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Abstract: The paper deals with the problem of the H∞ control of continuous-time linear systems by proper dynamic output controllers of 

order equal to the plant model order and by static output controller. The design procedure is based on solution of the set of linear matrix 

inequalities and the matrix equality and ensures the closed-loop asymptotic stability using Lyapunov approach and the H∞ performance, to 

guarantee the closed-loop system robustness to unknown disturbance. Numerical examples are given to illustrate the design procedures 

and the relevance of the method as well as to validate the performances of the proposed approach. 
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1. Introduction 

In practice, online measurements of all state variables of a process 

are rarely available and since only their observable outputs are 

accessible for control purposes, the output feedback control laws 

have to be considered when the state observers are not applicable. 

Since, really, the system dynamic may be affected by 

unmeasurable disturbances the H∞ approach is proposed to be used 

in the static and dynamic output feedback control law design. 

The static output feedback problem seems to be one of the most 

important question in linear control system design (see, e.g., [1, 2, 

3, 4] and the reference therein). Because of the importance of this 

kind control systems considerable attention was dedicated to the 

study of suitable design methods. Reflecting the fact that the static 

output feedback stabilization is generally a concave-convex 

problem [5], the design conditions based on a solution of various 

mutually coupled matrix equations or coupled linear matrix 

inequalities (LMI) was discussed in [6] or, more completely, in [7, 

8]. However, unfortunately, the output feedback controller 

synthesis problem is hard to be converted into a feasible task. 

Exploiting the approaches which potentially allow convert 

dynamic output controller synthesis into an LMI optimization 

problem, LMI computational technique has brought a preferred 

tool to solve also this design task. Although the obtained 

formulations are generally non-convex, using some system bounds 

they can be formulated as a convex problem. An iterative algorithm 

for designing the linear time-invariant dynamic output controllers 

of the prescribed structure was presented in [9], formulating the 

solution as an optimization based on LMIs in which either the 

Lyapunov matrix or the controller parameter matrix to be designed 

are alternately regarded as the optimization variables. Another 

iterative approach noted as convexifying algorithms was proposed 

in [10], where the artificially introduced convexifying function in 

each iteration step is reduced to zero to guaranty the feasibility of 

the original problem. Applying the controller parameter 

transformation and a mix of performance measures, the non-

recursive approach, noted as the multi-objective synthesis of linear 

dynamic output-feedback controllers is presented in [11], where 

each objective is formulated relative to a variety of the closed-loop 

transfer function and more relaxed sufficient conditions are 

derived in terms of LMIs. 

The aim of this paper is not only to generalize the existing works 

on the design of static and proper dynamic output control, but 

above all to formulate the new design conditions based on the set 

LMIs and, as yet, the linear matrix equality (LME). Applying to 

the multi-input and multi-output linear systems affected by an 

unknown disturbance, the standard bound on the system properties 

is considered as square of the H∞ norm of the closed-loop transfer 

function matrix between the unknown disturbance input and the 

system output, and convexifying assumptions are solved by 

modifying the H∞ control problem. The stability of the closed-loop 

system is ensured by finding a suitable Lyapunov matrix within a 

resolution of the LMIs and LME structure. 

The paper is organized in six sections. Follow after short 

introduction in Sec. I, the considered structures of the static and 

dynamic output controllers are presented in Sec. II. The main 

results are outlined in Sec. III and IV, formulating stability analysis 

and suitable design methods for the given types of output control 

by use of LMIs in such a way that the impact of the unknown 

disturbance on the controlled system does not exceed a specified 

limit. In Sec. V the numerical example is given in order to discuss 

the performances and limitations of the proposed design methods 

and the last section draws concluding remarks. 

Throughout the paper, the notations are narrowly standard in such 

a way that  𝒙𝑇, 𝑿𝑇denotes the transpose of the vector 𝒙, matrix 𝑿, 

respectively, 𝑿 =𝑿𝑇 > 0 means that 𝑿 is a symmetric positive 

definite matrix, rank (°) remits the rank of a matrix, diag [°] 

designates a block diagonal matrix, 𝜌(𝑿) notes the eigenvalues 

spectrum of the matrix 𝑿, the symbol 𝑰𝑛 indicates the n-th order 

unit matrix, 𝑅 denotes the set of real numbers, 𝑅𝑛, 𝑅𝑛×𝑛 refer to 

the set of all n-dimensional real vectors and 𝑛 × 𝑛 real matrices.  
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2. Problem Formulation 

The systems under consideration are continuous-time linear 

MIMO systems, described in the state-space form by the set of 

equations 

�̇�(𝑡) = 𝑨𝒒(𝑡) + 𝑩𝒖(𝑡) + 𝑽𝒗(𝑡) 
(1)  

𝒚(𝑡) = 𝑪𝒒(𝑡) 
(2)  

where 𝒒(𝑡) ∈ 𝑅𝑛, u(𝑡) ∈ 𝑅𝑟, y(𝑡) ∈ 𝑅𝑚 are vectors of the system, 

input and output variables, respectively, v(𝑡) ∈ 𝑅𝑝 is the 

exogenous input vector and matrices A ∈ 𝑅𝑛×𝑛, B ∈ 𝑅𝑛×𝑟, 𝑽 ∈

𝑅𝑛×𝑝,  𝑪 ∈ 𝑅𝑚×𝑛 are real matrices, provided that (A, 𝑩)  is 

stabilable and (A, 𝑪)  is detectable. It is supposed that an 

exogenous disturbance input is a non-anticipative process 

𝒗(𝑡) ∈  𝐿2⟨0, ∞; 𝑅𝑝). 

It is assumed that the system is stabilized by the linear static output 

controller 

𝒖(𝑡) = 𝑲𝒚(𝑡) = 𝑲𝑪𝒒(𝑡) 
(3)  

where K ∈ 𝑅𝑟×𝑛 is unknown real matrix, as well as by the full order 

time-invariant dynamic output controller 

�̇�(𝑡) = 𝑱𝒑(𝑡) + 𝑳𝒚(𝑡) 
(4)  

𝒖(𝑡) = 𝑴𝒑(𝑡) + 𝑵𝒚(𝑡) 
(5)  

where 𝒑(𝑡) ∈ 𝑅𝑛 is the vector of the controller state variables, the 

controller matrix 

𝑲𝒐 = [
𝑱 𝑳

𝑴 𝑵
] 

(6)  

𝑲𝒐 ∈ 𝑅(𝑛+𝑟)×(𝑛+𝑚), has the prescribed structure with respect to 

the real matrices J  ∈ 𝑅𝑛×𝑛, L  ∈ 𝑅𝑛×𝑚, M ∈ 𝑅𝑟×𝑛, N ∈ 𝑅𝑟×𝑚 to 

be designed.  

In the sense of the H∞ control theory, the objective is to design the 

above given control laws matrix parameters so that, if considering 

in the control only the measured variable output vector y(𝑡), the 

impact of the disturbance v(𝑡) on y(𝑡) expressed in term of square 

of the H∞ norm of the closed-loop transfer function matrix between 

the disturbance input and the system output, does not exceed a 

specified limit defined as the guaranteed quadratic performance.  

3. Static Output Feedback 

This section presents the control law parameter design conditions, 

corresponding to the static output control (3) acting on the system 

(1), (2) and optimized in the sense of the H∞ norm of the closed-

loop transfer function matrix with respect to the input of unknown 

disturbance. 

3.1. Unforced Mode 

Combining equations (1), (2) and (3), the following closed-

loop state-space model is achieved 

�̇�(𝑡) = (𝑨 + 𝑩𝑲𝑪)𝒒(𝑡) + 𝑽𝒗(𝑡) 
(7)  

𝒚(𝑡) = 𝑪𝒒(𝑡) 
(8)  

where the closed-loop system matrix 𝑨c is noted as 

𝑨c = (𝑨 + 𝑩𝑲𝑪) (9)  

To give a non-iterative procedure combining the set of LMIs and 

LME, the following proposition is presented. 

 Proposition 1: (bounded real lemma modification reflecting the 

static output controller structure) The closed-loop system, formed 

by the plant (1), (2) and the static output controller (3), is stable 

with the quadratic performance γ if there exist a positive definite 

symmetric matrix Q  ∈ 𝑅𝑛×𝑛, a regular matrix  H  ∈ 𝑅𝑚×𝑚, a 

matrix Y  ∈ 𝑅𝑟×𝑚 and a positive scalar γ  ∈ 𝑅  such that 

𝑸 = 𝑸𝑇 > 0, 𝛾 > 0 
(10)  

[

𝑨𝑸 + 𝑸𝑨𝑇 + 𝑩𝒀𝑪 + 𝑪𝑇𝒀𝑇𝑩𝑇 ∗ ∗

𝑽𝑇 −𝛾𝑰𝑝 ∗

𝑪𝑸 𝟎 −𝑰𝑚

]  <  0 

(11)  

𝑪𝑸 = 𝑯𝑪 
(12)  

When the above conditions hold the gain matrices of the static 

output control law is given by the formula 

𝑲 = 𝒀𝑯−1 
(13)  

Here and hereafter, ∗ denotes the symmetric item in a symmetric 

matrix. 

Proof: (compare, e.g. [1]) Defining the Lyapunov function as 

follows 

𝑣(𝒒(𝑡)) = 𝒒𝑇(𝑡)𝑷𝒒(𝑡) +

+ ∫ (𝒚𝑻(𝑥)𝒚(𝑥) − 𝛾
𝑡

0
𝒗𝑻(𝑥)𝒗(𝑥))d𝑥 > 0

 

(14)  

where 𝑷 = 𝑷 > 0 is a positive definite symmetric matrix and 

√𝛾 > 0 is the upper bound of the H∞ norm of the closed-loop 

system transfer function between the disturbance input and the 

system output, then [12] 

�̇�(𝒒(𝑡)) = �̇�𝑇(𝑡)𝑷𝒒(𝑡) + 𝒒𝑇(𝑡)𝑷�̇�(𝑡) +

+𝒚𝑻(𝑡)𝒚(𝑡) − 𝛾𝒗𝑻(𝑡)𝒗(𝑡) < 0
 

(15)  

Substituting (7), (8) in (15) gives 

�̇�(𝒒(𝑡)) = 𝒒𝑇(𝑡)(𝑨𝒄
𝑇𝑷 + 𝑷𝑨c)𝒒(𝑡) +

+𝒗𝑻(𝑡)𝑽𝑇𝑷𝒒(𝑡) + 𝒒𝑇(𝑡)𝑷𝑽𝒒(𝑡) +

+𝒒𝑻(𝑡)𝑪𝑇𝑪𝒒(𝑡) − 𝛾𝒗𝑻(𝑡)𝒗(𝑡) < 0

 

(16)  

and with the composed vector 

𝒒𝒄
𝑇(𝑡) = [𝒒𝑇(𝑡) 𝒗𝑻(𝑡)] 

(17)  

(16) can be written as 

�̇�(𝒒(𝑡)) = 𝒒𝑇(𝑡)𝑷c 𝒒(𝑡) < 0 
(18)  

where 

𝑷c = [
𝑨𝒄

𝑇𝑷 + 𝑷𝑨c + 𝑪𝑇𝑪 𝑷𝑽

𝑽𝑇𝑷 −𝛾𝑰𝑝
] < 0 

(19)  

Defining the transform matrix 

𝑻 = diag [𝑸 𝑰𝑝], 𝑸 = 𝑷−𝟏 
(20)  

pre-multiplying the left-hand side and subsequently the right-

hand side of (19) by (20)  it can obtain 
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[
𝑸𝑨𝒄

𝑇 + 𝑨c𝑸 + 𝑸𝑪𝑇𝑪𝑸 𝑽

𝑽𝑇 −𝛾𝑰𝑝
] < 0 

(21)  

and using the Schur's complement property then the inequality 

(21) implies 

[

𝑸𝑨𝒄
𝑇 + 𝑨c𝑸 𝑽 𝑸𝑪𝑇

𝑽𝑇 −𝛾𝑰𝑝 𝟎

𝑪𝑸 𝟎 −𝑰𝒎

] < 0 

(22)  

It has been developed a rule-based FES that made use of the  

Analysing the matrix element in the upper left corner of (22), i.e., 

𝑸𝑨𝒄
𝑇 + 𝑨c𝑸 =  𝑸(𝑨 + 𝑩𝑲𝑪)𝑇 + (𝑨 + 𝑩𝑲𝑪)𝑸 

(23)  

it can set 

𝑩𝑲𝑪𝑸 =  𝑩𝑲𝑯𝑯−𝟏𝑪𝑸 (24)  

where 𝑯 is a regular square matrix of appropriate dimension. 

 

Defining the following equality 

𝑯−𝟏𝑪 = 𝑪𝑸−𝟏 
(25)  

and using the notation 

𝒀 = 𝑲𝑯 
(26)  

then 

𝑩𝑲𝑪𝑸 =  𝑩𝒀𝑪 
(27)  

𝑸𝑨𝒄
𝑇 + 𝑨c𝑸 =  𝑸(𝑨 + 𝑩𝑲𝑪)𝑇 + (𝑨 + 𝑩𝑲𝑪)𝑸 =

= 𝑨𝑸 + 𝑸𝑨𝑇 + 𝑩𝒀𝑪 + 𝑪𝑇𝒀𝑇𝑩𝑇  

(28)  

and (25) implies 

𝑪𝑸 = 𝑯𝑪 
(29)  

Now, evidently, (22) with (28) and (29) imply (11), (12), 

respectively. This concludes the proof.                      ∎ 

This proposition provides the sufficient condition under LMIs and 

LME formulations for the synthesis of a static output controller 

robust to the disturbance 𝒗(𝑡). 

3.2. Forced Regime 

In practice, the case with r = m (square plants) is often encountered, 

where it is generally associated with each output signal a reference 

signal, which is expected to influence as wanted this output. Such 

regime, reflecting nonzero set working points, is called the forced 

regime. 

Definition 1: The forced regime for (1), (2) with the static output 

control is given by the control policy 

𝒖(𝑡) = 𝑲𝑪𝒒(𝑡) + 𝑾𝒘(𝑡) 
(30)  

where r = m, 𝒘(𝑡) ∈ 𝑅𝑚 is desired output signal vector, and matrix 

W  ∈ 𝑅𝑚×𝑚 is the signal gain matrix. 

Proposition 2:  If the system (1), (2) is stabilizable by the control 

policy (30), and [13] 

rank [
𝑨 𝑩
𝑪 𝟎

] = 𝑛 + 𝑚 
(31)  

then the matrix 𝑾 in (30), designed by using the static decoupling 

principle, takes the form 

𝑾 = −(𝑪(𝑨 + 𝑩𝑲𝑪)−𝟏𝑩)−𝟏 
(32)  

Proof: In a steady state which corresponds to �̇�(𝑡) = 𝟎, the 

equality 𝒚o = 𝒘o  must hold, where 𝒒o ∈ 𝑅𝑛, 𝒚o, 𝒘o ∈ 𝑅𝑚 are 

vectors of steady state values of 𝒒(𝑡), 𝒚(𝑡), and 𝒘(𝑡).  

In this case, the disturbance-free system equations (1), (2) under 

control (30) implies 

0 = (𝑨 + 𝑩𝑲𝑪)𝒒o + 𝑩𝑾𝒘o   
(33)  

𝒚o = 𝑪𝒒o = −𝑪(𝑨 + 𝑩𝑲𝑪)−𝟏𝑩𝑾𝒘o = −𝑰𝒎𝒘o   
(34)  

It is evident that the equality (34) implies (32). This concludes the 

proof.                               ∎ 

The 𝑾 matrix is nothing else than the inverse of the closed-loop 

static gain matrix. This gain matrix can be obtained so by setting s 

= 0 in the state-space expression of the transfer function matrix of 

the closed-loop system with respect to the forced input. Note, the 

static gain realized by the 𝑾 matrix is ideal in control only if the 

plant parameters, on which the value of 𝑾 depends, are known and 

do not vary with time. The forced regime is basically designed for 

constant references and is very closely related to shift of origin. If 

the command value 𝒘(𝑡) is changed "slowly enough," the above 

scheme can do a reasonable job of tracking, i.e., making 𝒚(𝑡) to 

follow 𝒘(𝑡) [14].  

4. Dynamic Output Feedback 

In this part the time-invariant dynamic output controller is 

considered in control of the linear continuous-time system 

perturbed by an unknown input disturbance. 

4.1. Unforced Mode 

To analyse the stability of the closed-loop system structure with 

the dynamic output controller, the following form of the system 

description can be introduced. 

[
�̇�(𝑡)

�̇�(𝑡)
] = [

𝑨 + 𝑩𝑵𝑪 𝑩𝑴
𝑳𝑪 𝑱

] [
𝒒(𝑡)

𝒑(𝑡)
] + [

𝑽
𝟎

] 𝒗(𝑡) 

(35)  

𝒚(𝑡) = [𝟎 𝑰𝒎] [
𝟎 𝑰𝒏

𝑪 𝟎
] [

𝒒(𝑡)

𝒑(𝑡)
] 

(36)  

After introducing the notations 

𝒒o𝑇(𝑡) = [𝒒𝑇(𝑡) 𝒑𝑻(𝑡)] 
(37)  

𝑨o = [
𝑨 𝟎
𝟎 𝟎

] ,    𝑩o = [
𝟎 𝑩
𝑰𝒏 𝟎

] ,   𝑪o = [
𝟎 𝑰𝒏

𝑪 𝟎
] 

(38)  

𝑽oT = [𝑽o 𝟎], 𝑰o = [𝟎 𝑰𝒎] 
(39)  

where 𝑨o ∈ 𝑅2𝑛×2𝑛,  𝑩o ∈ 𝑅2𝑛×(𝑛+𝑟), 𝑪o ∈ 𝑅(𝑛+𝑚)×2𝑛 ,  𝑽o ∈

𝑅2𝑛×𝑝,  𝑰 ∈ 𝑅𝑚×(𝑛+𝑚), the closed-loop state-space dynamic 

equations as well as the system output relation takes the following 

form 

𝒒ȯ(𝑡) = (𝑨o + 𝑩o𝑲o𝑪o)𝒒o(𝑡) + 𝑽o𝒗(𝑡) 
(40)  

𝒚o(𝑡) = 𝑰o𝑪o𝒒o(𝑡) 
(41)  

respectively. 

In the sequel, so it is supposed that (𝑨o, 𝑩o)  is stabilable and 

(𝑨o, 𝑪o)  is detectable [15], [16] and the matrix product 𝑪o𝑩o is 
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nonzero matrix. 

Theorem 1: (bounded real lemma modification reflecting the 

dynamic output controller structure) The closed-loop system 

consisting of the plant (1), (2) with the controller (4), (5) is stable 

with the quadratic performance γ if there exist a symmetric positive 

definite matrix 𝑸o  ∈ 𝑅2𝑛×2𝑛, a regular matrix 𝑯o ∈

𝑅(𝑛+𝑚)×(𝑛+𝑚), a matrix 𝒀o ∈ 𝑅(𝑛+𝑟)×(𝑛+𝑚) and a positive γ  ∈ 𝑅  

such that 

𝑸o = 𝑸o𝑇 > 0, 𝛾 > 0 
(42)  

[

𝒁o ∗ ∗
𝑽o𝑇 −𝛾𝑰𝑝 ∗

𝑰o𝑪oQ𝒐 𝟎 −𝑰𝑚

]  <  0 

(43)  

𝑪o𝑸o = 𝑯o𝑪o 
(44)  

where 

𝒁o = 𝑨o𝑸o + 𝑸o𝑨o𝑇 + 𝑩o𝒀o𝑪o + 𝑪o𝑇𝒀o𝑇𝑩o𝑇  
(45)  

When the above conditions hold the common control law gain 

matrix of the dynamic output controller is given by the following 

formula 

𝑲o = 𝒀o(𝑯o)−𝟏 
(46)  

Proof: Defining the Lyapunov function as follows 

𝑣(𝒒o(𝑡)) = 𝒒o𝑇(𝑡)𝑷o𝒒o(𝑡) +

+ ∫ (𝒚𝑻(𝑥)𝒚(𝑥) − 𝛾
𝑡

0
𝒗𝑻(𝑥)𝒗(𝑥))d𝑥 > 0

 

(47)  

where 𝑷o =  𝑷o𝑇 > 𝟎 is a positive definite symmetric matrix and 

√𝛾 > 0 is the upper bound of the H∞ norm of the closed-loop 

system transfer function between the disturbance input and the 

system output, then 

�̇�(𝒒o(𝑡)) = �̇�o𝑇(𝑡)𝑷o𝒒o(𝑡) + 𝒒o𝑇(𝑡)𝑷o𝒒ȯ(𝑡) +

+𝒚𝑻(𝑡)𝒚(𝑡) − 𝛾𝒗𝑻(𝑡)𝒗(𝑡) < 0
 

(48)  

Substituting (40) and (41) into (48) it yields 

�̇�(𝒒o(𝑡)) = 𝒒o𝑇(𝑡)(𝑨𝒄
o𝑇𝑷o + 𝑷o𝑨𝒄

o)𝒒o(𝑡) +

+𝒗o𝑇(𝑡)𝑽o𝑇𝑷o𝒒(𝑡) + 𝒒o𝑇(𝑡)𝑷o𝑽o𝒗o(𝑡) +

+𝒒o𝑻(𝑡)𝑪o𝑇𝑰o𝑇𝑰o𝑪o𝒒o(𝑡) − 𝛾𝒗𝑻(𝑡)𝒗(𝑡) < 0

 

(49)  

where 𝑨𝒄
o = 𝑨o + 𝑩o𝑲o𝑪o. Then with the composed vector 

𝒒𝒄
o𝑇(𝑡) = [𝒒o𝑇(𝑡) 𝒗𝑻(𝑡)] (50)  

the inequality (49) can be written as 

�̇�(𝒒𝒄
o(𝑡)) = 𝒒𝒄

o𝑇(𝑡)𝑷𝒄
o 𝒒𝒄

o(𝑡) < 0 (51)  

where 

𝑷𝒄
o = [

𝑨𝒄
o𝑇𝑷o + 𝑷o𝑨𝒄

o + 𝑪o𝑇𝑰o𝑇𝑰o𝑪o 𝑷o𝑽o

𝑽o𝑇𝑷o −𝛾𝑰𝑝
] < 0 

(52)  

Defining the transform matrix 

𝑻o = diag [𝑸o 𝑰𝑝], 𝑸o = (𝑷o)−𝟏 (53)  

pre-multiplying the left-hand side and subsequently the right-

hand side of (52) by (53) it can obtain 

[
𝑸o𝑨𝒄

o𝑇 + 𝑨𝒄
o𝑸 + 𝑸o𝑪o𝑇𝑰o𝑇𝑰o𝑪o𝑸o 𝑽o

𝑽o𝑇 −𝛾𝑰𝑝
] < 0 

(54)  

Thus, with the Schur complement property, (54) can be rewritten 

as 

[

𝑸o𝑨𝒄
o𝑇 + 𝑨𝒄

o𝑸o 𝑽o 𝑸o𝑪o𝑇𝑰o𝑇

𝑽o𝑇 −𝛾𝑰𝑝 𝟎

𝑰o𝑪o𝑸o 𝟎 −𝑰𝒎

] < 0 

(55)  

Analysing the matrix element in the upper left corner of (55), i.e., 

𝑸o𝑨𝒄
o𝑇 + 𝑨𝒄

o𝑸o =

𝑸o(𝑨o + 𝑩o𝑲o𝑪o)𝑇 +  (𝑨o + 𝑩o𝑲o𝑪o)𝑸o 
(56)  

then analogously with (24)-(26) it can be set 

𝒁o = 𝑨o𝑸o + 𝑸o𝑨o𝑇 + 𝑩o𝒀o𝑪o + 𝑪o𝑇𝒀o𝑇𝑩o𝑇  (57)  

and with the notations 

𝑪o𝑸o = 𝑯o𝑪o (58)  

𝒀o = 𝑲o𝑯o (59)  

(55) with (57) imply (43), and (58) gives (44). This concludes the 

proof.                               ∎ 

Forced Regime 

Definition 2: The forced regime for (1), (2) with the dynamic 

output controller is given by the control policy 

�̇�(𝑡) = 𝑱𝒑(𝑡) + 𝑳𝒚(𝑡) (60)  

𝒖(𝑡) = 𝑴𝒑(𝑡) + 𝑵𝒚(𝑡) + 𝑾𝒘(𝑡) (61)  

where r = m, 𝒘(𝑡) ∈ 𝑅𝑚 is desired output signal vector, and 

matrix W  ∈ 𝑅𝑚×𝑚 is the signal gain matrix. 

Theorem 2: If the system (1), (2) is stabilizable by the control 

policy (60), (61), and if (31) is satisfied, then the matrix signal gain 

matrix in (61), designed by using the static decoupling principle, 

takes the form 

𝑾 = −(𝑪(𝑨 − 𝑩𝑴𝑱−𝟏𝑳𝑪 + 𝑩𝑵𝑪)−𝟏𝑩)−𝟏  

Proof: In a steady state the disturbance-free system equations (1), 

(2) under control (60), (61) imply 

0 = 𝑨𝒒o + 𝑩𝒖o    

0 = 𝑱𝒑o + 𝑳𝑪𝒒o    

Since now (61), (64) implies 

𝒖o = (−𝑴𝑱−𝟏𝑳𝑪 + 𝑵𝑪)𝒒o + 𝑾𝒘o      

then, substituting (65) into (63) it yields 

𝟎 = (𝑨 − 𝑩𝑴𝑱−𝟏𝑳𝑪 + 𝑩𝑵𝑪)𝒒o + 𝑩𝑾𝒘o      

𝒒o = −(𝑨 − 𝑩𝑴𝑱−𝟏𝑳𝑪 + 𝑩𝑵𝑪)
−1

𝑩𝑾𝒘o      

respectively, and 

𝒚o = 𝑪𝒒o = −𝑪(𝑨 − 𝑩𝑴𝑱−𝟏𝑳𝑪 + 𝑩𝑵𝑪)
−1

𝑩𝑾𝒘o      

Thus, considering 𝒚o = 𝒘o then (68) implies (62). This 

concludes the proof.                        ∎ 

5.  Illustrative Example  
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The features of the considered schemes and the effectiveness of the 

proposed design conditions are presented using the illustrative 

example. 

The state space representation, describing the chemical reactor 

model [17], consists of the following matrices 

  A =  [

1.380 −2.080 6.715 −5.676
−0.581 −4.290 0.000 0.675
10.672 4.273 −6.654 5.893

0.482 4.273 1.343 −2.104

] 

 

B =   [

0.000 0.000
5.679 0.000
1.136 −3.146
1.136 0.000

],      V =  [

0.000
3.397
9.872
0.000

] 

 

  C =  [
4 0 1 0
0 0 0 1

] 

and this system in the considered closed loop structures under the 

static output feedback (3), as well as under the dynamic output 

feedback (4), (5)  was used in the presented simulations. 

Note, the pair provided that (A, , 𝑩)  is controllable and (A, 𝑪)  is 

observable. 

Within the above system parameters, solving the LMIs (10)-(12) 

using the SeDuMi package for MATLAB [18], the following 

quadratic performance and the control law matrix parameter were 

obtained 

𝛾 = 10.3628 

𝑲 =   [
0.4683 −4.0758
4.6458 −5.2372

] 

with the closed-loop system matrix eigenvalues spectrum 

𝜌(𝑨c) = {−0.1062 ± 0.1543𝑖, −0.0457 ± 0.0920𝑖 

guaranteeing closed-loop system stability. 

 

 

Figure 1.  System output response for static output controller. 

Solving (42)-(44) for 𝑸o, 𝒀o, 𝑯o using the same solver SeDuMi, 

the quadratic performance upper-bound and the dynamic output 

controller matrix parameters were as follows 

𝛾 = 10.3628 

 

 J =  [

−0.7086 0.0002 0.0009 −0.0003
0.0002 −0.7106 0.0003 0.0000
0.0009 0.0003 −0.7108 0.0003

−0.0003 0.0000 0.0003 −0.7085

] 

M = [
−0.0002 −0.0002 −0.0003 0.0003
−0.0010 0.0003 −0.0005 0.0011

] 

 

𝑵 =   [
0.4748 −4.1352
4.4644 −5.0116

] 

 

L =  [

−0.0010 0.0013
0.0005 0.0012
0.0007 0.0047
0.0015 −0.0056

] 

 

Now, the resulting global closed-loop system eigenvalues 

spectrum was 

𝜌(𝑨𝒄
o)  =  {

−0.1034 ± 0.1516i, −0.0459 ± 0.0927i
−0.0071, −0.0071, −0.0071, −0.0701

}  

Since the system matrix 𝑱 of the dynamic output controller is 

block-diagonally dominant with the stable real eigenvalue 

spectrum, this, in turn, means that the remaining eigenvalues of the 

system matrix 𝑨𝒄
o of the closed-loop system with the dynamic 

controller are approximately the same as the eigenvalues of the 

system matrix 𝑨c of the closed-loop system with the static output 

controller. 

The both static as well as dynamic controller design methods 

previously described were applied to the simulation benchmark. 

The conditions in simulations were specified for system in the 

forced regimes, where 

  𝒒𝑇(0) =  [0.1 0.0 0.0 0.0],  𝒘𝑇(0) =  [0.9 0.6] 

  𝑝𝑇(0) = 0,            𝜎𝒗
𝟐 = 0.02 

and the signal gain matrices 𝑾𝑠, 𝑾𝑑 were computed using  (32), 

(62), respectively, as follows 

𝑾𝑠 = [
−0.4370 4.0915
−4.4232 5.4242

] , 𝑾𝑑 = [
−0.4435 4.1510
−4.4218 5.1985

] 

 

Since the same desired output variables have been utilized to assess 

the each controller ability response and to demonstrate 

performance with respect to asymptotic properties, the results of 

the both proposed design method can be immediately compared. 

 
 

Figure 2. System output response for dynamic output controller. 

Fig. 1 shows the closed-loop system output response with the static 

output controller (3) which matrix parameter was obtained solving 

(10)-(12). Using the dynamic output controller (4), (5) with the 

gain matrix parameters satisfying the conditions (42)-(44), Fig. 2 

shows the output system response of the closed-loop system for the 
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same system initial conditions and the control policy (60), (61). 

It is obvious from these figures that both controllers which 

parameters were obtained using the solutions of the LMI problems 

specified by Proposition 1 and Theorem 1 can successfully provide 

for the closed-loop system steady-state properties and asymptotic 

dynamics. Since the design conditions guarantee optimization in 

the sense of H∞ norm of the both closed-loop disturbance transfer 

functions, although the dynamic controller provides slightly 

smaller value of this norm, there is practically no difference 

between the output responses. 

Using the recursive methods of dynamic controller’s synthesis, 

these differences can be significant because the obtained matrix 

parameter values of the static and dynamic controller could be 

affected by thresholds at which the iterative design process is 

completed. 

6. Concluding Remarks 

New approach for output dynamic feedback control design is 

presented in this paper. By the proposed procedure the control 

problem is parameterized in such LMIs set with one additional 

LME which admit more freedom in guaranteeing the output 

feedback control quadratic performance with respect to unknown 

disturbance acting on the system. Sufficient conditions of the 

controller existence manipulating the stability of the closed-loop 

systems imply the control structure, which stabilize the system in 

the sense of Lyapunov and the controller design tasks is a solvable 

numerical problem. An additional benefit of the method is that 

controller uses minimum feedback information with respect to 

desired system output and the approach is enough flexible to allow 

the inclusion of additional design condition bounds.  Of course, it 

cannot find output feedback controllers to guarantee the stability 

of the closed-loop system if uncontrolled modes are unstable 

although a common Lyapunov function exists in the feasible 

design conditions. 
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