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1. Introduction

An element e in a ring R is an idempotent if e2 = e. In a ring with unity, the

elements 0 and 1 are idempotents, called trivial idempotents. Integral domains

contain only the trivial idempotents. Idempotents other than 0 and 1 are called

non-trivial idempotents. Idempotents are important particularly in decompositions

of a ring and its modules.

In recent years, certain aspects of idempotents and units and their connections

have become of interest to ring theorists (see [1], [6], [8]). In some rings, elements

are characterized by the behavior of the units. For example, an (S, k)-ring is a ring

in which each element is the sum of k units [3]. Then there exist ring elements that

are characterized by both idempotents and units at the same time. For example,

clean rings are rings where every element is uniquely the sum of an idempotent and

a unit. The article [9] gives a survey on recent results on additive representations

of ring elements. In this regard, it will be useful to have a good knowledge of rings

with idempotents. A good source would be matrix rings.

Kanwar, Khatkar and Sharma [5] studied idempotents and units in certain matrix

rings over polynomial rings. Forms of idempotents in M2 (Z2p[x]) for any odd prime

p and in M2 (Z3p[x]) for any prime greater than 3 were identified as well as the form

of units in M2 (Z2[x]) and M2 (Z3[x]).
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Motivated by the current interest in idempotents and units in rings, we extend

the results of Kanwar et. al. [5]. We generalize the paper’s results to the ring

of 2 × 2 matrices M2 (Zpq[x]), over the polynomial ring Zpq[x] where p and q are

distinct primes, and the ring M2

(
Zp2 [x]

)
where p is prime.

2. Preliminaries

In this section we gather some definitions, notations and results that will be

useful in our study. Basic number theory and concepts on rings, matrices, and

polynomials are assumed and can be found in standard references such as [2], [4] and

[7]. Euler’s generalization of Fermat’s Little Theorem and the Chinese Remainder

Theorem will be invoked in several proofs.

We will denote the ring of n × n matrices over a ring R by Mn(R). For a ring

R, E(R) denotes the set of all idempotents in R.

The following results from [5] and [6] will be useful.

Proposition 2.1. [5] Let R be any ring with unity and a =

n∑
i=0

aix
i be an element

in R[x] such that a2 − a ∈ R. If any of the following conditions hold:

(1) R has no non-zero nilpotent elements,

(2) a0ai = aia0 for 1 ≤ i ≤ n and 2a0 − 1 is a unit in R,

then a ∈ R.

Remark. A ring with no non-zero nilpotent elements is called a reduced ring.

Equivalently, a ring is reduced if it has no non-zero elements with square zero, that

is, x2 = 0 implies x = 0. The ring Zn is reduced if and only if n is a square-free

integer [4]. This is seen by solving the quadratic congruence x2 ≡ 0 (mod n) via

the Chinese Remainder Theorem.

Corollary 2.2. [6] If R is a ring all of whose idempotents are in the center of R,

then E (R[x]) = E (R).

Corollary 2.3. [5] If R is a ring with no non-zero nilpotent elements, then E (R[x]) =

E (R).

Proposition 2.4. [5] Let R be a commutative ring with only 0 and 1 as its idem-

potents. Then the trace of every non-trivial idempotent in M2(R) is 1.
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3. Idempotents in M2(Zpq[x])

Our main results, given by Theorems 3.9 and 3.10, will be presented in this sec-

tion. We obtain a complete list of the forms of non-trivial idempotents inM2(Zpq[x])

where p, q are primes such that p > q as well as the case where p = q.

We continue to gather relevant results for completeness.

Proposition 3.1. [5] If p is a prime and n is a positive integer, the only idempo-

tents of Zpn are 0 and 1.

Corollary 3.2. [5] Let n = pk1
1 p

k2
2 · · · pkm

m be the complete prime factorization of

the positive integer n. Then Zn has 2m idempotents.

In the next proposition we give the four idempotents in Zpq, for p and q distinct

primes.

Proposition 3.3. [5] Let p and q be distinct primes. Then the idempotents in Zpq

are 0, 1, pq−1 and qp−1.

The next result shows that if R is a commutative ring, the idempotents in R[x]

are precisely the idempotents in R.

Proposition 3.4. [6] Let R be a commutative ring and f = a0 +a1x+ · · ·+anx
n ∈

R[x]. Then f is an idempotent in R[x] if and only if the constant term of f is an

idempotent in R and all other coefficients of f are zero.

We next consider the idempotents in the ring M2(R) of 2 × 2 matrices over

a commutative ring R. Denote by detA, the determinant of a matrix A. The

following is an easy but useful result.

Proposition 3.5. Let R be a commutative ring and A an idempotent in Mn(R).

Then the determinant of A is an idempotent in R.

Proof. Let A be an idempotent in Mn(R). Since A = A2, we have detA =

detA2 = (detA)2, and hence the determinant of A is an idempotent in R. �

Proposition 3.6. [5] Let R be a commutative ring and A a nontrivial idempotent

in M2(R). If detA = 0, then the trace of A is an idempotent in R.

Remark. If R is a commutative ring, then the ring of polynomials R[x] is also

commutative. Thus Propositions 3.5 and 3.6 hold for all idempotents in M2(R[x])

as well.
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Proposition 3.7. [5] If R is a commutative ring with no non-zero nilpotent ele-

ments then the determinant as well as the trace of every idempotent in M2(R[x])

is in R.

Remark. The above proposition is applied to the ring M2(Zpq[x]) where p and q

are distinct primes, since Zpq is a reduced ring.

Clearly, the trivial idempotents in M2(Zpq[x]) where p and q are primes are the

zero matrix

[
0 0

0 0

]
and the identity matrix

[
1 0

0 1

]
. Now, we give the forms of

non-trivial idempotents in M2(Zpq[x]) where p and q are distinct primes.

We now give necessary conditions for non-trivial idempotents in M2(Zpq[x]).

Theorem 3.8. For any distinct primes p and q such that p > q and any non-trivial

idempotent A in M2 (Zpq[x]) one of the following holds:

(1) determinant of A is 0 and trace of A is either 1 or pq−1 or qp−1,

(2) determinant of A is qp−1 and trace of A is either qp−1 + 1 or 2qp−1,

(3) determinant of A is pq−1 and trace of A is either 2pq−1 or pq−1 + 1.

Proof. Let p and q be distinct primes with p > q. Then the idempotents in Zpq are

0, 1, pq−1, qp−1 mod pq. Now, let A =

[
a(x) b(x)

c(x) d(x)

]
be a non-trivial idempotent of

M2 (Zpq[x]). As before, write a, b, c and d for a(x), b(x), c(x) and d(x) respectively,

so we have

A =

[
a b

c d

]
; A2 =

[
a2 + bc ab+ bd

ac+ cd bc+ d2

]
.

Since A is an idempotent we have a = a2 + bc , b = ab + bd , c = ac + cd and

d = bc+ d2. From Proposition 3.5, detA is an idempotent in Zpq[x], and hence, an

idempotent in Zpq. By Proposition 3.3, detA is either 0 or 1 or pq−1 or qp−1 mod pq.

Suppose that detA = 1. Then A is a unit. Multiplying both sides of A2 = A by

A−1, we obtain A =

[
1 0

0 1

]
which is a trivial idempotent in M2 (Zpq[x]). This

is a contradiction, since we assumed A is a non-trivial idempotent. Hence, the

determinant of A is either 0 or pq−1 or qp−1 modulo pq. We now consider each

of these possibilities. Since Proposition 3.7 holds for M2(Zpq), as Zpq is a reduced

ring, the trace of A is in Zpq i.e. a+ d ∈ Zpq.

Case (1) Determinant of A is 0.

From Proposition 3.6, a+ d is an idempotent in Zpq[x], so we have a+ d = 0 or

1 or pq−1 or qp−1 mod pq. If a+ d = 0, then d = −a. Now, since ad− bc = 0, this
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implies that a2 + bc = 0 and bc+ d2 = 0. So, A2 =

[
a2 + bc ab+ bd

ac+ cd bc+ d2

]
=

[
0 0

0 0

]
.

Thus, A is the zero matrix in M2 (Zpq[x]), which is a contradiction, since A is a

non-trivial idempotent.

Note that the matrices

[
1 0

0 0

]
,

[
pq−1 0

0 0

]
, and

[
qp−1 0

0 0

]
in M2 (Zpq[x]) have

determinant 0 and traces 1, pq−1 and qp−1 respectively.

Case (2) Determinant of A is qp−1.

The equations a2 + bc = a and bc + d2 = d imply a2 = a − bc and d2 = d − bc
respectively. From this, we have (a+ d)2 = a2 + 2ad+ d2 = a− bc+ 2ad+ d− bc =

a+d+ 2(ad− bc) = a+d+ 2qp−1(mod pq). We solve the values of a+d ∈ Zpq that

satisfies this equation. We let x = a + d and solve for the values of x that satisfy

the quadratic equation x2 − x− 2qp−1 ≡ 0(mod pq). From this, we have:

x2 − x− 2qp−1 ≡ 0(mod p) (1)

x2 − x− 2qp−1 ≡ 0(mod q) (2)

From Euler’s Theorem, since gcd(p, q) = 1, (1) can be written as x2 − x − 2 ≡
0(mod p). Hence, x ≡ 2(mod p) or x ≡ −1(mod p). Also (2) can be written as

x2 ≡ x(mod q). So we have x ≡ 0(mod q) or x ≡ 1(mod q). Now, if x ≡ 2(mod p)

and x ≡ 0(mod q) then by Chinese Remainder Theorem and Euler’s Theorem [2]

with gcd(p, q) = 1 we have x ≡ 2qp−1(mod pq). Similar computations hold for the

next cases. If x ≡ 2(mod p) and x ≡ 1(mod q) then x ≡ 2qp−1 + pq−1 ≡ qp−1 +

1(mod pq), since qp−1 + pq−1 ≡ 1 (mod pq). If x ≡ −1(mod p) and x ≡ 0(mod q)

then x ≡ −qp−1(mod pq). Lastly, if x ≡ −1(mod p) and x ≡ 1(mod q) then

x ≡ −qp−1 + pq−1 ≡ 1− 2qp−1(mod pq). Hence, the possible values of a+ d ∈ Zpq

that satisfy the equation (a + d)2 ≡ a + d + 2qp−1(mod pq) are 2qp−1 or qp−1 + 1

or −qp−1 or 1− 2qp−1.

For p = 3, observe that the cases where a + d = −qp−1 and a + d = 1 − 2qp−1

coincide with the cases 2qp−1 and qp−1 + 1 respectively. So for p 6= 3, we claim

that the cases a+ d = −qp−1 and a+ d = 1− 2qp−1 are not possible traces for an

idempotent matrix A with determinant qp−1.

If a + d = −qp−1 then d = −qp−1 − a with ad − bc = qp−1, we get a2 + bc =

a2+ad−qp−1 = a2+a(−qp−1−a)−qp−1 = a2−qp−1a−a2−qp−1 = −qp−1a−qp−1;

ab + bd = b(a + d) = −qp−1b; ac + cd = c(a + d) = −qp−1c; and bc + d2 =

ad−qp−1+d2 = (−qp−1−d)d−qp−1+d2 = −qp−1d−d2−qp−1+d2 = −qp−1(d+1) =

−qp−1(−qp−1−a+ 1) = q2(p−1) + qp−1a− qp−1 = qp−1a. Since A is an idempotent,

we have b = −qp−1b. It follows that b(1 + qp−1) = 0. Similarly, from c = −qp−1c,
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we get c(1 + qp−1) = 0. Since gcd(qp−1 + 1, qp) = 1, b = c = 0. Thus, we

have A =

[
a 0

0 −qp−1 − a

]
. Since A is an idempotent, a and −qp−1 − a must

be idempotents in Zpq. For a = 0, we have
(
−qp−1

)2
= qp−1. For a = 1, we

get
(
−qp−1 − 1

)2
= qp−1 + 2qp−1 + 1 ≡ 3qp−1 + 1 (mod pq). For a = pq−1, we

have
(
−qp−1 − pq−1

)2
= qp−1 + 2qp−1pq−1 + pq−1. Lastly, for a = qp−1 we have(

−qp−1 − qp−1
)2

=
(
−2qp−1

)2
= 4qp−1. Notice that −qp−1−a is not an idempotent

for a = 0, 1, pq−1 and qp−1. We have a contradiction. So a + d = −qp−1 is not a

possible trace for an idempotent matrix A with determinant qp−1.

If a+d = 1−2qp−1 then d = 1−2qp−1−a. Now, ab+bd = b(a+d) = (1−2qp−1)b

and ac + cd = c(a + d) = (1 − 2qp−1)c. So A2 =

[
a2 + bc (1− 2qp−1)b

(1− 2qp−1)c bc+ d2

]
.

Since A is an idempotent, we have b(1 − 2qp−1) = b which gives us 2bqp−1 = 0.

Similarly, from c(1−2qp−1) = c we have 2cqp−1 = 0. Lastly, ad− bc = qp−1 implies

a(1− 2qp−1 − a)− bc = qp−1. So, a− 2aqp−1 − a2 − bc = qp−1. Since a2 + bc = a,

we are left with −qp−1 = 2aqp−1. From a2 + bc = a, 2bqp−1 = 0 and 2cqp−1 = 0,

we have (2qp−1a)2 − 2(2qp−1a) = 0. Substituting the value of 2aqp−1 that we just

obtained, we have (−qp−1)2 − 2(−qp−1) = 0. This implies that qp−1 + 2qp−1 = 0.

Hence 3qp−1 ≡ 0 (mod pq), which gives 3qp−1 ≡ 0 (mod p). This is contradiction

since p is a prime distinct from 3 and q. So the case where a+ d = 1− 2qp−1 is not

possible for an idempotent matrix A with determinant qp−1.

Note that the matrices

[
qp−1 0

0 qp−1

]
and

[
qp−1 0

0 1

]
in M2 (Zpq[x]) have deter-

minant qp−1 and traces 2qp−1 and qp−1 + 1 respectively.

Case (3) Determinant of A is pq−1.

As in the previous case, since A is idempotent, we have (a + d)2 = a + d +

2(ad − bc) = a + d + 2pq−1 (mod pq). By performing a similar computation as in

Case (2), we see that the possible values of a+ d ∈ Zpq are 2pq−1, pq−1 + 1, −pq−1

or 1 − 2pq−1. We claim that −pq−1 and 1 − 2pq−1 are not possible traces for an

idempotent matrix A with determinant pq−1. In the case where q = 2, the proof

follows from Case 2 in [5, p. 154] . For q 6= 2, we apply the same argument that

was used in Case (2) by interchanging the roles of p and q with p still greater than

q.

To construct a matrix A with determinant pq−1 and trace 2pq−1 or pq−1 + 1,

we consider the least positive residue k of p modulo q. So p ≡ k (mod q) with

0 < k < q. Then p2 ≡ pk (mod pq). Thus,

pq−1 ≡ pq−3k2 ≡ . . . ≡ p2kq−3 ≡ pkq−2 (mod pq).
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So a + d = 2pkq−2 or pkq−2 + 1 in Zpq. Clearly, the matrix

[
pkq−2 0

0 1

]
has

determinant pkq−2 ≡ pq−1 (mod pq) and trace pkq−2 + 1 ≡ pq−1 + 1 (mod pq).

Moreover the matrix

[
pkq−2 0

0 pkq−2

]
has determinant (pkq−2)2 ≡ (pq−1)2 ≡ pq−1

(mod pq) and trace 2pkq−2 ≡ 2pq−1 (mod pq). �

We are now ready to state and prove the main result of this paper. The following

theorem gives the forms of all non-trivial idempotents in M2(Zpq[x]). Any such

idempotent will be of a form in the list. Moreover, any such matrix in the list gives

a non-trivial idempotent of M2(Zpq[x]).

Theorem 3.9. For any 2 distinct primes p and q such that p > q, any non-trivial

idempotent in M2(Zpq[x]) is one of the following forms:

(1)

[
qp−1 0

0 qp−1

]
,

[
pq−1 0

0 pq−1

]
,

(2)

[
a(x) b(x)

c(x) 1− a(x)

]
,where a(x) {1− a(x)} − b(x)c(x) = 0,

(3)

[
pq−1a(x) pq−1b(x)

pq−1c(x) pq−1(1− a(x))

]
,where a(x) {1− a(x)} − b(x)c(x) = qf(x),

(4)

[
qp−1a(x) qp−1b(x)

qp−1c(x) qp−1(1− a(x))

]
,where a(x) {1− a(x)} − b(x)c(x) = pg(x),

(5)

[
1 + pa(x) pb(x)

pc(x) qp−1 − pa(x)

]
,where a(x) {1 + pa(x)}+ pb(x)c(x) = qh(x),

(6)

[
1 + qa(x) qb(x)

qc(x) pq−1 − qa(x)

]
,where a(x) {1 + qa(x)}+ qb(x)c(x) = pφ(x),

where a(x), b(x), c(x), f(x), g(x), h(x), φ(x) ∈ Zpq[x] not necessarily non-zero.

Proof. It can be checked that the matrices in (1)-(6) with the given conditions

are idempotents in M2(Zpq[x]). Now, we prove that every non-trivial idempotent

in M2(Zpq[x]) is one of the following stated forms. Now, let A =

[
a(x) b(x)

c(x) d(x)

]
be

a non-trivial idempotent in M2(Zpq[x]). From Theorem 3.8 one of the following

holds:

(1) determinant of A is 0 and trace of A is either 1 or pq−1 or qp−1,

(2) determinant of A is qp−1 and trace of A is either qp−1 + 1 or 2qp−1,

(3) determinant of A is pq−1 and trace of A is either 2pq−1 or pq−1 + 1.
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We examine each case separately.

Case (1) Determinant of A is 0.

In this case, the trace of A is either 1 or pq−1 or qp−1.

If a + d = 1 then d = 1 − a and ad − bc = 0 give the following: a2 + bc =

a; ab + bd = b(a + d) = b; ac + cd = c(a + d) = c and bc + d2 = ad + d2 =

a(1 − a) + (1 − a)2 = a − a2 + 1 − 2a + a2 = 1 − a. Thus, A2 =

[
a b

c 1− a

]
.

It follows that A =

[
a(x) b(x)

c(x) 1− a(x)

]
where a(x), b(x), c(x) ∈ Zpq[x] such that

a(x)(1− a(x)) = b(x)c(x).

If a + d = pq−1 then d = pq−1 − a and ad = bc give the following: a2 + bc =

a2 + ad = a2 + a(pq−1 − a) = a2 + apq−1 − a2 = apq−1; ab+ bd = b(a+ d) = bpq−1;

ac+cd = c(a+d) = cpq−1 and bc+d2 = ad+(pq−1−a)2 = a(pq−1−a)+(pq−1−a)2 =

pq−1(1−a). Thus, A2 =

[
pq−1a pq−1b

pq−1c pq−1(1− a)

]
. Since A is an idempotent, we have

pq−1a = a, pq−1b = b and pq−1c = c which imply a(pq−1 − 1) = 0, b(pq−1 − 1) = 0

and c(pq−1 − 1) = 0 respectively. Since pq−1 is an idempotent in Zpq, it follows

that a = pq−1a′(x), b = pq−1b′(x) and c = pq−1c′(x) where a′(x), b′(x), c′(x) are

polynomials in Zpq[x]. Since ad− bc = 0, pq−1a′(x)(1− a′(x)) = pq−1b′(x)c′(x) or

equivalently a′(x)(1 − a′(x)) − b′(x)c′(x) = qf(x) for some f(x) ∈ Zpq[x]. Thus,

A =

[
pq−1a(x) pq−1b(x)

pq−1c(x) pq−1(1− a(x))

]
, where a(x), b(x), c(x) ∈ Zpq[x] such that a(x)(1−

a(x))− b(x)c(x) = qf(x) for some f(x) ∈ Zpq[x].

If a + d = qp−1 then d = qp−1 − a and ad − bc = 0 give the following: a2 +

bc = a2 + ad = a2 + a(qp−1 − a) = aqp−1; ab + bd = b(a + d) = bqp−1; ac +

cd = c(a + d) = cqp−1 and bc + d2 = ad + d2 = a(qp−1 − a) + (qp−1 − a)2 =

qp−1(1 − a). Thus, A2 =

[
qp−1a qp−1b

qp−1c qp−1(1− a)

]
. Since A is an idempotent, we

have qp−1a = a, qp−1b = b and qp−1c = c which imply a(qp−1 − 1) = 0, b(qp−1 −
1) = 0 and c(qp−1 − 1) = 0 respectively. From our previous case, it follows that

A =

[
qp−1a(x) qp−1b(x)

qp−1c(x) qp−1(1− a(x))

]
where a(x), b(x), c(x) ∈ Zpq[x] such that a(x)(1−

a(x))− b(x)c(x) = pg(x) for some g(x) ∈ Zpq[x].

Case (2) Determinant of A is qp−1.

In this case, the trace of A is either qp−1 + 1 or 2qp−1.

If a + d = 2qp−1 then d = 2qp−1 − a and ad − bc = qp−1 give the following:

a2 + bc = a2 + ad − qp−1 = a2 + a(2qp−1 − a) − qp−1 = 2aqp−1 − qp−1; ab + bd =
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b(a + d) = 2qp−1b; ac + cd = c(a + d) = 2qp−1c and bc + d2 = ad − qp−1 +

(2qp−1 − a)2 = a(2qp−1 − a)− qp−1 + (2qp−1 − a)2 = 3qp−1 − 2qp−1a. Thus, A2 =[
2aqp−1 − qp−1 2qp−1b

2qp−1c 3qp−1 − 2qp−1a

]
. Since A is an idempotent, we have 2qp−1b = b

and 2qp−1c = c which imply b(2qp−1 − 1) = 0 and c(2qp−1 − 1) = 0 respectively.

Since qp−1 is an idempotent in Zpq, 2qp−1 − 1 is a unit. It follows that b = c = 0.

So we have, A =

[
a 0

0 2qp−1 − a

]
. Both a and 2qp−1 − a must be idempotents in

Zpq[x] since A is an idempotent. Observe that 2qp−1 − a is an idempotent only for

a = qp−1. Thus, A =

[
qp−1 0

0 qp−1

]
.

If a+ d = qp−1 + 1 then d = qp−1 + 1− a and ad− bc = qp−1 give the following:

a2 + bc = a2 + ad − qp−1 = a2 + a(qp−1 + 1 − a) − qp−1 = aqp−1 + a − qp−1;

ab + bd = b(a + d) = b(qp−1 + 1); ac + cd = c(a + d) = c(qp−1 + 1) and bc + d2 =

ad−qp−1+d2 = a(qp−1+1−a)−qp−1+(qp−1+1−a)2 = 2qp−1+1−a(qp−1+1). Thus,

A2 =

[
aqp−1 + a− qp−1 b(qp−1 + 1)

c(qp−1 + 1) 2qp−1 + 1− a(qp−1 + 1)

]
. Since A is an idempotent, we

get qp−1a = qp−1, bqp−1 = 0 and cqp−1 = 0. Thus A =

[
1 + pa(x) pb(x)

pc(x) qp−1 − pa(x)

]
where a(x), b(x), c(x) ∈ Zpq[x] such that a(x) {1 + pa(x)} + pb(x)c(x) = qh(x) for

some h(x) ∈ Zpq[x].

Case (3) Determinant of A is pq−1.

In this case, the trace of A is either 2pq−1 or pq−1 + 1.

Consider the least positive residue k of p modulo q. So p ≡ k (mod q) with

0 < k < q. Then p2 ≡ pk (mod pq), so that pq−1 ≡ kq−2p (mod pq). Then

the trace a + d of A is either 2pq−1 ≡ 2kq−2p (mod pq) or pq−1 + 1 ≡ kq−2p + 1

(mod pq).

Suppose a+ d = 2kq−2p, so that d = 2kq−2p− a. Along with ad− bc = pq−1, we

obtain the following:

a2 + bc = a2 + ad− pq−1 = a(a+ d)− pq−1

= 2akq−2p− 2kq−2p = 2kq−2p(a− 1);

ab+ bd = b(a+ d) = 2kq−2pb;

ac+ cd = c(a+ d) = 2kq−2pc; and

bc+ d2 = ad− pq−1 + d2 = d(a+ d)− kq−2p

= (2kq−2p− a)2kq−2p− kq−2p = 3kq−2p− 2kq−2pa.
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Thus, A2 =

[
2kq−2p(a− 1) 2kq−2pb

2kq−2pc 3kq−2p− 2kq−2pa

]
. Since A is idempotent, we have

2kq−2pb = b and 2kq−2pc = c which imply (2kq−2p−1)b = 0 and (2kq−2p−1)c = 0

respectively. Since 2kq−2p − 1 is a unit in Zpq, we have b = c = 0. Hence we

have A =

[
a 0

0 2kq−2p− a

]
. Since A is an idempotent, both a and 2kq−2p − a =

2pq−1−a must be idempotents. However, this is true only for a = pq−1. Therefore,

A =

[
pq−1 0

0 pq−1

]
.

Now suppose a + d = kq−2p + 1, so that d = kq−2p + 1 − a. Along with

ad− bc = pq−1, we obtain the following:

a2 + bc = a2 + ad− pq−1 = a(a+ d)− pq−1

= akq−2p+ a− kq−2p;

ab+ bd = b(a+ d) = b(kq−2p+ 1);

ac+ cd = c(a+ d) = c(kq−2p+ 1); and

bc+ d2 = ad− pq−1 + d2 = d(a+ d)− kq−2p

= (kq−2p+ 1− a)(kq−2p+ 1)− kq−2p = 2kq−2p+ 1− a(kq−2p+ 1).

Thus, A2 =

[
akq−2p+ a− kq−2p b(kq−2p+ 1)

c(kq−2p+ 1) 2kq−2p+ 1− a(kq−2p+ 1)

]
. SinceA is an idem-

potent, we have akq−2p + a − kq−2p = a, b(kq−2p + 1) = b, and c(kq−2p + 1) =

c, which imply akq−2p = kq−2p, bkq−2p = 0, and ckq−2p = 0, respectively.

Hence, A =

[
1 + qa(x) qb(x)

qc(x) pq−1 − qa(x))

]
, where a(x), b(x), c(x) ∈ Zpq[x] such that

a(x){1 + qa(x)}+ qb(x)c(x) = pα(x), for some α(x) ∈ Zpq[x]. �

Remark: All computations in Theorems 3.8 and 3.9 are performed modulo pq

where p and q are primes such that p > q. For our next theorem, computations are

performed modulo p2 where p is prime.

Lastly, we give the forms of non-trivial idempotents in M2(Zp2 [x]) where p is

prime.

Theorem 3.10. For any prime p, the non-trivial idempotents in M2(Zp2 [x]) are of

the form

[
a(x) b(x)

c(x) 1− a(x)

]
, where a(x), b(x), c(x) ∈ Zp2 [x] not necessarily non-zero

such that a(x) {1− a(x)} = b(x)c(x).

Proof. It can be checked that the matrix of the said form is an idempotent. We

have shown that if p is prime then the idempotents in Zp2 are the trivial idempotents
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0 and 1. Now, let A =

[
a(x) b(x)

c(x) d(x)

]
be a non-trivial idempotent of M2(Zp2 [x]).

For convenience, we write a, b, c and d for a(x), b(x), c(x) and d(x). Since A is an

idempotent we have a = a2 + bc , b = ab+ bd , c = ac+ cd and d = bc+ d2. Since

the determinant of A is an idempotent in Zp2 . It follows that detA is either 0 or 1.

If detA = 1, then A =

[
1 0

0 1

]
which is a trivial idempotent in M2

(
Zp2 [x]

)
. This is

a contradiction, since we assumed A is a non-trivial idempotent. Thus detA = 0.

From Proposition 3.6, we have a + d = 0 or 1. If a + d = 0 then d = −a. This

implies that a2 + bc = 0 and bc+ d2 = 0. So A is the zero matrix. Again, we arrive

at a contradiction since we assumed A is a non-trivial idempotent. Observe that[
1 0

0 0

]
has determinant 0 and trace 1.

If a+d = 1 then d = 1−a and ad−bc = 0 give the following: a2+bc = a; ab+bd =

b(a+ d) = b; ac+ cd = c(a+ d) = c and bc+ d2 = ad+ d2 = a(1− a) + (1− a)2 =

a−a2 + 1−2a+a2 = 1−a. Thus, A2 =

[
a b

c 1− a

]
. Hence A =

[
a(x) b(x)

c(x) 1− a(x)

]
where a(x), b(x), c(x) ∈ Zp2 [x] such that a(x)(1− a(x)) = b(x)c(x). �
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