Ij=[aj-1,aj) j=1,2,…..k+1 ranges. Therefore, the observations 
consist of the numbers of lives and censoring ranges for each 
k+1 range. Ik+1, the last range, will be able to be approached as 
the range of life intervals only, all the components not 
deteriorated up to t time, have to deteriorate in a time in Ik+1. 

nj is the number of components (working and uncensored) 
under risk at time aj-1  

dj is the number of deteriorated ones at Ij . 

wj is the number of the ones censored.  

Since the number of components living at the beginning of Ij is 
nj ; 

n1=n and nj=nj-1-dj-1-wj-1,       j=1,2,…..k+1 

Let denote a random variable with an F distribution function. 

�̅�(𝑎𝑗) = 𝑃(𝑌 > 𝑎𝑗),    𝑗 = 1,2,……𝑘 + 1     

𝑝𝑗 = 𝑃(𝑌 > 𝑎𝑗|𝑌 > 𝑎𝑗−1) and q=1-𝑝𝑗 ,  j=1, 2, …, k+1 

Since; 

�̅�(𝑎𝑜) = 1 

�̅�(𝑎1) = 𝑃(𝑌 > 𝑎1) 

�̅�(𝑎2) = 𝑃(𝑌 > 𝑎2) =  𝑃(𝑌 > 𝑎2|𝑌 > 𝑎1) 𝑃(𝑌 > 𝑎1) 

. 

. 

. 

�̅�(𝑎𝑘) = 𝑃(𝑌 > 𝑎𝑘) =  𝑃(𝑌 > 𝑎𝑘|𝑌 > 𝑎𝑘−1)𝑃(𝑌 > 𝑎𝑘−1|𝑌 > 𝑎𝑘−2) 

                                                                                            …𝑃(𝑌 > 𝑎1) 

Then 

�̅�(𝑎𝑗) = 𝑝1𝑝2… . , 𝑘 + 1                  𝑗 = 1, 2,… , 𝑘 + 1                   (4)                  

Now, let’s consider the estimation problem of �̅�(aj) . If the data 
are not censored, there will be no difficulties while performing 
this. So, an open estimation is the best probability estimator   
𝑛𝑗+1

𝑛
  for �̅� (aj)  

𝑛𝑗+1

𝑛
 , where aj is the ratio of working 

observations. If the ranges comprise back-off that is 
censorings, it will not be this way, because nj+1 is not 
necessarily the number of working components in time aj. 
Since it is likely that some of the censored components will still 

work in aj, 
𝑛𝑗+1

𝑛
 will tend to estimate in most cases from below. 

This problem can be solved with the life table method given 
below. 

If there is no censoring in range Ij, �̂� j=
𝑑𝑗

𝑛𝑗
 is a significant 

estimation of �̂� j, because when component �̂� j is known to be 
working at the beginning of Ij, this is the conditional possibility 

of deterioration of that component in Ij. However, if wj>0,  
𝑑𝑗

𝑛𝑗
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can be expected to estimate qj from below, because some of the 
censored components in Ij can be deteriorated before the end 
of Ij. Additionally, those previously censored but deteriorated 
in Ij are not already within nj. Therefore, it is desirable to make 
an arrangement for censored observations. The most 
commonly used method is the estimation made by  

�̂�j=
𝑑𝑗

𝑛𝑗 −
𝑤𝑗

2

                                             (5) 

which calls the number of qj as the standard life table 
estimation. 
The expression 5, suggests that  nj>0. When nj=0, it is defined 

by �̂� j =1 for compatibility reasons.  nj‘ = 𝑛𝑗 −
𝑤𝑗

2
 can be 

considered as an efficient number of the components under 
risk for  Ij  range; with this expression, it is , to some extent, 
accepted that a censored component work under risk for half 
of the range. This arrangement is arbitrary, but mostly 
reasonable. In some cases, other estimators of qj are preferred. 
For example, if all the censorings in Ij  take place on the right at 

the end of Ij, the estimation of  �̂�j=
𝑑𝑗

𝑛𝑗 
 will be suitable, while all 

the censorings do not take place at the beginning of Ij,  

�̂� j=
𝑑𝑗

𝑛𝑗 −𝑤𝑗
will be suitable. After estimations of �̂� j and                    

�̂�𝑗 = 1 − 𝑞 ̂𝑗  are calculated, with the help of �̅�(aj), equation 4 

�̅�(𝑎𝑗) = �̂�1……..�̂�𝑗 ,                𝐽 = 1,2,… . . 𝑘 + 1                                (6) 

can be estimated. 

The life table itself is a table showing the data, �̂� j and 
�̂�𝑗estimations. This table includes columns giving the values of 

nj dj, wj, �̂�j and �̂�𝑗and �̂�𝑗for each. n’j and �̂�𝑗are sometimes placed 

in the columns giving the estimations of other characteristics 
of the distribution. For all particular cases where wj=0, �̂�𝑗 is 

reduced to aforementioned 
𝑛𝑗+1

𝑛
 estimation for an uncensored 

case. Suppose that the deterioration intervals in the sample of 
n units and the censoring intervals of the observations whose 
deterioration times are not observed are known, then the 
estimator of �̅�(t) is; 

�̅� ̂(𝑡) =
𝐸𝑞𝑢𝑎𝑙 𝑡𝑜 𝑜𝑟 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 𝑜𝑛 𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒 𝑡

𝑛
     (7)                           

In the case that the sample is censored, since the number of the 
observations whose lives are equal to or longer than t cannot 
be known exactly, the estimator will have to be re-arranged 
from equation 7.  With the arrangement given below, the 
estimation of �̅�(t) called product-limit or Kaplan-Meier can be 
reached [13]. 

Let’s suppose that k pieces of n components deteriorate at 
different times of t1<t2<……< tk, and that at tj  (j=1,2,…., k), more 
than one deterioration are allowed, and let dj be the number of 
deteriorations at tj.  In addition to the deterioration times in     
t1, t2, ……, tk, there are also censoring times for the components 
whose lives are not observable. Then, the Kaplan-Meier 
(product-limit) estimation of F(t) is denoted with [11, 12]; 

  �̂�𝐾𝑀(𝑡) = 1 − ∏
𝑛𝑗−𝑑𝑗

𝑛𝑗
𝑗:𝑡𝑗<𝑡                                                                 (8) 

Example 1 the deterioration times (in months) for a unit of a 
device are given Table 1 below. Here, the censoring for the 

deterioration times are claimed to be random and independent 
and the deterioration times are given in Table 1 below. 

Table 1. The deterioration times (in months) for a unit of a 
device are 

 

Table 2. Kaplan-Meier estimators of the device at the given t 
points 

 

T 
ˆ ( )KMF t  

 

T 
ˆ ( )KMF t  

36.3 0.0227 55.1 0.5597 

41.7 0.0460 55.4 0.5842 

43.9 0.0705 55.9 0.6086 

49.9 0.0949 56.0 0.6331 

50.1 0.1194 56.1 0.6575 

50.8 0.1438 56.5 0.6820 

51.9 0.1683 56.9 0.7065 

52.1 0.1928 57.1 0.7554 

52.3 0.2417 57.3 0.7798 

52.4 0.2662 57.7 0.8043 

52.6 0.2906 57.8 0.8288 

52.7 0.3151 58.1 0.8532 

53.1 0.3395 58.9 0.8777 

53.6 0.3885 59.0 0.9022 

53.9 0.4374 59.1 0.9266 

54.1 0.4618 59.6 0.9511 

54.6 0.4863 60.4 0.9755 

54.8 0.5352 60.7 1.0000 

3. Material and Method 

In applications regarding renewal processes, generally the data 
of   renewal function, which is the mean value function of this 
process, is needed. While the distribution function   is known 
as modal in practice, some of its parameters are not known or   
is totally unknown. In such cases, depending on the sample of 
n units taken from distribution, the values of   need to be 
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estimated, in this case, a non-parametric estimation of   is made 
[14]. 

Let X1,…., Xn be a sample of n units randomly censored from F 
distribution Depending on this sample, let’s consider the 
Kaplan-Meier estimator of; 

�̂�𝐾𝑀(𝑡) = 1 −∏
𝑛𝑗 − 𝑑𝑗

𝑛𝑗𝑗:𝑡𝑗<𝑡
 

 In the convolution set equation 2, expression of M(t), 

�̂�𝐾𝑀(𝑡) = ∑ �̂�𝐾𝑀
𝑘∗ (𝑡)∞

𝑘=1                                                                      (9) 

defined by taking the estimator  �̂�𝐾𝑀(𝑡)  for F(t), can be 
considered as a non-parametric estimator of M(t), where 

�̂�𝐾𝑀
𝑘∗ (𝑡) is the n times Stieltjes convolution of �̂�𝐾𝑀(𝑡) by itself. 

The value of estimator �̂�𝐾𝑀(𝑡) for each constant value of the 
sample (X1,…., Xn) cannot be easily obtained from equation  (9). 
For each constant value of the sample (X1,…., Xn), �̂�𝐾𝑀(𝑡) from 

renewal equation 𝑀(𝑡) = 𝐹(𝑡) + ∫ 𝐹(𝑡 − 𝑥)𝑑𝑀(𝑥),    𝑡 ≥ 0
𝑡

0
 

can be denoted as; 

�̂�𝐾𝑀(𝑡) = �̂�𝐾𝑀(𝑡) +∫ �̂�𝐾𝑀(𝑡 − 𝑥)
𝑡

0
 𝑑�̂�𝐾𝑀(𝑥)                          (10)   

Thus, MKM(t) is obtained by solving this equation. Schneider, 
Lin and O’Cinneide proposed a numerical solution of an 
integral equation like equation 10 [6]. Now, let’s briefly 
examine this method. By dividing the (0,t) range, Xi, I=1, 2,….., n 
values are rescaled multiplying by an appropriate h integer and 
rounded down to the closest number. And as a result, they are 
converged to the function FKM with an arithmetic function for 
the calculation of the renewal function. Similar to RS-method 
approach, by the replacement of the integer in equation 10 
with a finite sum, �̂�𝐾𝑀(𝑡) can be calculated subsequently. t=k 
and Fa as the abovementioned arithmetic distribution function, 
�̂�𝐾𝑀 is calculated subsequently from the sum of 

𝑀𝐾𝑀
𝑎 (𝑖) = 𝐹𝑎(𝑖) + ∑ 𝑀𝐾𝑀

𝑎 (𝑖)(𝐹𝑎(𝑗) − 𝐹𝑎(𝑗 − 1)), 𝑖 =
𝑖
𝑗=1 1,2, … 𝑘                

                                                                                                                (11)                     

When i=1,2,….., k     MKM(i/h)=𝑀𝐾𝑀
𝑎 (𝑖). 

4. Conclusions 

In this study, some concepts forming basis for renewal 
processes are introduced, and the renewal theory is discussed, 

then the non-parametrical Kaplan-Meier estimation of F is 
explained in the case of random right-censored sampling, 
which is a type of censoring commonly-used in censored 
renewal processes. 
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