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Abstract: In this pilot study, a symbolic sequence decomposition method was used in conjunction with Shannon’s entropy to investigate 

the changes in electroencephalogram signals of 11 patients with Alzheimer’s disease and 11 age-matched control subjects. Results were 

statistically analysed by student t-test and later classified with receiver operating curves. Statistically significant differences between both 

groups were found at electrodes Fp1, O2, P3, T4 and T5. Sensitivity (defined as percentages of correctly classified patients) and 

specificity (defined as correctly classified controls) were evaluated using the receiver operating curves method. Accuracy of the methods 

was calculated according to sensitivity and specificity measures of electrodes showing statistically significant differences between the 

control group and Alzheimer’s disease patients and ranged between 72.73-77.27%. These accuracy values were in agreement with 

previously published entropy studies on this data set. Although combining these methods did not provide any greater accuracy over 

previous findings, using a symbolic sequence decomposition method enhanced the data processing. 
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1. Introduction 

Alzheimer’s disease (AD) is the most frequent cause of dementia 

in the western world and is caused by excessive amyloid 

deposition and accumulation of abnormal tau protein in the brain 

which affect the cognitive ability of the sufferer [1].  

The clinical diagnosis of AD is made primarily on the basis of 

medical history, psychiatric evaluation and different memory and 

mental health tests [2]. However, an indisputable diagnosis is 

only possible post-mortem [3]. Symptoms of the disease vary 

from patient to patient along with the severity of the disease. 

Early diagnosis is crucial in terms of lessening the effects of the 

disease with available drug treatments or making necessary life 

change adjustments for the patient and care takers to ensure 

optimum quality of life [4]. 

The electroencephalogram (EEG) has been used as a tool in the 

investigation of dementia for several decades. EEG signals reflect 

brain electrical activity and can be non-invasively recorded with 

surface electrodes. AD is a cortical dementia and as such 

electrical abnormalities in the brain signals caused by AD can be 

captured with cranial surface electrodes [5]. Generally, EEG 

signals of AD patients show a shift to lower frequencies in 

spectral analysis which suggests a decreased cohesion of 

cognitive networks [6]. Moreover, AD patients’ EEGs display 

less complexity and contain more regular patterns compared to 

those of control subjects [5, 7, 8].  

Due to the intrinsic irregular and aperiodic nature of the EEG 

signal, spectral analyses techniques might not be sufficient to 

characterise the dynamics of the events underlying the EEG 

signals. Thus, additional techniques, such as non-linear time 

series analysis techniques were applied to provide a better 

understanding of EEG signals [9].  

Correlation dimension (D2) is used to identify the complexity of 

a system [10]. AD patients’ D2 measures show decreased values 

indicating less complex dynamics of neural networks in the brain, 

possibly due to the loss of neurons and synapses [11]. The 

Lyapunov exponents (L1) have been used to characterise non-

linear behaviour of a system and can be seen as a measure of 

unpredictability. AD patients’ EEGs have lower L1 values 

describing a more reliable or regular signal, which could suggest 

information processing, is less flexible in diseased brain [12].  

Nevertheless, the amount of data required for meaningful results 

with these methods is very high. Also, a detailed signal 

conditioning is necessary in order to apply algorithms for both 

analysis methods [9]. Therefore, in this pilot study a new method 

has been applied on AD EEGs which is combining two non-linear 

analysis methods, i.e., symbolic sequence decomposition and 

Shannon’s entropy measures.  

Symbolic dynamical analysis is a family of non-linear signal 

processing techniques which investigate a signal in small, 

discrete time dynamics which relate to portions of the original 

signal. Symbolic sequence decomposition takes a finite number 

of samples and reforms a symbol series out of the original sample 

series depending on the value of the original sample relative to a 

threshold value of the whole sample series [13]. The overall 

process ensures an approximate analysis of a complex biological 

system [14, 15]. Entropy studies on the other hand, analyse the 

randomness or predictability of systems. First used as a 

thermodynamics term, in biomedical engineering, Shannon’s 

entropy identifies the amount of information within the biological 

signal where greater entropy indicates more information than 

lower entropy within a signal. This feature can be interpreted as 
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regularity when the entropy is low and as complexity in parallel 

with a higher entropy value [16].   

The current paper is organised as follows. Section 2 describes 

selection of AD patients and controls, as well as the process for 

data collection.  The symbolic sequence decomposition and 

statistical analyses are also defined. The results are presented in 

Section 3. Finally, Section 4 contains a discussion of the results 

and conclusions. 

2. Research Method 

2.1. EEG Signal Database 

The database consisted of 22 subjects, 11 AD patients (5 men and 

6 women, 72.5 ± 8.3 years (mean ± standard deviation (SD)) and 

11 age-matched controls (7 men and 4 women 72.8 ± 6.1 years 

mean ± SD). All patients were diagnosed with AD after a detailed 

medical test and a Mini-Mental State Examination (MMSE) 

which evaluates cognitive impairment [4, 17]. The MMSE scores, 

which identifies cognitive impairment, were 13.1 ± 5.9 and 30.0 

± 0 (mean ± SD) respectively. The data collection and evaluation 

of the signals received ethical approval along with the permission 

of care takers of patients.  

Signals were recorded with a sampling frequency of 256 Hz in a 

resting but awake state with eyes closed using the international 

10-20 electrode placement system (electrodes Fp1, Fp2, F3, F4, 

C3, C4, P3, P4, O1, O2, F7, F8, T3, T4, T5, T6, Fz, Cz and Pz). 

Recordings were carried over five minutes in order to reduce 

artefacts on the EEG recordings. Five minute recordings were 

sufficient to collect EEGs without occurrence of sleep. Signals 

were then checked by a specialist to eliminate signals 

contaminated with muscle movement and cardiac signal artefacts. 

For each subject, artefact-free 5-sec epochs (1280 data points) 

were selected and contributed to further analyses. An average of 

30.0 ± 12.5 (mean ± SD) epochs was selected for each electrode 

of each subject. 

2.2. Symbolic Sequence Decomposition 

Symbolic sequence decomposition is a method which can be used 

to convert a raw series into a symbolic series. This approach 

provides the advantage to create more numerical computations 

since these discrete symbolic time series are represented in binary 

codes [15]. Each region is associated with a unique symbol and 

these symbols are involved in creating another series of data, 

called the symbol series, out of the original series depending on 

the region which the original value falls into [14].  

First, the threshold value for partitioning is calculated. In the 

median technique, the threshold is the statistically calculated 

median value. By using this median value, data series were 

separated into two parts, i.e., partitioned into two different 

regions. Time series’ value was defined in binary codes, “0” 

being in region 1, values which are less than the threshold value 

and “1” being in region 2 for values higher than the threshold. 

After the symbolisation was performed, a two-step template 

window was slid over the symbols in order to create code series 

which allows further extraction of additional information. 

Template size and window sliding steps are two main 

components to consider when extracting information from the 

data series. To take into account the general trend of the EEG 

signal, slide step and window size can be selected equally to 

avoid overlapping [14]. On the other hand, local changes are 

captured in small step sizes. However, small sliding steps affect 

reliability and smoothness of the probability density function 

(PDF) of the time series [16]. In the current study, a two-step 

template with a single step windowing was performed on the time 

series to obtain code series in order to identify local events 

without affecting the PDF of data series.  

2.3. Shannon’s Entropy 

Shannon’s entropy (SE) was first introduced by Claude Shannon 

[18] as a communication technology application. It quantifies the 

amount of information that is carried within a signal, i.e., the 

significance of the signal is extracted from a group of data with 

relevance to its statistical mechanics [19]. 

Let us assume X being an arbitrary variable taking values on a set 

(a1, a2, …, am) with probability; 

 

 (    )                     (1) 

 

Then, SE of X can be defined as follows; 

 ( )   (        )   ∑        
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H(X) is the entropy value of a random variable X or the entropy 

of the probability distribution (p1, … , pm). The sum of all these 

probability distributions is equal to 1.  
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Hs stands for the normalised Shannon’s entropy value and is 

ranged between 0-1 where values which are approximately 1 

represent an irregularity whereas 0 represent regularities within 

the data set [20]. When the randomness of the spectral 

distribution is relatively flat, lower entropy values were 

evaluated.  

Nobs (equation 3) is the number of possible sequences in the code 

series. Because a two-step window was used when creating code-

series, this number is equal to 4 in our calculations.  pi values are 

thus p1, p2, p3, p4. There are four possible sequences for a two 

size window template where, p1 is the probability of ‘00’ 

sequence within the code-series; p2 is the probability of ‘01’; p3 is 

the probability of ‘10’ and p4 is the probability of ‘11’.  

The total number of samples is determined by the length of the 

epoch and sampling rate of the data set (i.e., 1280 bits for each 

subject and electrode). 

2.4. Receiver Operating Curves 

The receiver operating curves (ROC) gives a graphical 

representation of the accuracy of a statistical test. In this study, 

ROC was used to validate student’s t-test analysis performed on 

our two sets of data (AD patients vs. age-matched controls). 

Sensitivity and specificity of a given data set is sketched to show 

number of true positives and true negatives. These numbers are 

usually expressed by percentages and highly depend on the Type 

I and Type II errors [21]. Thus, percentages of correctly identified 

patients, called as sensitivity, and the percentage of correctly 

identified controls, also known as specificity, are two important 

components of this method. Incorrect identification of patients 

and controls lead to Type I and II errors mentioned earlier. 

           ⁄            (4) 

           ⁄            (5) 

True positives are abbreviated as TP and false positives as FP. 

Values, FP are equal to incorrectly classified negatives and N is 



16  |  IJAMEC, 2015, 3(1), 14-17 This journal is © Advanced Technology & Science 2013 

number of total negatives, which includes FP and correctly 

classified controls. TP is correctly classified positives and P is the 

total number of positives, which includes TP and incorrectly 

identified controls. Both N and P values are equal to 11 in this 

study with 11 AD patients and 11 age-matched controls. 

Sensitivity is calculated as the percentage of true positives among 

true positives and false negatives and equals to fp rate (equation 

4). Specificity is evaluated as the percentage of true negatives 

among true negatives and false positives and equals to tp rate 

(equation 5). Once these percentages are calculated, accuracy can 

be established as the ratio of the number of correctly identified 

subjects (both AD and controls) and the total number of subjects, 

which is 22 (11 AD patients and 11 age-matched controls). 

3. Results 

SE values of each electrode are listed in Table 1. Statistically 

significant electrodes (p<0.01) marked with asterisk.  

Table 1. Shannon’s Entropy values for AD patients and controls for each 

electrode. Statistically significant electrodes are marked with an asterisk. 

Electrode AD Patients 

(mean±SD) 

Controls 

(mean±SD) 

p-value 

C3 0.6916±0.0342 0.7137±0.0256 0.0962 

C4 0.7007±0.0311 0.7140±0.0283 0.0716 

F3 0.6749±0.0315 0.6907±0.0327 0.0717 

F4 0.6884±0.0314 0.6878±0.0298 0.4063 

F7 0.6817±0.0395 0.6874±0.0311 0.0103 

F8 0.6732±0.0319 0.6977±0.0251 0.0299 

Fp1 0.6956±0.0244 0.7165±0.0236 0.0092* 

Fp2 0.7252±0.0322 0.7062±0.0259 0.2359 

O1 0.6803±0.0309 0.6972±0.0275 0.2304 

O2 0.6781±0.0334 0.7120±0.0294 7E-05* 

P3 0.6769±0.0259 0.7289±0.0188 5E-05* 

P4 0.7062±0.0256 0.7378±0.0207 0.0245 

T3 0.6921±0.0254 0.7365±0.0231 0.2173 

T4 0.6872±0.0304 0.7161±0.0311 0.0087* 

T5 0.6912±0.0256 0.7358±0.0242 0.0035* 

T6 0.7198±0.0278 0.7415±0.0305 0.1594 

 

Box plots of the mean SE values for statistically significantly 

electrodes can be seen in Figure 1. Sensitivity values (true 

positives, correctly identified AD patients) against specificity 

(true negatives, correctly identified healthy controls) were 

calculated using an online software programme called MedCalc. 

 

Figure 1. Box plots for the mean SE values for statistically significant 

electrodes of Fp1, O2, P3, T4 and T5. 

Accuracies of statistically significant electrodes were calculated 

according to these sensitivity and specificity values. Table 2 

summarises the accuracy values calculated for statistically 

significant electrodes. The threshold value is the mean SE value 

selected for electrodes Fp1, O2, P3, T4 and T5 respectively. 

Sensitivity and specificity percentages of this particular threshold 

value provide the accuracy of the electrode.  

Table 2. Sensitivity, specificity, and accuracy for the electrodes showing 

statistically significant differences between AD Patients and controls. 

Electrode Sensitivity 

(%) 

Specificity 

(%) 

Threshold Accuracy 

(%) 

Fp1 100 50.0 0.6686 77.27 

O2 100 50.0 0.6222 77.27 

P3 85.7 75.0 0.6797 77.27 

T4 71.4 75.0 0.6899 72.73 

T5 85.7 75.0 0.6987 77.27 

4. Discussions and Conclusions 

In this study, symbolic sequence decomposition method was used 

together with Shannon’s entropy in order to investigate EEG 

changes caused by Alzheimer’s disease compared to age-matched 

controls. 

O2, P3, T4 and T5 have been frequently reported as significant 

differences showing electrodes between AD patients and control 

subjects [8, 20].  In particular, P3 electrode was the only 

statistically significant electrode which is common for all entropy 

studies performed using this data set. 

Except for electrode Fp1, all other electrodes which were 

statistically different, were located on the posterior side of the 

skull. 

Sensitivity of Fp1 is observed as 100% which is higher than the 

only value for the same electrode of 90.91% sensitivity of a 

previous work by Abásolo [7, 8]. O2 accuracy was at 100% 

which is higher than any other entropy measure previously 

mentioned by Abásolo and collaborators [8]. P3 has a greater 

sensitivity together with the other two electrodes, compared to the 

previous database studies. On the other hand, specificity values of 

these five electrodes were lower than any other value evaluated 

before. Our results showed similar features to previous studies. 

Statistically significant electrodes were situated at the posterior 

part of the skull for Sample entropy, Spectral entropy, 

Approximate entropy and Lempel-Ziv complexity measures [6, 7, 

8]. Statistically significant electrodes of SE were observed for the 

same brain regions. 

To conclude, the symbolic sequence decomposition supports 

current knowledge about the effects of Alzheimer’s disease on 

the EEG. While this method did not provide any improvement 

over other entropy techniques in terms of the possible use of it as 

a diagnostics tool, it proved to be relatively faster, hence can be 

used as a part of an analysis method to characterize EEG in other 

cerebral disorders. Also a future work on the statistically 

significant electrodes’ locations can be conducted since it may be 

a beneficial indicator of a cerebral disorder. 
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