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Abstract

The purpose of this study is to examine *-Abel and *-Dirichlet tests, *-power series, β−summability in the Cesàro and Abel sense. *-Calculus
can be used instead of non-Newtonian calculus.
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1. Introduction and Preliminaries

Non-Newtonian calculus was firstly introduced and worked by Michael Grossman and Robert Katz between the years 1967 and 1970 [10].
Grossman worked some properties of derivatives and integrals in non-Newtonian calculus [12]. Kadak studied on some sequence spaces
in the non-Newtonian complex field [13]. Duyar et al. [6] obtained some basic topologic properties on non-Newtonian real line. Later,
Duyar and Erdogan examined the non-Newtonian real series and their convergence conditions [7]. Duyar and Oğur studied some topologic
properties on non-Newtonian real numbers [8]. In [5], Çakmak and Başar have introduced the classical sequence spaces with respect to
non-Newtonian calculus over the non-Newtonian real field. Later, Tekin and Başar have studied the spaces ω∗, l∗∞, c∗, c∗0 and l∗p over the
non-Newtonian complex field C∗ and obtained the corresponding results for these spaces in [15], where p̈≥̈1̈. As a continuation of Çakmak
and Başar [5], Türkmen and Başar [16] and Tekin and Başar [15]; Çakır has studied the space C∗(Ω) of *-continuous functions and state
that it forms a vector space with respect to the non-Newtonian addition and scalar multiplication, and proved that C∗(Ω) is a Banach space
with some characteristic features of complex numbers and functions in terms of non-Newtonian calculus together with the basic properties of
*-boundedness and *-continuity, in [4]. Erdogan and Duyar examined the non-Newtonian improper integrals [9]. Ünlüyol and Salaş studied
convexity respect to the non-Newtonian calculus [18]. In this article, Dirichlet’s and Abel’s Tests are obtained in the sense of non-Newtonian
(*-Dirichlet’s and *-Abel’s Tests), *-power series were introduced, β−summability and its properties were obtained in the sense of Cesàro
and Abel being an application of this approach.
It can be easily observed for the basic principles of Multiplicative Calculus (in short MC) is given in [11]. Plenty of advance studies in (MC)
could be found in several articles such as [1, 2, 3, 13, 16] and [17].
A generator is defined as an injective function with domain R and the range of generator is a subset of R. Let us take any generator α with
range A = R(N)α and define α−addition, α−subtraction, α−multiplication, α−division and α−order as follows;

α−addition x+̇y = α
(
α−1 (x)+α−1 (y)

)
α−subtraction x−̇y = α

(
α−1 (x)−α−1 (y)

)
α−multiplication x×̇y = α

(
α−1 (x)×α−1 (y)

)
α−division x/̇y = α

(
α−1 (x)/α−1 (y)

)
α−order x<̇y

(
x≤̇y

)
⇔ α−1 (x)< α−1 (y)

(
α−1 (x)≤ α−1 (y)

)
for x,y ∈ R(N)α [10].
(R(N)α ,+̇,×̇,≤̇) is totally ordered field.
The numbers x>̇0̇ are α−positive numbers and the numbers x<̇0̇ are α−negative numbers in R(N)α . α−integers are obtained by successive
α−addition of 1̇ to 0̇ and successive α−subtraction of 1̇ from 0̇. Hence α−integers are as follows:

...,α (−2) ,α (−1) ,α (0) ,α (1) ,α (2) , ... .
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For each integer n, we set ṅ = α (n). If ṅ is an α−positive integer, then it is n times sum of 1̇ [7, 10].
α−absolute value of a number x ∈ R(N)α is defined by

|x|α = α

(∣∣∣α−1 (x)
∣∣∣)=


x i f x>̇0̇
0̇ i f x = 0̇

0̇−̇x i f x<̇0̇
.

For x ∈ R(N)α , p
√

xα = α

(
p
√

α−1 (x)
)

and xpα = α

{[
α−1 (x)

]p
}

[10].
Grossman and Katz described the *-calculus with the help of two arbitrary selected generators. In this study, we employ *-calculus. Let α

and β be any generators, and let * (”star”) denotes the ordered pair of arithmetics (α−arithmetic, β−arithmetic). The following notations
will be used [10].

α−arithmetic β − arithmetic
Realm A(= R(N)α ) B

(
= R(N)β

)
Addition +̇ +̈
Subtraction −̇ −̈
Multiplication ×̇ ×̈
Division /̇

(
or α

)
/̈
(
or β

)
Ordering <̇ <̈

In the ∗−calculus, a−arithmetic is used for arguments and β−arithmetic is used for values.
The isomorphism from a−arithmetic to β−arithmetic is the unique function ı (iota) that possesses the following three properties.
1. ı is one-to-one.
2. ı is on A and onto B.
3. For any numbers u and v in A,

ι (u+̇v) = ι (u)+̈ι (v) ,

ι (u−̇v) = ι (u)−̈ι (v) ,

ι (u×̇v) = ι (u)×̈ι (v) ,

ι

(
u/̇v
)

= ι (u) /̈ι (v) ,v 6= 0̇
(

or
ι (u)
ι (v)

β

)

u<̇v⇐⇒ ι (u)<̈ι (v) .

It turns out that ι (x) = β
{

α−1 (x)
}

for every number x in A, and that ι (ṅ) = n̈ for every integer n [10].
Let X ⊂ R(N)α , a ∈ X ′α , b ∈ R(N)β and let f : X → R(N)β be a function. If for every ε>̈0̈ there exists a number δ = δ (ε)>̇0̇ such that
| f (x)−̈b|

β
<̈ε for all x ∈ X which holds condition 0̇<̇ |x−̇a|α <̇δ , then it is said that the *-limit of the function f (in the sense of Cauchy)

at the point a is b and this is denoted by

∗− lim
x→a

f (x) = b.

If a sequence ( f (xn)) is β−convergent to the number b for all sequences (xn)⊂ X −{a} which are α−convergent to a point a, then it is
said that the *-limit of the function f (*-sequential limit of the function f ) at the point a is b and this is denoted by

∗− lim
x→a

f (x) = b.

The equivalence of *-sequential limit and *-limit in the sense of Cauchy of a function at a point is given in [14].

If the following *-limit exists, we denote it by
[
∗
D f
]
(a) and call it the *-derivative of f at a, and say that f is *-differentiable at a:

∗− lim
x→a

{
[ f (x)−̈ f (a)] /̈ [ι (x)−̈ι (a)]

}
.

If it exists,
[
∗
D f
]
(a) is necessarily in B [10].

The derivative of f , denoted by
∗
D f , is the function that assigns each number t in A to the number

[
∗
D f
]
(t), if it exists.

The *-average of a *-continuous function f on [̇r,s]̇ is denoted by
∗
M

s
r f and defined to be β−limit of the β−convergent sequence whose n th

term is β−average of f (a1) , ..., f (an), where a1, ...,an is the n−fold α−partition of [̇r,s]̇.

The *-integral of a *-continuous function f on [̇r,s]̇, denoted by ∗
s∫
r

f (x)d∗x, is the number [ι (s)−̈ι (r)]×̈
∗
M

s
r f in B [10].

Let S be a nonempty subset of R(N)α and let k ∈ N. The sequence ( fk) = ( f1, f2, ..., fk, ...) is called sequence ( fk) of *-functions (or non-
Newtonian function sequence) for functions fk : S⊆R(N)α →R(N)β . Let a sequence ( fk) of *-functions with fk : S⊆R(N)α →R(N)β be
given. If the sequence ( fk (x0)) is β -convergent for x0 ∈ S, then the sequence ( fk) of *-functions is called *-convergent (or non-Newtonian
convergent). The sequence ( fk) of *-functions is said *-pointwise convergent or *-convergent to a function f , if the sequence ( fk (x)) is
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β -convergent for each x ∈ S and β lim
k→∞

fk (x) = f (x). In this case, the function f is called *-limit of the sequence ( fk) of *-functions and it

is written as follows;

∗− lim
k→∞

fk = f (∗− pointwise) or fk
∗−→ f (∗− pointwise) .

Let take the sequence ( fk) of *-functions, where fk : S⊆ R(N)α → R(N)β . The sequence ( fk) of *-functions *-uniform convergent to the
function f on set S, if for any given ε>̈0̈, there exists at least a natural number k0 depends on number ε but not depend on variable x such
that | fk (x)−̈ f (x)|

β
<̈ε for all k > k0 and each x ∈ S. It is denoted by ∗− lim

k→∞
fk = f (∗−uni f orm) or fk

∗−→ f (∗−uni f orm).

Let take sequence ( fk) of *-functions with fk : A⊆ R(N)α → R(N)β . The infinite β−sum

β

∞

∑
k=1

fk = f1+̈ f2+̈...+̈ fk+̈...

is called series of *-functions (or non-Newtonian function series). The β−sum Sk = β

n
∑

k=1
fk is called n th partial β−sum of the series

β

∞

∑
k=1

fk for n ∈ N. Let the series of *-functions β

∞

∑
k=1

fk with fk : A⊆ R(N)α → R(N)β and the function f : A⊆ R(N)α → R(N)β be given.

If the β−partial sums sequence (Sn), where Sn = β

n
∑

k=1
fk is *-pointwise converges to the function f , then series of *-functions β

n
∑

k=1
fk

*-pointwise converges to the function f on the set A and is written as

β

∞

∑
k=1

fk = f (∗− pointwise).

In this situation, the function f is called β−sum (or non-Newtonian sum) of *-series β

∞

∑
k=1

fk [14].

Definition 1.1. If Sk
∗−→ f (∗−uni f orm), then the series of *-functions β

∞

∑
k=1

fk is called *-uniform convergent to the function f on the set

A and is written as β

∞

∑
k=1

fk = f (∗−uni f orm) [14].

2. Results and Discussion

2.1. *-Dirichlet’s and *-Abel’s Tests

The sequence of *-functions and series of *-functions are examined in [14]. As an application of these *-Abel and *-Dirichlet tests will
be given. There are some tests to determine *-uniform convergence in the case of *-Weierstrass M-criterion is not sufficient to determine
*-uniform convergence. These statements in *-calculus of two theorems which known as Abel’s and Dirichlet’s tests in classic calculus are
given below. These tests are useful for applications and especially *-power series.
Now, the formula which is named ”α−Abel’s partial sum” is obtained.

Proposition 2.1. If {a1,a2, ...,an, ...} and {b1,b2, ...,bn, ...} are two non-Newtonian real number sequences (α−real number sequences)
and if sn = a1+̇a2+̇...+̇an, then the equalities

α

n

∑
k=1

(ak×̇bk) = sn×̇bn+1−̇ α

n

∑
k=1

[sk×̇(bk+1−̇bk)] (2.1)

= sn×̇b1−̇ α

n

∑
k=1

[(sn−̇sk)×̇(bk+1−̇bk)] (2.2)

hold.

Proof. Since an = sn−̇sn−1 with s0 = 0̇, we have

α

n

∑
k=1

(ak×̇bk) = α

n

∑
k=1

[(sk−̇sk−1)×̇bk] =α

n

∑
k=1

(sk×̇bk)−̇α

n

∑
k=1

(sk−1×̇bk) . (2.3)

On the other hand, since

α

n

∑
k=1

(sk−1×̇bk) = α

n

∑
k=1

(sk×̇bk+1)−̇(sn×̇bn+1) ,

if we consider this sum in the equality (2.3), then

α

n

∑
k=1

(ak×̇bk) = (sn×̇bn+1)−̇ α

n

∑
k=1

[sk×̇(bk+1−̇bk)]

is obtained. Again, if we write

bn+1 = α

n

∑
k=1

(bk+1−̇bk)+̇b1

instead of bn+1 in the equality (2.1), then we obtain the equality (2.2).
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Definition 2.2. If the sequence (ϕn) of *-functions with ϕn : A→ R(N)β , where A ⊂ R(N)α , satisfies the condition ϕn(x)≤̈ϕn+1(x)
(ϕn+1(x)≤̈ϕn(x)) for all n ∈ N and all x ∈ A, then the sequence (ϕn) is called *-monotone increasing (*-monotone decreasing). If the
sequence (ϕn) of *-functions is *-monotone increasing or *-monotone decreasing, then the sequence (ϕn) is called *-monotone.

Theorem 2.3. Let sequence (ϕn) of *-functions with ϕn : A→ R(N)β where A⊂ R(N)α and let (ϕn) possess the following properties.
1. (ϕn) is *-monotone decreasing and
2. There exists a number M≥̈0̈ such that |ϕn(x)|β ≤̈M for all x ∈ A and all n ∈ N.

In this case, if the *-series β

∞

∑
n=1

fn is *-uniform convergent on the set A, then the *-series β

∞

∑
n=1

( fn×̈ϕn) is also *-uniform convergent on the

set A.

Proof. Let sn(x) = β

n
∑

k=1
fk(x) and hn(x) = β

n
∑

k=1
(ϕk(x)×̈ fk(x)). By virtue of the equality (2.2) in Proposition 2.1,

hn(x)−̈hm(x) = [sn(x)−̈sm(x)]×̈ϕ1(x)+̈ β

n

∑
k=m+1

[sn(x)−̈sk(x)]×̈ [ϕk+1(x)−̈ϕk(x)]

for n > m. From here,

|hn(x)−̈hm(x)|β ≤̈ |sn(x)−̈sm(x)|β ×̈ |ϕ1(x)|β +̈ β

n

∑
k=m+1

|sn(x)−̈sk(x)|β ×̈ |ϕk+1(x)−̈ϕk(x)|β

is written. |ϕk+1(x)−̈ϕk(x)|β = ϕk(x)−̈ϕk+1(x) since ϕk+1≤̈ϕk. Since β

∞

∑
n=1

fn is *-uniform convergent, there exists a natural number N

corresponds to an arbitrary number ε>̈0̈ such that |sn(x)−̈sm(x)|β <̈
ε

3̈×̈M
β for all n,m > N. Thus,

|hn(x)−̈hm(x)|β <̈
ε

3̈
β +̈

(
ε

3̈×̈M
β

)
×̈ β

n

∑
k=m+1

[ϕk(x)−̈ϕk+1(x)]

=
ε

3̈
β +̈

(
ε

3̈×̈M
β

)
×̈ [ϕm+1(x)−̈ϕn+1(x)]

≤̈ ε

3̈
β +̈

(
ε

3̈×̈M
β

)
×̈
[
|ϕm+1(x)|β +̈ |ϕn+1(x)|β

]
≤̈ ε

3̈
β +̈

ε

3̈
β +̈

ε

3̈
β = ε

is found for all x ∈ A. Then, in accordance with *-Cauchy criterion [14], β

∞

∑
n=1

( fn(x)×̈ϕn(x)) is *-uniform convergent.

Remark 2.4. Particularly, by choosing the functions ϕn and fn as constant, useful tests are also obtained for non-Newtonian real number
series.

Remark 2.5. In the case of the sequence (ϕn) of *-functions is *-monotone increasing, similar test can be obtained. For this, if
(
0̈−̈ϕn

)
is

taken instead of ϕn above, then the proof is completed.

Theorem 2.6. (*-Dirichlet’s Test) Let sn(x) = β

n
∑

m=1
fm(x) for a sequence of *-functions fn : A ⊂ R(N)α → R(N)β . Suppose that

there is a constant M such that |sn(x)|β ≤̈M for all x ∈ A and all n ∈ N. If a sequence (gn) of *-functions satisfies the conditions

gn : A⊂ R(N)α → R(N)β , gn
∗−→ 0̈(∗−uni f orm), gn≥̈0̈ and gn+1(x)≤̈gn(x), then the *-series β

∞

∑
n=1

( fn×̈gn) is *-uniform convergent on

the set A.

Proof. In the light of Theorem 2.3, by taking ϕn = gn if the equality (2.1) is considered in Proposition 2.1 for n > m, then

hn(x)−̈hm(x) = sn(x)×̈ϕn+1(x)−̈sm(x)×̈ϕm+1(x)−̈ β

n

∑
k=m+1

sk(x)×̈(ϕk+1(x)−̈ϕk(x))

is written. Since ϕk≥̈0̈ and ϕk+1≤̈ϕk, we have

|hn(x)−̈hm(x)|β ≤̈ M×̈(ϕn+1(x)+̈ϕm+1(x))+̈M×̈ β

n

∑
k=m+1

(ϕk(x)−̈ϕk+1(x))

= M×̈(ϕn+1(x)+̈ϕm+1(x)+̈ϕm+1(x)−̈ϕn+1(x))

= 2̈×̈M×̈ϕm+1(x).

Since ϕn = gn is *-uniform convergent to the number 0̈, a natural number N which corresponds an arbitrary ε>̈0̈ can be chosen such that the

inequality ϕm(x)<̈
ε

2̈×̈M
β holds for all x ∈ A when m > N. Therefore, |hn(x)−̈hm(x)|β <̈ε is obtained for all x ∈ A since n,m > N. This

completes the proof.

Remark 2.7. Theorems 2.3 and 2.6 are similar to each other, but they are not same. The conditions which are wanted for (ϕn) in Theorem
2.3 does not require that the sequence of *-functions is *-uniform convergent. Furthermore, the condition ϕn≥̈0̈ is not wanted for the
sequence (ϕn) of *-functions in Theorem 2.3.
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For example, consider the *-alternating series β

∞

∑
n=0

(
0̈−̈1̈

)nβ ×̈gn (x). Let gn (x)≥̈0̈, gn
∗−→ 0̈ (∗−uni f orm) and gn+1≤̈gn here. If

fn (x) =
(
0̈−̈1̈

)nβ is taken, by virtue of the *-Dirichlet’s test, the series β

∞

∑
n=0

(
0̈−̈1̈

)nβ ×̈gn (x) is *-uniform convergent. According to this,

*-alternating series is *-convergent whose general term β−absolutely converges to the point 0̈.

Example 2.8. The *-series β

∞

∑
n=1

(
0̈−̈1̈

)nβ

n̈
β ×̈ë(−n.α−1(x))

β is *-uniform convergent on [̇0̇,+̇∞]̇:

By virtue of Theorem 2.6, if ϕn (x) = ë(−n.α−1(x))
β is taken, then ϕn+1 (x)≤̈ϕn (x) and |ϕn (x)|β =

∣∣∣∣ë(−n.α−1(x))
β

∣∣∣∣
β

≤̈1̈ for x>̇0̇. Otherwise,

since we know that the *-series β

∞

∑
n=1

(
0̈−̈1̈

)nβ ×̈ 1̈
n̈

β is *-convergent, in view of *-Dirichlet’s test, given series is *-uniform convergent.

Example 2.9. The function f defined by f (x) = β

∞

∑
n=1

(
0̈−̈1̈

)nβ

n̈
β ×̈ë(−n.α−1(x))

β is *- continuous:

The functions fn (x) =

(
0̈−̈1̈

)nβ

n̈
β ×̈ë(−n.α−1(x))

β for n = 1,2,3, ... are *-continuous. By Example 2.8, the *-series β

∞

∑
n=1

fn is *-uniform

convergent. By virtue of Corollary 3 in [14], *-limit function f is *-continuous.

2.2. *-Power Series

Definition 2.10. The general statement of *-power series of ι (x−̇x0) = ι (x)−̈ι (x0) is formed

β

∞

∑
k=0

ak×̈(ι (x)−̈ι (x0))
kβ = a0+̈ [a1×̈(ι (x)−̈ι (x0))] +̈

[
a2×̈(ι (x)−̈ι (x0))

2β

]
+̈... (2.4)

where a0,a1, ...,ak, ... ∈ R(N)β are constants and x,x0 ∈ R(N)α . If x0 = 0̇, then the *-power series is

β

∞

∑
k=0

ak×̈ι (x)kβ = a0+̈ [a1×̈ι (x)] +̈
[
a2×̈ι (x)2β

]
+̈... .

Theorem 2.11. Let the *-power series β

∞

∑
k=0

ak×̈(ι (x)−̈ι (x0))
kβ be given and let

1̈
r

β = β lim
k→∞

sup k
√
|ak|β

β

(or
1̈
r

β = β lim
k→∞

∣∣∣∣ak+1
ak

β

∣∣∣∣
β

if β lim
k→∞

∣∣∣∣ak+1
ak

β

∣∣∣∣
β

exist). Then,

1. the series is *-absolute convergent if |ι (x)−̈ι (x0)|β <̈r,
2. the series is *-divergent if |ι (x)−̈ι (x0)|β >̈r,
3. the series is *-uniform convergent for |ι (x)−̈ι (x0)|β ≤̈p if 0̈<̈p<̈r.

Proof. If *-Cauchy’s root test [7] is applied to the series β

∞

∑
k=0

ak×̈(ι (x)−̈ι (x0))
kβ , then we have

β limsup k

√∣∣∣ak×̈(ι (x)−̈ι (x0))
kβ

∣∣∣
β

β

= β lim
n→∞

(
β sup

k≥n

k

√∣∣∣ak×̈(ι (x)−̈ι (x0))
kβ

∣∣∣
β

β
)

=

[
β lim

n→∞

(
β sup

k≥n

k
√
|ak|β

β

)]
×̈ |ι (x)−̈ι (x0)|β

=
|ι (x)−̈ι (x0)|β

r
β .

Therefore, the series is *-convergent if
|ι (x)−̈ι (x0)|β

r
β <̈1̈, namely if |ι (x)−̈ι (x0)|β <̈r, and the series is *-divergent if

|ι (x)−̈ι (x0)|β
r

β >̈1̈

namely if |ι (x)−̈ι (x0)|β >̈r. Here, if β limsup k
√
|ak|β

β

= 0̈, then the series is *-convergent for all x. Hence r = +̈∞. If |ι (x)−̈ι (x0)|β ≤̈p,

then
∣∣∣ak×̈(ι (x)−̈ι (x0))

kβ

∣∣∣
β
≤̈ |ak|β ×̈pkβ . If *-Cauchy’s root test [7] is applied to the series β

∞

∑
k=1

ak×̈pkβ , since

β lim
k→∞

sup k
√∣∣ak×̈pkβ

∣∣
β

β

=

[
β lim

n→∞

(
β sup

k≥n

k
√
|ak|β

β

)]
×̈p =

p
r

β <̈1̈,

it is seen that the series β

∞

∑
k=1

ak×̈pkβ is convergent. Thus, in accordance with *-Weierstrass M-Criterion [14], the series β

∞

∑
k=0

ak×̈(ι (x)−̈ι (x0))
kβ

is *-uniform convergent.
If the β−limit

β lim
k→∞

∣∣∣∣∣ak+1×̈(ι (x)−̈ι (x0))
(k+1)

β

ak×̈(ι (x)−̈ι (x0))
kβ

β

∣∣∣∣∣
β

= β lim
k→∞

∣∣∣∣ak+1
ak

β

∣∣∣∣
β

×̈ |ι (x)−̈ι (x0)|β
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exists which is obtained by applying β−rate test [7] to the series β

∞

∑
k=0

ak×̈(ι (x)−̈ι (x0))
kβ , then

β lim
k→∞

∣∣∣∣ak+1
ak

β

∣∣∣∣
β

×̈ |ι (x)−̈ι (x0)|β <̈1̈,

namely

|ι (x)−̈ι (x0)|β <̈
1̈

β lim
k→∞

∣∣∣∣ak+1
ak

β

∣∣∣∣
β

β = β lim
k→∞

∣∣∣∣ ak

ak+1
β

∣∣∣∣
β

= r

is written. The *-power series is *-convergent if |ι (x)−̈ι (x0)|β <̈r, and *-divergent if |ι (x)−̈ι (x0)|β >̈r. If |ι (x)−̈ι (x0)|β ≤̈p, then∣∣∣ak×̈(ι (x)−̈ι (x0))
kβ

∣∣∣
β
≤̈ |ak|β ×̈pkβ . If the β−rate test [7] is applied to the series β

∞

∑
k=1

ak×̈pkβ , then

β lim
k→∞

∣∣∣∣∣ak+1×̈p(k+1)
β

ak×̈pkβ

β

∣∣∣∣∣
β

= β lim
k→∞

∣∣∣∣ak+1
ak

β

∣∣∣∣
β

×̈p =
p
r

β <̈1̈.

Therefore the series is *-convergent. Hence, by *-Weierstrass M-Criterion [14], the *-power series is *-uniform convergent.

Definition 2.12. The number ι−1 (r) is called radius of non-Newtonian convergence (radius of *-convergence) of the *-power series in the
equality (2.4) for the number r in Theorem 2.11. (̇x0−̇ι−1 (r) ,x0+̇ι−1 (r) )̇ is called the interval of non-Newtonian convergence (or interval
of *-convergence). By checking the end points, we decide whether or not to include them to interval of *-convergence.

Example 2.13. The radius of *-convergence of the series β

∞

∑
k=1

ι (x)kβ

k̈
β is 1̈ and the interval of *-convergence of the series β

∞

∑
k=1

ι (x)kβ

k̈
β

is [̇0̇−̇1̇, 1̇)̇ :

Since

r = β lim
k→∞

∣∣∣∣ ak

ak+1
β

∣∣∣∣
β

= β lim
k→∞

1̈
k̈

β

1̈
k̈+̈1̈

β

β = β lim
k→∞

k̈+̈1̈
k̈

β = 1̈,

radius of *-convergence is ι−1 (r) = ι−1 (1̈) = 1̇. The interval of *-convergence is found as (̇0̇−̇1̇, 1̇)̇ since x0 = 0̇. For the end point

x = 1̇, β−harmonic series β

∞

∑
k=1

1̈
k̈

β is *-divergent, for the initial point x = 0̇−̇1̇, β−alternating series [7] β

∞

∑
k=1

(
0̈−̈1̈

)kβ

k̈
β is convergent.

Therefore, the set of *-convergence of the series β

∞

∑
k=1

ι (x)kβ

k̈
β is the interval [̇0̇−̇1̇, 1̇)̇.

Let the interval of *-convergence of the series β

∞

∑
k=0

ak×̈(ι (x)−̈ι (x0))
kβ be (̇x0−̇ι−1 (r) ,x0+̇ι−1 (r) )̇. Let define f (x) = bx1 if x1 ∈

(̇x0−̇ι−1 (r) ,x0+̇ι−1 (r) )̇ and if bx1 = β

∞

∑
k=0

ak×̈(ι (x)−̈ι (x0))
kβ . According to this, the function f : (̇x0−̇ι−1 (r) ,x0+̇ι−1 (r) )̇→ R(N)β

is defined by

f (x) = β

∞

∑
k=0

ak×̈(ι (x)−̈ι (x0))
kβ .

Remark 2.14. Domain of the function f can be bigger than the interval of *-convergence of the *-power series. For example, the interval of

*-convergence of β

∞

∑
k=0

ι (x)kβ is (̇0̇−̇1̇, 1̇)̇ and f (x) =
1̈

1̈−̈ι (x)
β = β

∞

∑
k=0

ι (x)kβ on this interval. This function f is defined and *-continuous

for all x ∈ R(N)α except for x = 1̇.

By Theorem 2.11, the following corollaries are obtained.

Corollary 2.15. (1) The function f is *-continuous on (̇x0−̇ι−1 (r) ,x0+̇ι−1 (r) )̇. Because there exist a number p ∈ R(N)α such that

x0−̇ι
−1 (r)<̇x0−̇p<̇x1<̇x0+̇p<̇x0+̇ι

−1 (r)

for each x1 ∈ (̇x0−̇ι−1 (r) ,x0+̇ι−1 (r) )̇. In this case, by third item of Theorem 2.11, *-power series is *-uniform convergent on [̇x0−̇p,x0+̇p]̇⊂
(̇x0−̇ι−1 (r) ,x0+̇ι−1 (r) )̇, and by virtue of Corollary 3 in [14], the function f is *-continuous.
(2) By *-uniform convergence and Corollary 4 in [14], *-power series is term by term *-integrable.
(3) By third item of Theorem 2.11 again and Corollary 5 in [14], *-derivation[

∗
D f
]
(x) = β

∞

∑
k=1

k̈×̈ak×̈(ι (x)−̈ι (x0))
(k−1)

β

is found through term by term *-differentiating.
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This new series (*-derivative series) has same radius of *-convergence with the original series, it is *-uniform convergent for 0̈<̈p<̈r and[
∗
D f
]
(x) is *-continuous. If this process keeps on, then every order *-derivative of the function f exist and nth order *-derivative

[ ∗
Dn f

]
(x) = β

∞

∑
k=n

k̈×̈
(
k̈−̈1̈

)
×̈...×̈

(
k̈−̈n̈+̈1̈

)
×̈ak×̈(ι (x)−̈ι (x0))

(k−n)
β

is found for x ∈ (̇x0−̇ι−1 (r) ,x0+̇ι−1 (r) )̇.
[ ∗

Dn f
]
(x0) = an×̈n̈!β or an =

[ ∗
Dn f

]
(x0)

n̈!β

β is obtained for x = x0.

Therefore, we can give the following theorem without proof.

Theorem 2.16. Let the radius of *-convergence of *-power series β

∞

∑
k=0

ak×̈(ι (x)−̈ι (x0))
kβ be ι−1 (r)>̇0̇ and let f (x)= β

∞

∑
k=1

ak×̈(ι (x)−̈ι (x0))
kβ .

Then the function f is every order *-differentiable and ak =

[ ∗
Dn f

]
(x0)

k̈!β

β .

Corollary 2.17. Sum of a *-power series is a *-continuous function and its every order *-derivative exists. Such a series is term by term
*-differentiable, and the radius of *-convergence of *-derivative series with first series are equal.

Proof. The proof is trivial for x0 = 0̇. For the *-power series β

∞

∑
k=0

ak×̈ι (x)kβ , terms gk (x) = ak×̈ι (x)kβ are *-differentiable. The *-derivative

functions
[
∗
Dgk

]
(x) = k̈×̈ak×̈ι (x)(k−1)

β is *-continuous and

1̈
R

β = β lim
k→∞

sup k
√∣∣k̈×̈ak

∣∣
β

β

where R is the radius of *-convergence of *-derivative power series β

∞

∑
k=1

[
k̈×̈ak×̈ι (x)(k−1)

β

]
. But, since k

√
k̈

β β−→ 1̈,

1̈
R

β = β lim
k→∞

sup k
√∣∣k̈×̈ak

∣∣
β

β

=
1̈
r

β .

Namely R = r is obtained. Hence, ı−1(R) = ı−1(r). Then, this *-series of *-derivatives is *-uniform convergent on a closed α−interval
whose radius smaller than ı−1(r). Therefore, by Corollary 5 in [14], the β−sum of *-derivative series is *-derivative of β−sum of the
*-series in beginning.

Now, the concept β−summability in the sense of Cesàro will be given which is an application for *-power series.

Definition 2.18. Let

Sn = β

n

∑
k=1

ak and σn =
1̈
n̈

β ×̈ β

n

∑
k=1

Sk

be defined for *-series β ∑ak. From the definition of σn, σn is β−average of first n partial β−sums. Additionally, σn can be written in the
form

σn = β

n

∑
k=1

(
1̈−̈ k̈−̈1̈

n̈
β

)
×̈ak .

If β lim
n→∞

σn = A, then it is said that the series β ∑ak is β−Cesàro summable of order one (or (C,1) β−summable) and (C,1) β−sum of

this series is A. If (C,1) β−sum of *-series β ∑ak is A, then

β

∞

∑
k=1

ak = A (C,1)

is written.

The idea here has arisen from need of give a meaning to *-divergent series. For example,

1̈
2̈

β = 1̈−̈1̈+̈1̈−̈1̈+̈1̈−̈... (C,1) .

Indeed, here (Sn) = (1̈, 0̈, 1̈, 0̈, ...) and

Tn = β

n

∑
k=1

Sk = 1̈, 1̈, 2̈, 2̈, 3̈, 3̈, ... .

Then σ2n =
n̈

2̈×̈n̈
β and σ2n+1 =

n̈+̈1̈(
2̈×̈n̈

)
+̈1̈

β , hence β lim
n→∞

σn =
1̈
2̈

β .
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New summability method can be defined by taking β−average of σn’s which is stronger than (C,1) β−summability. The value

β lim
n→∞

1̈
n̈

β ×̈(σ1+̈σ2+̈...+̈σn)

is called (C,2) β−sum of the *-series β

∞

∑
k=1

ak.

(C,r) can be defined in a similar way for r = 1,2,3, ... . Some properties of (C,1) β−summability are given below.

Proposition 2.19. (1) If β

∞

∑
k=1

ak = A (C,1) and β

∞

∑
k=1

bk = B (C,1), then β

∞

∑
k=1

[(y×̈ak)+̈(z×̈bk)] = (y×̈A)+̈(z×̈B) (C,1).

(2) If β

∞

∑
k=1

ak = A (C,1), then β

∞

∑
k=1

ak+1 = A −̈a1 (C,1).

(3) (*-Regularity) If β−sum of the series β

∞

∑
k=1

ak is A, then β

∞

∑
k=1

ak = A (C,1).

Proof. (3) β

∞

∑
k=1

ak = A, then Sn
∗−→ A. Let B<̈A. Then, there exists a number n0 ∈ N such that Sn≥̈B for all n≥ n0.

σn =
1̈
n̈

β ×̈(S1+̈...+̈Sn0+̈Sn0+1+̈...+̈Sn)≥̈
1̈
n̈

β ×̈(S1+̈...+̈Sn0)+̈
n̈−̈n̈0

n̈
β ×̈B.

Therefore β liminfσn≥̈B. Since B<̈A is taken arbitrary, β liminfσn≥̈A. Similarly, it is seen that β limsupσn≤̈A. Hence, β lim
n→∞

σn = A is
obtained.

Another β−summability method is named ”Abel β−sum”.

Definition 2.20. If ∗− lim
x→1̇−

(
β

∞

∑
k=0

ak×̈ı(x)kβ

)
= A for the series β

∞

∑
k=0

ak, then it is said that this series is β−summable in the sense of

Abel and its Abel β−sum is A. In this case, β

∞

∑
k=0

ak = A (Abel) is written.

For example,

1̈
2̈

β = 1̈−̈1̈+̈1̈−̈1̈+̈1̈−̈...(Abel).

Indeed, for |x|α <̇1̇, it is seen that

f (x) = 1̈−̈ı(x)+̈ı(x)2β −̈...= β

∞

∑
k=0

(
0̈−̈1̈

)kβ ×̈
(

ı(x)kβ

)
=

1̈
1̈+̈ı(x)

β

and

∗− lim
x→1̇−

f (x) =
1̈
2̈

β .

Abel β−sum and (C,1) β−sum gives the same result which always holds. Firstly, *-regularity of β−summability in the sense of Abel will
be shown.

Theorem 2.21. If β

∞

∑
k=0

ak = A, then *-series β

∞

∑
k=0

ak×̈(ı(x))kβ *-convergent for |x|α <̇1̇ and ∗− lim
x→1̇−

(
β

∞

∑
k=0

ak×̈(ı(x))kβ

)
= A.

Proof. Suppose that A = 0̈ by changing the number a0 properly. Since a0 is bounded, by virtue of Theorem 2.11, *-series β

∞

∑
k=0

ak×̈(ı(x))kβ

is *-convergent for |x|α <̇1̇.

If Sn = β

n
∑

k=0
ak is taken, since Sn is β−bounded as n→ ∞, series β ∑Sk×̈(ı(x))kβ is *-convergent for |x|α <̇1̇ similarly. On the other hand,

when A = 0̈, Sn
∗→ 0̈ as n→ ∞. Therefore,

f (x) = S0+̈ β

∞

∑
k=1

(Sk−̈Sk−1)×̈(ı(x))kβ

=
(
1̈−̈ı(x)

)
×̈ β

∞

∑
k=0

Sk×̈(ı(x))kβ

is written. Since Sn
∗→ 0̈, for given ε>̈0̈, a n0 ∈ N can be found such that |Sn|β ≤̈ε when n≥ n0. Then

| f (x)|
β
≤̈

(
1̈−̈ı(x)

)
×̈

∣∣∣∣∣β n0

∑
k=0

Sk×̈(ı(x))kβ

∣∣∣∣∣
β

+̈
(
1̈−̈ı(x)

)
×̈

∣∣∣∣∣β ∞

∑
k=n0+1

Sk×̈(ı(x))kβ

∣∣∣∣∣
β

≤̈
(
1̈−̈ı(x)

)
×̈

∣∣∣∣∣β n0

∑
k=0

Sk×̈(ı(x))kβ

∣∣∣∣∣
β

+̈
(
1̈−̈ı(x)

)
×̈ε×̈ı(x)(n0+1)

β ×̈ 1̈
1̈−̈ı(x)

β

≤̈
(
1̈−̈ı(x)

)
×̈

∣∣∣∣∣β n0

∑
k=0

Sk×̈(ı(x))kβ

∣∣∣∣∣
β

+̈ε
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is obtained. Hence, ∗− limsup
x→1̇−

| f (x)|
β
≤̈ε and ∗− lim

x→1̇−
f (x) = 0̈ is found since ε>̈0̈ arbitrary.

According to this, if a *-power series is *-convergent on an α−closed interval, then β−sum of that series is also *-continuous on end
points.

Indeed, Abel β−sum method is stronger than (C,1) β−sum method.

Remark 2.22. If sequence
an

n̈
β is β−bounded for n is sufficiently large, then it is written that an = O(n) and if

an

n̈
β
∗−→ 0̈, then it is written

that an = o(n).

Theorem 2.23. If β

∞

∑
k=0

ak = A (C,1), then β

∞

∑
k=0

ak = A (Abel).

Proof. Suppose that A = 0̈ as in the proof of Theorem 2.21. Let define Sn = β

n
∑

k=0
ak and Tn = β

n
∑

k=0
Sk. By hypothesis, Tn = o(n). From

here, Sn = Tn−̈Tn−1 = O(n) and an = Sn−̈Sn−1 = O(n) can be written. Then all of three *-series β ∑ak×̈(ı(x))kβ , β ∑Sk×̈(ı(x))kβ and

β ∑Tk×̈(ı(x))kβ are *-convergent for |x|α <̇1̇. Therefore

f (x) = β ∑ak×̈(ı(x))kβ = (1̈−̈ı(x))×̈ β ∑Sk×̈(ı(x))kβ

= (1̈−̈ı(x))2β ×̈ β ∑Tk×̈(ı(x))kβ

is written. Since Tn = O(n), there exists n0 ∈ N such that |Tn|β ≤̈ε×̈n̈ for n > n0 which corresponds every given ε>̈0̈. According to this,

| f (x)|
β
≤̈ (1̈−̈ı(x))2β ×̈

∣∣∣∣∣β ∑
k≤n0

Tk×̈(ı(x))kβ

∣∣∣∣∣
β

+̈(1̈−̈ı(x))2β ×̈

(
β ∑

k>n0

Tk×̈(ı(x))kβ

)

≤̈ (1̈−̈ı(x))2β ×̈

∣∣∣∣∣β ∑
k≤n0

Tk×̈(ı(x))kβ

∣∣∣∣∣
β

+̈(1̈−̈ı(x))2β ×̈ε×̈ı(x)×̈(1̈−̈ı(x))(−2)
β

is found. Whence,

∗− lim
x→1̇−

sup | f (x)|
β
≤̈ε

is obtained. Then, ∗− lim
x→1̇−

f (x) = 0̈ as in Theorem 2.21.

Example 2.24. The *-series β

∞

∑
k=1

(
0̈−̈1̈

)kβ ×̈k̈ is not (C,1) β−summable:

Since

an :
(
0̈−̈1̈

)
, 2̈,
(
0̈−̈3̈

)
, 4̈,
(
0̈−̈5̈

)
, 6̈, ...

Sn :
(
0̈−̈1̈

)
, 1̈,
(
0̈−̈2̈

)
, 2̈,
(
0̈−̈3̈

)
, 3̈, ...

Tn :
(
0̈−̈1̈

)
, 0̈,
(
0̈−̈2̈

)
, 0̈,
(
0̈−̈3̈

)
, 0̈, ...

T2n = 0̈,T2n−1 =
(
0̈−̈n̈

)
,σ2n = 0̈ and σ2n−1 =

(
0̈−̈n̈

)(
2̈×̈n̈−̈1̈

)β
β→ 0̈−̈1̈

2̈
β

are obtained. Then, β lim
n→∞

σn does not exist.

Example 2.25. Show that β

∞

∑
k=1

(
0̈−̈1̈

)kβ ×̈k̈ ×̈(ı(x))kβ = 0̈−̈1̈
4̈

β (Abel).

β

∞

∑
k=1

(
0̈−̈1̈

)kβ ×̈k̈×̈(ı(x))kβ = ı(x)×̈
∗
D

(
β

∞

∑
k=1

(
0̈−̈1̈

)kβ ×̈(ı(x))kβ

)

= ı(x)×̈
∗
D
(

1̈
1̈+̈ı(x)

β −̈1̈
)

(|x|α <̇1̇)

=
0̈−̈ı(x)(

1̈+̈ı(x)
)2β

β .

Since f (x) =
0̈−̈ı(x)(

1̈+̈ı(x)
)2β

β and ∗− lim
x→1̇−

f (x) =
0̈−̈1̈

4̈
β , β

∞

∑
k=1

(
0̈−̈1̈

)kβ ×̈k̈ ×̈(ı(x))kβ =
0̈−̈1̈

4̈
β (Abel) is obtained.
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[16] C. Türkmen, F. Başar, Some basic results on the geometric calculus, Commun. Fac. Sci. Univ. Ankara, Ser. A1 Math. Stat. 61 (2) (2012), 17-34.
[17] A. Uzer, Multiplicative type complex calculus as an alternative to the classical calculus, Comput. Math. Appl. 60, (2010), 2725-2737.
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