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A B S T R A C T 

The time-dependent Hartree-Fock (TDHF) and density functional theory (DFT) are among 

the most useful approaches within mean-field theories for studying static and dynamic 

properties of complex many-body systems in different branches of physics. Despite the fact 

that they provide a good approximation for the average properties of one-body degrees of 

freedom, they are known to fail to include quantal fluctuations of collective observables and 

they do not provide sufficient dissipation of collective motion. In order to incorporate these 

missing effects the stochastic mean-field (SMF) approach was proposed (Ayik 2008). In the SMF 
approach a set of stochastic initial one-body densities are evolved. Each stochastic one-body density 

matrix consists of a set of stochastic Gaussian random numbers that satisfy the first and second moments 

of collective one-body observables. Recent works indicate that the SMF approach provides a good 

description of the dynamics of the nuclear systems (Yilmaz et al. 2018; Ayik et al. 2019). In this work, 

the one-dimensional Fermi-Hubbard model is simulated with the SMF approach by using different 

distributions such as Gaussian, uniform, bimodal and two-point distributions. The dissipative dynamics 

are discussed and the predictive power of the SMF approach with different probability distributions are 

compared with each other and the exact dynamics. As a result it is shown that by considering different 
distributions, the predictive power of the SMF approach can be improved. 

 

© 2019. Turkish Journal Park Academic. All rights reserved.  

 

1. Introduction 

Mean-field approach is practical tool for studying complex 

many-body systems. The complexity comes from the number 

of degrees of freedom (DOF) to be taken account. Increasing 

number of the DOFs prohibits computation of the exact 

evolution of the system. This difficulty necessitates to perform 

simplifications where much less DOFs are considered. One of 

them which is extensively used is to assume a hierarchy 

between degrees of freedom according to their complexities. 

The coupled differential equations which are known as 

Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy of 

equations give the dynamical evolution of different order of 

densities (one-body, two-body, etc.) (Bogoliubov 1946, Born 

and Green 1946, Kirwood 1946). The truncation of the BBGKY 

equations at first level and neglecting all order of correlations 

give the mean-field equation for the dynamics of one-body 

density (Lacroix and Ayik 2014) 

[ ],i h
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                                                                        (1) 

ℎ[𝜌]  is the mean-field Hamiltonian in the form of 

122 12[ ] ( ).h T Tr   Here, T denotes matrix elements of 

kinetic part while second part corresponds to mean-field 

potential. 12 is the antisymmetric two-body interaction 

potential, 12 is the two-body density and 2(.)Tr is the partial 

trace on the degrees of freedom of the second particle. 
 
In the mean-field approximation, the exact many-body 
dynamical problem of interacting particles is mapped to 
dynamics of independent particles moving in an average self-
consistent mean-field. Despite the fact that mean-field 
approach generally provides a good approximation for the 
average properties of one-body DOFs, it  generally fails to 
produce quantum fluctuations of collective motion and suffers 
from the underestimation of dissipative effects induced by the 
coupling between single-particle DOFs with more complex 
internal DOFs. To overcome these deficiencies and improve 
mean-field dynamics beyond mean-field approaches are 
required. In this work one of the beyond mean-field 
approaches so called the stochastic mean-field approach is 
investigated. 
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This study is organized as follows. In section 2, the stochastic 
mean-field approach is introduced and its extension to higher 
order moments is discussed. In section 3, the SMF approach is 
performed to dynamics of a schematic model which is called 
the Fermi-Hubbard model. Results is presented. In the end, the 
conclusions are given in section 4. 

2. The Stochastic Mean-Field Approach 

In the SMF approach (Ayik 2008), the initial one-body density, 
𝜌(0), is replaced by an ensemble of stochastic initial one-body 

densities, 𝜌𝜆(0). Here 𝜆  stands for event label. Each of these 
densities evolves with its self-consistent mean-field equation, 

[ ], .i h
t
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For each event, the ”event“ expectation value of a one-body 
observable 𝐴 is given by 

 T .A r A         (3) 

The expectation values of an observables are obtained by 

ensemble averages in this approach. So, the expectation value 

of the one-body observable is defined as,  
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Overline states averaging in the form of 
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where 𝒩 stands for for the number of events in the ensemble. 

The quantum variance of the one-body operator is defined by 

 

      (6) 

         ,‍ ij kl ji lk
ijkl

A A        (7)          

where 𝛿𝜌𝜆 = 𝜌𝜆 − 𝜌𝜆.  

In the SMF approach in order to describe compatible quantal 
description of the complex many-body system, some 
restrictions on initial stochastic one body density matrices are 

required. Each initial stochastic matrix element, 𝜌𝑖𝑗
𝜆 (0), should 

be specified such that initial mean and second central moment 
of one-body operator coincide with those obtained by using 
quantal one, 𝜌(0).  By using basis vectors {|𝑖〉}  which 
diagonalize initial one-body density matrix, the mean and 
variance of an operator 𝐴 are given by 

    

 (8)  

  

and 

 

                                                                                                              (9)  

 

where,      is the occupation number that can take values 0 or 1 

initially.  By considering Eqs. (6)-(9) we deduce that the 

ensemble description matches with quantal version if we have  

 

(10) 

 

and 

 

(11) 

 

The stochastic matrix elements, 𝛿𝜌𝑖𝑗
𝜆 (0), are proposed in the 

original work to be Gaussian random numbers satisfying Eqs. 

(10) and (11).   

 

The extension of the original SMF approach is presented in 

(Ulgen et al. 2019). In this reference, the stochastic initial 

conditions are defined more accurately compared with the 

original SMF approach.  Some additive restrictions on initial 

stochastic matrix elements are obtained by considering third 

and fourth central moments of one-body observable. Incidental 

to analyses of conditions Eqs. (10), (11) and additional 

restrictions coming from the higher order moments, it is 

deduced that in order to specify initial stochastic matrix 

elements in the ensemble, probability distribution with small 

kurtosis should be used (Ulgen et al. 2019). This argument is 

tested by simulating and comparing the SMF dynamics with 

three different initial distributions with each other as well as 

exact and MF dynamics for the modified version of the Lipkin-

Meshkov-Glick model. It is shown that in one case (the so called 

two point initial distribution with smallest kurtosis) the 

solutions of the SMF approach are close to the exact solutions. 

The work is concluded with a proposal for using two-point 

distribution instead of Gaussian in the SMF dynamics (Ulgen et 

al. 2019).   

3. Application 

In this section, we apply the SMF approach with two-point 
distribution with kurtosis ϒ𝑇 = 1  as well as Gaussian with 
kurtosis ϒ𝐺 = 3, uniform  with kurtosis ϒ𝑈 = 1.8 and bimodal 
with kurtosis ϒ𝐵 = 1.4 distributions to the Fermi-Hubbard 
model and show that indeed the SMF approach with two-point 
distribution gives a better agreement with the exact dynamics 
than SMF approach with other distributions. 

3.1. The Fermi-Hubbard Model 

We consider the Fermi-Hubbard model which has been 
extensively used as a qualitative description of some 
properties of solids such as “(i) the electronic properties of 
solids with narrow bands, (ii) band magnetism in iron, cobalt, 
nickel, (iii) the  mott metal-insulator transition, (iv) electronic 
properties of high-Tc cuprates in the normal state” (Essler et 
al. 2005). The Hubbard model is derived from a system of 
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electrons interacting with each other and a static lattice. The 
Hamiltonian of such a system is given by 

 

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where 𝑉𝑒𝑖(𝑥𝑖) = − 𝑒2

𝑥𝑖
⁄  is electron-lattice interaction which 

represents a periodic positive background of ions interacting 
with electrons. The two-body potential 𝑉𝑒𝑒  is electron-electron 
Coulomb interaction. There are two assumptions that lead to 
the Hubbard model: (i) Electrons are tightly bound to their host 
ions and the ions are far enough not to allow hopping 
(tunneling) among different ions except neighboring ions 
(tight binding approximation). (ii) Only the electrons on the 
same ion can interact with each other (on site interaction). The 
resulting Hamiltonian reads as  

 


    
†
, , , ,

, ,

‍‍ i j i i
ii j

H J c c U n n    (13) 

where 𝒄𝒊,𝝈
†  creates an electron in the site 𝒊  with a spin 

projection 𝝈 , 𝒏𝒊,𝝈 = 𝒄𝒊,𝝈
† 𝒄𝒊,𝝈 , and < 𝒊, 𝒋 >  means nearest 

neighbors. 𝑱 represents tunneling strength and 𝑼  the 
interaction strength. In Fig. (1) a schematic illustration of the 
Hubbard model with 6 sites and 6 electrons (3 spin up and 3 
spin down) is shown.  

Figure  1:  Schematic illustration of the Hubbard model 

3.1.1 Exact, mean-field and stochastic mean-field 
dynamics 

The Hubbard model is also widely used as a benchmark for 
numerical approaches to finite fermionic and bosonic systems. 
The Hubbard model is exactly solvable in one dimension by 
Bethe ansatz which leads to Lieb-Wu equations (Essler et al. 
2005). The exact numerical solution of Hubbard model is also 
possible by diagonalization of the Hamiltonian or by using 
quantum Monte-Carlo techniques. The former technique has 
the drawback that the size of the matrix to be diagonalized 
increases very rapidly with the number of sites and the latter 
techniques have the drawback that the numerical errors grow 
rapidly, hence the results are not reliable. Even though the 
diagonalization technique is impossible for very large systems, 
still it can be used for a system of 10 half-filled sites in one 
dimension (Kingsley and Robinson 2013). For half-filled case 
with N sites there are 

 

    (14) 

 

configurations. We consider 𝑵 = 𝟖  sites for which there are 
12870 configurations. A Hamiltonian of such size (𝟏𝟐𝟖𝟕𝟎 ×
𝟏𝟐𝟖𝟕𝟎) can be diagonalized since the matrix is sparse and 
there are many effective algorithms, most of which use the 
iterative Lanczos method, that diagonalize sparse matrices. In 
this study, we will follow the technique proposed in Ref. (Lin 
1990) and used in Refs. (Kingsley and Robinson 2013, Lin and 
Gubernatis 1993, Jafari 2008 and Siro and Harju 2012). For the 
actual computation, the matrix size is reduced by using the 
conservation of the z component of the total spin 𝑺𝒛  since it 
commutes with the Hamiltonian. It is given by 

      (15) 

where 𝑵𝝈 = ∑𝒊 𝒏𝒊,𝝈 . Specifically, we consider an initial state 
that satisfies 𝑺𝒛|𝝍𝟎〉 = 𝟎  which is conserved during the 
dynamical evolution (Obviously N must be even.). Then, the 
number of configurations is 

      (16) 

 
For 𝑁 = 8, we get 4900 configurations. The exact dynamics is 

obtained by diagonalizing the corresponding Hamiltonian. 

 
We consider the initial state with all particles filling the left 
sites, that is 4 spin up and 4 spin down fermions on the 4 left 
sites with the remaining 4 sites on the right empty. This initial 
state has spin symmetry and since Hamiltonian Eq. (13) 
preserves the spin symmetry, the exact one-body density 
preserves the spin symmetry as well. Hence, the one-body 
density preserves the property  

 

                                                                                                             (17) 

 

at all times, where 𝜌𝑖,𝜎′;𝑗,𝜎 = 〈𝑐𝑗,𝜎
† 𝑐𝑖,𝜎′〉 . Then, by using the 

shorthand notation 𝜌𝑖,𝑗,𝜎 ≡ 𝜌𝑖,𝜎;𝑗,𝜎 , the mean-field equation of 

the Hubbard model can be written as  

 

 

 
            (18) 
 

The SMF equations of motion are directly obtained from the 

last equation by replacing all one-body densities with the 

stochastic one, 𝜌 → 𝜌𝜆 . The original SMF approach has been 

applied to the Hubbard model (Lacroix et al. 2014). 

 

3.1.2  Results 
 
Figure 2 shows the time evolution of the expectation value of 
the center of mass position of the fermions defined as 
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for different coupling strengths. Here, the sites are considered 

to be on the positions  1
2ix i   for 1,2,...,i N . For 

simplicity site positions are chosen dimensionless. First 
subfigure in Figure 2 shows that MF evolutions starts the 
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deviate from exact solution at around 𝑡 = 4.0 J−1  when SMF 
approach gives better approximation at early times of the 
evolution in strong coupling regime, U= 1 J.  According to 
second subfigure in Fig. 2 departure of the MF solution occurs 
at 𝑡 = 40 J−1 . All the SMF solutions are better than MF 
solutions at all times. Comparing all the SMF dynamics with the 
exact one in this subfigure, we see that SMF approach with two-
point distribution, SMF (T), presents better estimation than 
SMF with rest of the distributions.  As shown at third subfigure 
in Fig. 2 that difference between the SMF and exact evolutions 
occurs at 𝑡 = 500.0 J−1  in weak coupling limit, U= 0.01 J 
meanwhile MF gives worse solution when time increases. As 
seen in Fig.2 with long time evolution that although there is a 
big discrepancy between the oscillation amplitudes of the MF 
solution and the exact one, there is good accordance between 
the exact and SMF dynamics, especially SMF (T). Hence we 
deduce that the SMF approach with two-point distribution, 
SMF (T), estimates the best dissipation effects. 
 

Figure 2: The center of mass position, given by Eq.(19), is plotted 
versus time for different coupling strenghts, 𝑈 = 1 𝐽 (a), 𝑈 = 0.1 𝐽 (b), 
and 𝑈 = 0.01 𝐽 (c). The exact solution is shown with the circle. The SMF 
solutions with Gaussian (G), uniform (U), bimodal (B) and two-point 
(T) distributions are indicated by the red line with boxes, the green line 
with triangles, the yellow line with reversed-triangles and the blue line 

with diamonds, respectively. 

 
Similar behaviour can be seen from Figure 3 which shows time 
evolution of one-body entropy defined as 

 
                                      (20) 
 

where 𝜌  is the one-body density operator.  It indicates how 
much the state of the system departures from independent 
particle picture and measures thermalization. In the SMF 
approach, the one-body entropy is calculated by 

 

 

 
Figure 3: The one-body entropy per particle, given by Eq.(21), is 
plotted versus time for different coupling strenghts, 𝑈 = 1 𝐽 (a), 𝑈 =
0.1 𝐽 (b), and 𝑈 = 0.01 𝐽 (c). The exact solution is shown with the black 
line. The SMF solutions with Gaussian (G), uniform (U), bimodal (B) 
and two-point (T) distributions are indicated by the red line with 
boxes, the green line with triangles, the yellow line with reversed-

triangles and the blue line with diamonds, respectively. 

   Tr ln 1 ln 1 ,S         
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For all the coupling strengths, the SMF solution with the two-
point distribution is a better approximation to the exact one as 
seen in the inset figures. The validity time of the SMF solutions 
show the the property Δ𝑡val ∝ 𝑈−1  (Polkovnikov 2003). The 
differences between the results for the four distributions are 
small which suggests that the effects of different distributions 
can be small or large depending on the physical case as well as 
the coupling strength. The reason of dependence on coupling 
strength is already well known however dependence of the 
physical systems might be related to the effect of the missing 
couplings that the classical distributions are not able to take 
into account. These missing couplings can be more important 
for some and less important for other quantum systems. 
                                                                                                                                   

4. Conclusions 

Mean-field (MF) approach is widely used in many areas in 
physics. Although it provides a good description to determine 
properties of interacting many-body complex systems, it 
suffers from some missing effects. Absence of quantal 
correlations is the major issue which causes the MF approach 
to lose validity in long time evolution. Besides, another 
drawback is the underestimation of the dissipation effect 
which requires to be incorporated to dynamics. For the 
purpose of improving predicting power of the approximation, 
beyond mean-field approaches are needed. One of them is so 
called the stochastic mean-field (SMF) approach.  

The SMF approach upgrades mean-field approach by taking 
into account initial quantum fluctuations. In the SMF approach 
stochastic initial conditions are introduced on top of the mean-
field in such a way that the initial state of system is replaced by 
an ensemble of stochastic initial one-body densities. Mean 
value of a one-body operator is computed by taking statistical 
ensemble average. In the original SMF approach, initial 
stochastic one-body densities are specified in such a way that 
quantum mean and variance of a one-body observable match 
with values obtained by statistical ensemble average. By doing 
this specification, usage of Gaussian distribution in the 
stochastic matrix elements is assumed in the original work 
(Ayik 2008). In the work of Ulgen et al. (2019), by considering 
higher order moments it is investigated that exploiting 
probability distribution with minimum kurtosis for the initial 
stochastic one-body density matrix elements gives the best 
approximation instead of using Gaussian distribution. 

In this work, we apply the SMF approach with four different 
initial distributions for the Fermi-Hubbard model. The exact 
solution is compared with the solutions of the MF equations 
and SMF equations. Four versions of initial distributions 
denoted Gaussian with kurtosis ϒ𝐺 = 3, uniform with kurtosis 
ϒ𝑈 = 1.8, bimodal with kurtosis ϒ𝐵 = 1.4 and two-point with 
kurtosis ϒ𝑇 = 1 are used. It is shown that the SMF approach 

with two-point distribution is the best approximation in the 
weak coupling regime as well as strong coupling strengths. 
However, for the Fermi-Hubbard model the difference 
between different SMF evolutions is very small while it is more 
pronounced for the model in Ref. (Ulgen et al. 2019).  
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