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Abstract

In this article, authors employed the new sub equation method to attain new traveling
wave solutions of conformable time fractional partial differential equations. Conformable
fractional derivative is a well behaved, applicable and understandable definition of arbitrary
order derivation. Also this derivative obeys the basic properties that Newtonian concept
satisfies. In this study authors obtained the exact solution for KDV equation where the
fractional derivative is in conformable sense. New solutions are obtained in terms of the
generalized version of the trigonometric functions.

1. Introduction

Fractional differential equations (FDEs) are generalized form of the integer order differential equations. In the last decades, researchers have
worked hard for obtaining analytic solutions of nonlinear FDEs. Nonlinear FDEs are often used to describe many problems arising in many
fields such as physics, chemistry, engineering, heat transfer, applied mathematics, control theory et all. [1]-[4]. So, many authors presented
very strong methods to solve FDEs. For instance Kurt et. al. [5] studied the solutions of time fractional Whitham-Broer-Kaup Equation by
using homotopy analysis method where the fractional terms are described in Caputo sense. Tasbozan et. al. [6] employed the finite element
method for attaining the approximate solutions of diffusion equation where the derivatives are in Riemann-Liouville sense. Celik et. al. [7]
utilized Crank-Nicolson scheme to get the the numerical solutions of fractional diffusion equation. As it is seen from the given references, all
the obtained results are numerical solutions for the considered nonlinear equations. Because, the analytical methods can not be applied to the
nonlinear equations which involves Caputo, Riemann-Liouville and Riesz fractional derivative definitions. On the contrary, conformable
fractional detivative definition gives us chance to get the exact solutions of nonlinear FDEs by using new wave transformation [8] and
the chain rule [9]. For example Eslami and Rezazadeh [10] used the first integral method to obtain analytic solutions of time fractional
Wu-Zhang system. Aminikhah et. al. [11] obtained analytic solutions of fractional regularized long-wave equations using sub-equation
method. Osman et al. [12] employed the unified method to get the analytic solutions of conformable time fractional Schrödinger equation
with perturbation terms. For further details please see the references [13]-[34]. In this paper, we handle the Korteweg-de Vries equation with
a source that provides a sixth order differential equation.

D6
xu+20DxuD4

xu+40D2
xuD3

xu+120Dxu2D2
xu+D3

xDµ

t u+8DxuDxDµ

t u+4Dµ

t uD2
xu = 0. (1.1)

2. Conformable fractional calculus

R. Khalil et. al. [32] presented the definition of conformable fractional derivative as follows.

Definition 2.1. µth order ”conformable fractional derivative” of function g which is defined as g : [0,∞)→ R can be dedicated as

Tµ (g)(t) = lim
ε→0

g(t + εt1−µ )−g(t)
ε
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for all t > 0, α ∈ (0,1). Assuming thatg is µ- differentiable over some (0,a) where a > 0 and lim
t→0+

g(µ)(t) exists, then g(µ)(0) = lim
t→0+

g(µ)(t).

The other fractional derivative definitions such as Caputo, Riemann-Liouville, Grünwald-Letnikov and etc. do not satisfy basic principles
which are provided by Newtonian type derivative. For instance

1. Assume that λ is a constant and α ∈ R. Then Dµ
a (λ ) 6= 0 for Riemann-Liouville derivative.

2. The Riemann-Liouville and Caputo derivatives do not provide the derivative of the product of two functions.
3. Dµ

a ( f g) 6= f Dµ
a (g)+gDµ

a ( f ) .
4. The Riemann-Liouville and Caputo derivatives do not do not provide the derivative of the quotient of two functions
5. Dµ

a

(
f
g

)
6= gDµ

a ( f )− f Dµ
a (g)

g2 .

This new definition satisfies the properties which are given in the following theorem.

Theorem 2.2. Let µ ∈ (0,1) and f ,g be µ− differentiable at point t > 0. Then

1. Tµ (a f +bg) = aTµ ( f )+bTµ (g), for all a,b ∈ R
2. Tµ (t p) = pt p−µ for all p ∈ R.
3. Tµ (λ ) = 0 for all constant function f (t) = λ .
4. Tµ ( f g) = f Tµ (g)+gTµ ( f ).

5. Tµ

(
f
g

)
=

gTµ (g)− f Tµ ( f ).
g2 .

6. If f is differentiable, then Tµ ( f )(t) = t1−µ d f
dt .

3. The new sub-equation method

Consider that the general form of nonlinear fractional partial differential equation can be expressed as

H
(

u,
∂ µ u
∂ tµ

,
∂u
∂x

,u
∂u
∂x

,u2 ∂u
∂x

,
∂ 2u
∂x2 , . . .

)
= 0. (3.1)

Using the wave transform ξ = kx+w tµ

µ
where k and w are constants and chain rule [9] in Eq. (3.1), the independent variables and can be

changed into single variable. So Eq. (3.1) can be rewritten as

P(u,u′(ξ ),u′′(ξ ), ...). (3.2)

Consider that u(ξ ) can be written as a polynomial in Q(ξ )

u(ξ ) =
n

∑
j=0

a j Q j(ξ ), (3.3)

where a j (0≤ j ≤ n) are constant coefficients to be determined after and Q(ξ ) provides first order linear ODE of the form

Q′ (ξ ) = Ln(A)
(

α +βQ(ξ )+σQ2(ξ )
)
, A 6= 0,1, (3.4)

where α,β ,σ are constants. Moreover , Eq. has the following traveling wave solutions.
Family 1.If β 2−4ασ < 0 and σ 6= 0, then we have

Q1(ξ ) = − β

2σ
+

√
−
(
β 2−4ασ

)
2σ

tanA


√
−
(
β 2−4ασ

)
2

ξ

 ,

Q2(ξ ) = − β

2σ
−

√
−
(
β 2−4ασ

)
2σ

cotA


√
−
(
β 2−4ασ

)
2

ξ

 ,

Q3(ξ ) = − β

2σ
+

√
−
(
β 2−4ασ

)
2σ

(
tanA

(√
−
(
β 2−4ασ

)
ξ

)
±√pqsecA

(√
−
(
β 2−4ασ

)
ξ

))
,

Q4(ξ ) = − β

2σ
+

√
−
(
β 2−4ασ

)
2σ

(
−cotA

(√
−
(
β 2−4ασ

)
ξ

)
±√pqcscA

(√
−
(
β 2−4ασ

)
ξ

))
,

Q5(ξ ) = − β

2σ
+

√
−
(
β 2−4ασ

)
4σ

tanA


√
−
(
β 2−4ασ

)
4

ξ

− cotA


√
−
(
β 2−4ασ

)
4

ξ

 .
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Family 2.Suppose that β 2−4ασ > 0 and σ 6= 0,

Q6(ξ ) = − β

2σ
−
√

β 2−4ασ

2σ
tanhA

(√
β 2−4ασ

2
ξ

)
,

Q7(ξ ) = − β

2σ
−
√

β 2−4ασ

2σ
cothA

(√
β 2−4ασ

2
ξ

)
,

Q8(ξ ) = − β

2σ
+

√
β 2−4ασ

2σ

(
−tanhA

(√
β 2−4ασξ

)
± i
√

pqsechA

(√
β 2−4ασξ

))
,

Q9(ξ ) = − β

2σ
+

√
β 2−4ασ

2σ

(
−cothA

(√
β 2−4ασξ

)
±√pqcschA

(√
β 2−4ασξ

))
,

Q10(ξ ) = − β

2σ
−
√

β 2−4ασ

4σ

(
tanhA

(√
β 2−4ασ

4
ξ

)
+ cothA

(√
β 2−4ασ

4
ξ

))
.

Family 3.Consider that ασ > 0 and β = 0,

Q11(ξ ) =

√
α

σ
tanA

(√
ασξ

)
,

Q12(ξ ) = −
√

α

σ
cotA

(√
ασξ

)
,

Q13(ξ ) =

√
α

σ

(
tanA

(
2
√

ασξ
)
±√pqsecA

(
2
√

ασξ
))

,

Q14(ξ ) =

√
α

σ

(
−cotA

(
2
√

ασξ
)
±√pqcscA

(
2
√

ασξ
))

,

Q15(ξ ) =
1
2

√
α

σ

(
tanA

(√
ασ

2
ξ

)
− cotA

(√
ασ

2
ξ

))
.

Family 4.Regard that ασ < 0 and β = 0,

Q16(ξ ) = −
√
−α

σ
tanhA

(√
−ασξ

)
,

Q17(ξ ) = −
√
−α

σ
cothA

(√
−ασξ

)
,

Q18(ξ ) =

√
−α

σ

(
−tanhA

(
2
√
−ασξ

)
± i
√

pqsechA
(
2
√
−ασξ

))
,

Q19(ξ ) =

√
−α

σ

(
−cothA

(
2
√
−ασξ

)
±√pqcschA

(
2
√
−ασξ

))
,

Q20(ξ ) = −1
2

√
−α

σ

(
tanhA

(√
−ασ

2
ξ

)
+ cothA

(√
−ασ

2
ξ

))
.

Family 5. When β = 0 and σ = α,

Q21(ξ ) = tanA (αξ ) ,

Q22(ξ ) = −cotA (αξ ) ,

Q23(ξ ) = tanA (2αξ )±√pqsecA (2αξ ) ,

Q24(ξ ) = −cotA (2αξ )±√pqcscA (2αξ ) ,

Q25(ξ ) =
1
2

(
tanA

(
α

2
ξ

)
− cotA

(
α

2
ξ

))
.

Family 6. If β = 0 and σ =−α, chosen

Q26(ξ ) = −tanhA (αξ ) ,

Q27(ξ ) = −cothA (αξ ) ,

Q28(ξ ) = −tanhA (2αξ )± i
√

pqsechA (2αξ ) ,

Q29(ξ ) = −cothA (2αξ )±√pqcschA (2αξ ) ,

Q30(ξ ) = −1
2

(
tanhA

(
α

2
ξ

)
+ cothA

(
α

2
ξ

))
.

Family 7.While β 2 = 4ασ ,
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Q31(ξ ) =
−2α(βξ Ln(A)+2)

β 2ξ Ln(A)
.

Family 8.When beta = k ,α = mk(m 6= 0) and σ = 0,

Q32(ξ ) = Akξ −m.

Family 9.When β = σ = 0,

Q33(ξ ) = αξ Ln(A) .

Family 10.When β = α = 0,

Q34(ξ ) =
−1

σξ Ln(A)
.

Family 11.When α = 0 and β 6= 0,

Q35(ξ ) = − pβ

σ (coshA(βξ )− sinhA(βξ )+ p)
,

Q36(ξ ) = − qβ

σ (coshA(βξ )− sinhA(βξ )+q)
,

Q37(ξ ) = − β (sinhA(βξ )+ coshA(βξ ))

σ (sinhA(βξ )+ coshA(βξ )+q)
,

Family 12.When β = k ,σ = mk(m 6= 0), p = q and α = 0,

Q38(ξ ) =
pAkξ

p−mqAkξ
.

Remark 3.1. The generalized version of the trigonometric functions and the generalized types of the hypergeometric functions are declared
as [33]

sinhA(ξ ) =
pAξ −qA−ξ

2
, coshA(ξ ) =

pAξ +qA−ξ

2
,

tanhA(ξ ) =
pAξ −qA−ξ

pAξ +qA−ξ
, cothA(ξ ) =

pAξ +qA−ξ

pAξ −qA−ξ
,

sechA(ξ ) =
2

pAξ +qA−ξ
, cschA(ξ ) =

2
pAξ −qA−ξ

,

sinA(ξ ) =
pAiξ −qA−iξ

2i
, cosA(ξ ) =

pAiξ +qA−iξ

2
,

tanA(ξ ) =−i
pAiξ −qA−iξ

pAiξ +qA−iξ
, cotA(ξ ) = i

pAiξ +qA−iξ

pAiξ −qA−iξ
,

secA(ξ ) =
2

pAiξ +qA−iξ
, cscA(ξ ) =

2i
pAiξ −qA−iξ

,

where p,q > 0 are constants and ξ is an independent variable. In addition, by considering the balance between the highest order derivative
linear term and nonlinear terms appearing in ODE (3.2), the positive integer n can be defined. Replacing Eq. (3.3) into ODE (3.2), using Eq.
(3.4), and equalizing the coefficients of all the powers of Q(ξ ) to zero, we will obtain an equation system in terms of k,w and a j (0≤ j ≤ n).
From this obtained system the values for k,w and a j can be found with the aid of a computer software. Replacing the obtained values of k,w
and a j into Eq.(3.3), we may acquire all possible solutions of Eq. (3.1).

4. Analytic results for time fractional KdV6 equation with conformable derivative

Using the wave transformation and applying chain rule [9]

u(x, t) = u(ξ ), ξ = kx+w
tµ

µ
. (4.1)

Eq. (1.1) is transferred to

k6u(vı) (ξ )+ k3wuıv (ξ )+6k2w
(
u′ (ξ )

)2
+20k5uıv (ξ )u′ (ξ )+40k5u′′ (ξ )u′′′ (ξ )+12k2wu′ (ξ )u′′ (ξ ) = 0
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where the prime symbolizes the known derivative of function u(ξ ) with respect to ξ . Integrating the above equation once and making some
algebraic calculations led to

k6u(v) (ξ )+ k3wu′′′ (ξ )+3k2w
(
u′
)2

+5k5u′′′u+20k5(u′′)2
+12k2wuu′ = 0. (4.2)

Considering the homogeneous balance between u2u′ and u(5) in Eq. (4.2) we obtain n+5 = 3(n+1); then n = 1;so we can write Eq. (3.3) as

u(ξ ) = a0 +a1 Q(ξ ). (4.3)

Subrogating Eq. (4.3) with (3.4) into Eq. (4.2) and gathering all the same power of Q(ξ ) together, the left hand side of Eq. (4.2) turns into a
polynomial of Q(ξ ). Equalizing the each coefficient of the same power of Q(ξ ) to zero led to an equation system. Solving the obtained
system due to unknowns variables a0, a1 and w, the solutions can be concluded as

w =
a1

3(β 2−4ασ)

σ3Ln(A)
, k =− a1

σLn(A)
. (4.4)

Putting the solution set (4.4) with (4.1) into (4.3) and solutions of Eq. (1.1), can be expressed as
Case 1.If β 2−4ασ < 0 andσ 6= 0, then we have

u1(ξ ) = a0 +a1

− β

2σ
+

√
−
(
β 2−4ασ

)
2σ

tanA


√
−
(
β 2−4ασ

)
2

ξ

 ,

u2(ξ ) = a0 +a1

− β

2σ
−

√
−
(
β 2−4ασ

)
2σ

cotA


√
−
(
β 2−4ασ

)
2

ξ

 ,

u3(ξ ) = a0 +a1

− β

2σ
+

√
−
(
β 2−4ασ

)
2σ

(
tanA

(√
−
(
β 2−4ασ

)
ξ

)
±√pqsecA

(√
−
(
β 2−4ασ

)
ξ

)) ,

u4(ξ ) = a0 +a1

− β

2σ
+

√
−
(
β 2−4ασ

)
2σ

(
−cotA

(√
−
(
β 2−4ασ

)
ξ

)
±√pqcscA

(√
−
(
β 2−4ασ

)
ξ

)) ,

u5(ξ ) = a0 +a1

− β

2σ
+

√
−
(
β 2−4ασ

)
4σ

tanA


√
−
(
β 2−4ασ

)
4

ξ

− cotA


√
−
(
β 2−4ασ

)
4

ξ


where ξ =− a1

σLn(A)x+ a1
3(β 2−4ασ)

2

σ 3µLn(A) tµ .

Case 2.Suppose that β 2−4ασ > 0 and σ 6= 0,

u6(ξ ) = a0 +a1

(
− β

2σ
−
√

β 2−4ασ

2σ
tanhA

(√
β 2−4ασ

2
ξ

))
,

u7(ξ ) = a0 +a1

(
− β

2σ
−
√

β 2−4ασ

2σ
cothA

(√
β 2−4ασ

2
ξ

))
,

u8(ξ ) = a0 +a1

(
− β

2σ
+

√
β 2−4ασ

2σ

(
−tanhA

(√
β 2−4ασξ

)
± i
√

pqsechA

(√
β 2−4ασξ

)))
,

u9(ξ ) = a0 +a1

(
− β

2σ
+

√
β 2−4ασ

2σ

(
−cothA

(√
β 2−4ασξ

)
±√pqcschA

(√
β 2−4ασξ

)))
,

u10(ξ ) = a0 +a1

(
− β

2σ
−
√

β 2−4ασ

4σ

(
tanhA

(√
β 2−4ασ

4
ξ

)
+ cothA

(√
β 2−4ασ

4
ξ

)))

where ξ =− a1
σLn(A)x+ a1

3(β 2−4ασ)
2

σ 3µLn(A) tµ .

Case 3.Consider that ασ > 0 and β = 0,

u11(ξ ) = a0 +a1

(√
α

σ
tanA

(√
ασξ

))
,

u12(ξ ) = a0−a1

(√
α

σ
cotA

(√
ασξ

))
,

u13(ξ ) = a0 +a1

(√
α

σ

(
tanA

(
2
√

ασξ
)
±√pqsecA

(
2
√

ασξ
)))

,

u14(ξ ) = a0 +a1

(√
α

σ

(
−cotA

(
2
√

ασξ
)
±√pqcscA

(
2
√

ασξ
)))

,

u15(ξ ) = a0 +a1

(
1
2

√
α

σ

(
tanA

(√
ασ

2
ξ

)
− cotA

(√
ασ

2
ξ

)))
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where ξ =− a1
σLn(A)x+ a1

3(β 2−4ασ)
2

σ 3µLn(A) tµ .

Case 4.Regard that ασ < 0 and β = 0,

u16(ξ ) = a0−a1

(√
−α

σ
tanhA

(√
−ασξ

))
,

u17(ξ ) = a0−a1

(√
−α

σ
cothA

(√
−ασξ

))
,

u18(ξ ) = a0 +a1

(√
−α

σ

(
−tanhA

(
2
√
−ασξ

)
± i
√

pqsechA
(
2
√
−ασξ

)))
,

u19(ξ ) = a0 +a1

(√
−α

σ

(
−cothA

(
2
√
−ασξ

)
±√pqcschA

(
2
√
−ασξ

)))
,

u20(ξ ) = a0−a1

(
1
2

√
−α

σ

(
tanhA

(√
−ασ

2
ξ

)
+ cothA

(√
−ασ

2
ξ

)))

where ξ =− a1
σLn(A)x+ a1

3(β 2−4ασ)
2

σ 3µLn(A) tµ .

Case 5.When β = 0 and σ = α,

u21(ξ ) = a0 +a1tanA (αξ ) ,

u22(ξ ) = a0−a1cotA (αξ ) ,

u23(ξ ) = a0 +a1 (tanA (2αξ )±√pqsecA (2αξ )) ,

u24(ξ ) = a0 +a1 (−cotA (2αξ )±√pqcscA (2αξ )) ,

u25(ξ ) = a0 +a1

(
1
2

(
tanA

(
α

2
ξ

)
− cotA

(
α

2
ξ

)))

where ξ =− a1
σLn(A)x+ a1

3(β 2−4ασ)
2

σ 3µLn(A) tµ .

Case 6.If β = 0 and σ =−α, chosen

u26(ξ ) = a0−a1tanhA (αξ ) ,

u27(ξ ) = a0−a1cothA (αξ ) ,

u28(ξ ) = a0 +a1 (−tanhA (2αξ )± i
√

pqsechA (2αξ )) ,

u29(ξ ) = a0 +a1 (−cothA (2αξ )±√pqcschA (2αξ )) ,

u30(ξ ) = a0−
a1

2

(
tanhA

(
α

2
ξ

)
+ cothA

(
α

2
ξ

))
where ξ =− a1

σLn(A)x+ a1
3(β 2−4ασ)

2

σ 3µLn(A) tµ .

Case 11.When α = 0 and β 6= 0,

u31(ξ ) = a0−
pa1β

σ (coshA(βξ )− sinhA(βξ )+ p)
,

u32(ξ ) = a0−
qa1β

σ (coshA(βξ )− sinhA(βξ )+q)
,

u33(ξ ) = a0−
a1β (sinhA(βξ )+ coshA(βξ ))

σ (sinhA(βξ )+ coshA(βξ )+q)
,

where ξ =− a1
σLn(A)x+ a1

3(β 2−4ασ)
2

σ 3µLn(A) tµ .

Case 12.When β = k ,σ = mk(m 6= 0), p = q andα = 0,

u34(ξ ) = a0 +
pa1Akξ

p−mqAkξ
.

5. Conclusion

In this manuscript the new sub-equation method successfully applied to time fractional KdV6 equation. Analytic solutions of the nonlinear
KdV6 equation are successfully obtained. Also wave transform and chain rule are used, so the nonlinear conformable FDE changes into
differential equation with integer order derivative. As it can be from the obtained results new sub-equation method is a reliable, efficient and
applicable tool for obtaining the exact solutions of fractional partial differential equations in conformable sense.
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