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Abstract. Recognizing when a ring is a complete matrix ring is of significant

importance in algebra. It is well-known folklore that a ring R is a complete

n×n matrix ring, so R ∼= Mn(S) for some ring S, if and only if it contains a set

of n × n matrix units {eij}ni,j=1. A more recent and less known result states

that a ring R is a complete (m + n) × (m + n) matrix ring if and only if, R

contains three elements, a, b, and f , satisfying the two relations afm+fnb = 1

and fm+n = 0. In many instances the two elements a and b can be replaced

by appropriate powers ai and aj of a single element a respectively. In general

very little is known about the structure of the ring S. In this article we study

in depth the case m = n = 1 when R ∼= M2(S). More specifically we study

the universal algebra over a commutative ring A with elements x and y that

satisfy the relations xiy + yxj = 1 and y2 = 0. We describe completely the

structure of these A-algebras and their underlying rings when gcd(i, j) = 1.

Finally we obtain results that fully determine when there are surjections onto

M2(F) when F is a base field Q or Zp for a prime number p.
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1. Introduction

1.1. History and motivation. Matrix rings and algebras have been studied for

a long time. For examples of their importance and study see [7, Chapter 7] and [10,

Chapter 1, 6]. We say that a unital ring R is a complete n× n matrix ring over a

ring S if R ∼= Mn(S). Recognizing a complete matrix ring, or algebra, is however

not obvious. Recall that n× n matrix units in a unital ring R is a set of elements

{eij : 1 ≤ i, j ≤ n} ⊆ R that satisfy

n∑
i=1

eii = 1R and eijek` = δjkei`,

where δj` is the Kronecker delta function [10, Chapter 1]. The most well-known

element-wise characterization of a complete n × n matrix ring is given by the fol-

lowing folklore theorem [10, Prop. 11.3, p. 22].
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Theorem 1.1. A unital ring R is a complete n× n matrix ring over some ring S,

that is R ∼= Mn(S), if and only if it contains a set of n× n matrix units.

The ring S in the above Theorem 1.1 is completely determined by

S =

{
n∑
i=1

ei1xe1i;x ∈ R

}
.

However, these matrix units can be difficult to find and tedious to verify. In 1990,

Chatters in [5] posed the following question: Let H be the integer quaternions

and T (n) =
(
H nH
H H

)
. For which, if any, values of n is the tiled matrix ring T (n)

a complete matrix ring? At first glance, T (n) does not appear to be a complete

matrix ring. However, using properties of H and finding suitable matrix units, it

turns out that T (n) ∼= M2(S) for some S (not necessarily unique) for odd values of

n [9].

In 1996, Agnarsson, Amitsur, and Robson in [2] refined structural results from [9]

and obtained the following two theorems, the first of which is a three-element

relations.

Theorem 1.2 ([2]). A ring R is a complete (m+n)×(m+n) matrix ring Mm+n(S)

if and only if it contains elements a, b, and f satisfying the relations afm + fnb =

1 and fm+n = 0.

Using this result they investigated rings of differential operators [2].

In 1996, Lam and Leroy in [8] investigated relations for recognizing matrix rings,

in particular these three-element relations. Using the above Theorem 1.2 from [2]

they give an eigenring description, using a certain nilpotent element in R, for the

ring S over which R is a complete (m+n)× (m+n) matrix ring. In addition, they

use Theorem 1.2 to study Ore extension rings (or skew-polynomial rings).

Under these relations however, very little is known about the explicit structure

of the ring S. In fact, under certain circumstances, S may be the trivial ring. Their

next result is on two-element relations.

Theorem 1.3 ([2]). A ring R is a complete (m+n)×(m+n) matrix ring Mm+n(S)

if and only if it contains elements a and f satisfying the relations amfm + fnan =

1 and fm+n = 0.

Note that the characterizations given in Theorem 1.1 uses n2 elements together

with n4 + 1 relations among them to characterize a complete n × n matrix ring,

whereas Theorems 1.2 and 1.3 use three and two elements respectively and two

relations involving these elements to characterize complete (m+n)×(m+n) matrix
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rings. In particular, the number or elements and relations in Theorems 1.2 and 1.3

are not functions of the size of the matrix ring. These are the only known such

characterizations for complete matrix rings.

Under the two-element relations in Theorem 1.3, it is easy to find matrices

over S that satisfy the two relations: a can be the matrix with 1’s along its sub-

diagonal and 0’s everywhere else, while f can be the matrix with 1’s along its

super-diagonal and 0’s everywhere else. It is therefore natural to ask what happens

if the first relation in Theorem 1.2 is replaced by aifm + fnaj = 1. The ring R

is by Theorem 1.2 a complete (m + n) × (m + n) matrix ring, but it could be the

trivial ring; in [1] it is shown that if a ring R contains elements a and b such that

abm + bna = 1 and bm+n = 0 where m 6= n, then R is the trivial ring. This result

together with Theorem 1.3 strongly suggest the study of the universal ring that

contains two elements a and f that satisfy aifm + fnaj = 1 and fm+n = 0. This

is the motivation for this article.

1.2. Basic setup and definitions. The set {1, 2, 3, . . .} of natural numbers will

be denoted by N and for n ∈ N we let [n] = {1, 2, . . . , n}. The field of rational

numbers will be denoted by Q and for a prime p, the unique finite field with

p elements will be denoted by Zp. For the rest of this article, all rings will be

associative and unital, that is with a multiplicative unit 1, and all homomorphisms

will be assumed unital. We begin with some definitions.

Definition 1.4. Let A be a commutative ring.

(I) The free monoid 〈x1, . . . , xn〉 on n indeterminates is the set of words made

by the indeterminates xi along with the binary operation of concatenation of words

with identity, the empty word, which we denote by 1.

(II) The free A-algebra A 〈x1, . . . , xn〉 over the ring A on n indeterminates is the

set of formal linear combinations over A of elements from 〈x1, . . . , xn〉. Addition is

defined as formal sums of elements and multiplication is defined as concatenation

of basis elements extended as an A-bilinear operation.

(III) For a subset {f1, . . . , fN} ⊆ A 〈x1, . . . , xn〉, the free A-algebra on x1, . . . , xn

satisfying f1 = · · · = fn = 0, denoted by A 〈x1, . . . , xn : f1, . . . , fN 〉, is the quo-

tient A-algebra A 〈x1, . . . , xn〉 /I where I = (f1, . . . , fN ) is the two-sided ideal of

A 〈x1, . . . , xn〉 generated by f1, . . . , fN .

We are interested in rings with two elements, x and y, satisfying the relations

xiym + ynxj = 1 and ym+n = 0. In this article we will investigate the free object

satisfying these two relations.
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Definition 1.5. For a commutative ring A and natural numbers i, j,m, n ∈ N, let

R(A; i, j,m, n) := A〈x, y : xiym + ynxj = 1, ym+n = 0〉.

By Theorem 1.2 we have R(A; i, j,m, n) ∼= Mm+n(S) for some A-algebra S. As

we have very little information about S, we introduce the following sets similarly

as in [1].

Definition 1.6. For a commutative ring A define the sets AA,BA, CA ⊆ N4 as

follows:

AA: the set of (i, j,m, n) ∈ N4 such that there is a non-trivial homomorphism

R(A; i, j,m, n)→Mm+n(A).

BA: the set of (i, j,m, n) ∈ N4 such that there is a non-trivial homomorphism

R(A; i, j,m, n)→MN (A) for some N ∈ N.

CA: the set of (i, j,m, n) ∈ N4 with R(A; i, j, n,m) non-trivial.

Remark 1.7. Here AA is the set of those (i, j,m, n) ∈ N4 such that there exist

(m + n) × (m + n) matrices x and y over A satisfying the defining relations for

R(A; i, j,m, n), BA is the set of those (i, j,m, n) ∈ N4 such that there exist some fi-

nite rank matrices x and y over A satisfying the defining relations forR(A; i, j,m, n),

lastly, CA is here the set of those (i, j,m, n) ∈ N4 such that there exist “infinite”

matrices x and y over A satisfying the defining relations for R(A; i, j,m, n).

A big motivating question is as follows:

Question 1.8. For a given commutative ring A, can we describe each of the sets

AA, BA and CA from Definition 1.6?

The purpose of this article is in part to extend the results in [1] that partly

answer the above Question 1.8. The article is organized as follows.

In Section 2 we will derive numerous structural properties of R(A; i, j, 1, 1) ∼=
M2(S) and completely describe the ring S for relatively prime integers i and j.

In Section 3 we investigate AF when when m = n = 1 and F is one of the base

fields Q or Zp where p is a prime number. We will determine all i and j such that

(i, j, 1, 1) ∈ AF for these base fields, that is, we determine when exactly there are

2× 2 matrices over F ∈ {Q,Zp} that satisfy the defining relations for R(F; i, j, 1, 1)

from Definition 1.5.

2. The case m = n = 1

In this section, we will give an explicit description of R(A; i, j,m, n) from Defi-

nition 1.5 when gcd(i, j) = 1 and m = n = 1.
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2.1. Relations and reductions. In this subsection we will derive some technical

results for R(A; i, j, 1, 1).

Lemma 2.1. For the generators x, y ∈ R(A; i, j, 1, 1), we have the following rela-

tions:

yxiy = yxjy = y, yxi+jy = 0, yx2iy = −yx2jy.

Proof. We have that xiy + yxj = 1 and y2 = 0 and hence

y = y · 1 = y(xiy + yxj) = yxiy + y2xj = yxiy.

Similarly we obtain y = (xiy + yxj)y = yxjy.

Using the above we get

yxi+jy = yxjxiy = yxj(xiy + yxj)xiy = yxi+jyxiy + yxjyxi+jy = 2yxi+jy,

and so yxi+jy = 0.

Finally, using the last two results we get

0 = yxi+jy = yxixjy = yxi(xiy + yxj)xjy = yx2iyxjy + xiyx2jy = yx2iy + yx2jy,

and thus yx2iy = −yx2jy. �

We can now prove our first theorem.

Theorem 2.2. R(k; i, j, 1, 1) = R(k; j, i, 1, 1).

Proof. Using Lemma 2.1, xiy + yxj = 1 and y2 = 0, we get

xjy + yxi = (xiy + yxj)(xjy + yxi)

= xi(yxjy) + xiy2xj + yx2jy + yxjyxi

= xiy + yx2jy + yxi,

and so yx2jy = xjy − xiy. Similarly, expanding (xjy + yxi)(xiy + yxj), we get

yx2iy = yxi − yxj . By Lemma 2.1 again, we know that yx2iy = −yx2jy, so

xjy+yxi = xiy+yxj = 1, thus R(A; i, j, 1, 1) ⊆ R(A; j, i, 1, 1). By symmetry, we see

xjy+yxi = 1 and y2 = 0 implies xiy+yxj = 1 in R(A; j, i, 1, 1) and so xiy+yxj = 1,

thus R(A; j, i, 1, 1) ⊆ R(A; i, j, 1, 1), and hence R(A; i, j, 1, 1) = R(A; j, i, 1, 1). �

Note that Theorem 2.2 is stronger than it appears; it is clear that R(A; i, j, 1, 1)

is anti-isomorphic to R(A; j, i, 1, 1). However, Theorem 2.2 states the rings are

actually equal as sets. Without loss of generality, we can therefore assume either

i ≤ j or j ≤ i. For the rest of this section we will assume the latter.
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Lemma 2.3. For an arbitrary n ∈ N and the generators x, y ∈ R(A; i, j, 1, 1) we

have:

yxin = (−1)nxjny +

n−1∑
k=0

(−1)n−1−kx(n−1)j+k(i−j) (1)

yxjn = (−1)nxiny +

n−1∑
k=0

(−1)kx(n−1)j+k(i−j). (2)

Proof. Since yxi = 1−xjy and yxj = 1−xiy by Theorem 2.2, we clearly have (1)

and (2) for n = 1. We proceed by induction on n and assume (1) to hold for n. In

that case we get

yxi(n+1) =
(
yxin

)
xi

= (−1)nxjnyxi +

n−1∑
k=0

(−1)n−1−kx(n−1)j+k(i−j)+i

= (−1)nxjn(1− xjy) +

n−1∑
k=0

(−1)n−(k+1)xnj+(k+1)(i−j)

= (−1)nxjn + (−1)n+1xj(n+1)y +

n∑
k=1

(−1)n−kxnj+k(i−j)

= (−1)n+1xj(n+1)y +

n∑
k=0

(−1)n−kxnj+k(i−j).

Thus, for every n ∈ N we have (1). In exactly the same way we can prove (2) by

using yxi = 1− xjy in the inductive step. Hence, by induction we have (1) and (2)

for every n ∈ N. �

Lemma 2.4. Let p(x), q(x) ∈ A[x]. If p(x)y = q(x)y in R(A; i, j, 1, 1), then p(x) =

q(x).

Proof. Suppose p(x)y = q(x)y for some polynomials p(x), q(x) ∈ A[x]. Then

p(x)yxj = p(x)(1− xiy) = p(x)− p(x)xiy = p(x)− xip(x)y,

since p(x) is a polynomial in x and thus commutes with xi. By the same argument

we have q(x)yxj = q(x)− xiq(x)y. Since p(x)y = q(x)y, we get

p(x)− xip(x)y = p(x)yxj = q(x)yxj = q(x)− xiq(x)y = q(x)− xip(x)y

and hence p(x) = q(x). �

The next lemma will come in handy later on.

Lemma 2.5. If i 6= j, then x is invertible in R(A; i, j, 1, 1).
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Proof. By Theorem 2.2 we may without loss of generality assume i > j. We then

get

1 = xiy + yxj

= xi−j(xjy) + yxj

= xi−j(1− yxi) + yxj

= (xi−j−1 − xi−jyxi−1 + yxj−1)x.

Similarly, we can show 1 = x(xj−1y+xi−j−1−xi−1yxi−j), and so x is invertible. �

We are now able to show a useful relation for x.

Theorem 2.6. If i > j and gcd(i, j) = d, then in R(A; i, j, 1, 1) we have

x((i+j)/d−1)(i−j) =

(i+j)/d−1∑
k=1

(−1)k+1x((i+j)/d−1−k)(i−j).

Proof. We will evaluate the element yx(ij)/dy in two ways using our relations for

yxin and yxjn. Here, let a = i/d and b = j/d. By Lemma 2.3 we have for n = b

and n = a respectively that

yx(ij)/dy =

b−1∑
k=0

(−1)b−1−kx(b−1)j+k(i−j)y and yx(ij)/dy =

a−1∑
k=0

(−1)kx(a−1)j+k(i−j)y,

and hence

a−1∑
k=0

(−1)kx(a−1)j+k(i−j)y =

b−1∑
k=0

(−1)b−1−kx(b−1)j+k(i−j)y.

Using Lemma 2.4 we get

0 =

b−1∑
k=0

(−1)b−kx(b−1)j+k(i−j) +

a−1∑
k=0

(−1)kx(a−1)j+k(i−j).

Since aj = bi we have, (b− 1)j + k(i− j) = (a− 1)j + (k − b)(i− j), and so

a−1∑
k=0

(−1)kx(a−1)j+k(i−j) =

a+b−1∑
k=b

(−1)b−kx(b−1)j+k(i−j),

and therefore

0 =

b−1∑
k=0

(−1)b−kx(b−1)j+k(i−j) +

a+b−1∑
k=b

(−1)b−kx(b−1)j+k(i−j)

=

a+b−1∑
k=0

(−1)b−kx(b−1)j+k(i−j).
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Since x is invertible by Theorem 2.5, we obtain

0 =

a+b−1∑
k=0

(−1)b−kxk(i−j),

and by re-indexing and shifting the last term we have,

x(a+b−1)(i−j) =

a+b−1∑
k=1

(−1)k+1x(a+b−1−k)(i−j). �

Writing out the above sum, we see that the relation in Theorem 2.6 gives an

alternating series relation for x(i+j)/(d−1)(i−j). Letting m = (i+ j)/d we have

x(m−1)(i−j) = x(m−2)(i−j) − x(m−3)(i−j) + · · ·+ (−1)(i+j)/d.

Theorem 2.6 can be used to obtain the following.

Corollary 2.7. If d = gcd(i, j), then x(i
2−j2)/d = (−1)(i+j)/d.

Proof. By Theorem 2.6, we have

x((i+j)/d−1)(i−j) =

(i+j)/d−1∑
k=1

(−1)k+1x((i+j)/d−1−k)(i−j).

Multiplying both sides of this relation by xi−j and using Theorem 2.6 again, we

get

x(i+j)(i−j)/d =

(i+j)/d−1∑
k=1

(−1)k+1x((i+j)/d−k)(i−j)

= x((i+j)/d−1)(i−j) +

(i+j)/d−1∑
k=2

(−1)k+1x((i+j)/d−k)(i−j)

=

(i+j)/d−1∑
k=1

(−1)k+1x((i+j)/d−k−1)(i−j)

−
(i+j)/d−2∑

k=1

(−1)k+1x((i+j)/d−k−1)(i−j)

= (−1)(i+j)/d.

�

If i 6= j, Corollary 2.7 shows that x can be viewed as a root of unity.

Proposition 2.8. The elements xi+j and xi−xj are in the center of R(A; i, j, 1, 1).
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Proof. It suffices to show that xi+j and xi − xj commute with y. By definition of

R(A; i, j, 1, 1) we get

y(xi+j) = (yxi)xj = (1− xjy)xj = xj − xjyxj = xj − xj(1− xiy) = (xi+j)y,

and

y(xi − xj) = yxi − yxj = (1− xjy)− (1− xiy) = (xi − xj)y.

Hence, xi+j and xi−xj commute with both x and y and therefore with each element

in R(A; i, j, 1, 1). �

Lemma 2.9. If gcd(i, j) = d, then there exists polynomials p(x), q(x) ∈ A[x], both

alternating sums of powers of x, such that yxd = p(x) + q(x)y in R(A; i, j, 1, 1).

Proof. If i = j, then gcd(i, j) = i and we have yxi = 1− xiy.

Now suppose i 6= j and let d = gcd(i, j). Since d = gcd(i + j, j), there exist

m,n ∈ N such that d = nj−m(i+j), and so yxnj = yxm(i+j)+d. By Proposition 2.8,

xi+j is in the center of R(A; i, j, 1, 1) and so by Lemma 2.3 we obtain

xm(i+j)yxd = yxm(i+j)+d = yxnj = (−1)nxiny +

n−1∑
k=0

(−1)kx(n−1)j+k(i−j). (3)

Now, by Corollary 2.7, the inverse of x is a power of x and hence xrxm(i+j) = 1 for

some r. Therefore, by (3) we have

yxd = (−1)nxin+ry +

n−1∑
k=0

(−1)kx(n−1)j+k(i−j)+r. �

Theorem 2.10. If i > j and gcd(i, j) = 1, then R(A; i, j, 1, 1) is a finitely generated

A-module with a generating set of cardinality at most 2(i+ j − 1)(i− j).

Proof. Since gcd(i, j) = 1, by Theorem 2.6 and Lemma 2.9, we have relations

which work as reductions for xn and yx respectively, for n ≥ (i+j−1)(i−j). Using

these reductions, we can write every monomial/word of x and y in R(A; i, j, 1, 1)

as an A-linear combination of elements from the set

{1, x, x2, . . . , x(i+j−1)(i−j)−1, y, xy, . . . , x(i+j−1)(i−j)−1y}.

Hence, R(A; i, j, 1, 1) is a finitely-generated A-module with generating set of cardi-

nality at most 2(i+ j − 1)(i− j). �
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2.2. Matrix descriptions. In this subsection we will obtain a complete descrip-

tion of the A-algebra R(A; i, j, 1, 1) when gcd(i, j) = 1. Letting n = 2, a = xi,

b = xj , and f = y, then {Ehk : 1 ≤ h, k ≤ 2}, where Ehk = yh−1xiyxj(k−1), forms

a set of 2× 2 matrix units by Theorem 1.3 of [2] and so we have the following.

Observation 2.11. There exists an A-algebra L such that R(A; i, j, 1, 1) ∼= M2(L).

If we let ehk = E(3−h)(3−k) for each h and k, then it is easy to verify the 24 +1 =

17 relations from Theorem 1.1 to show that {ehk : 1 ≤ h, k ≤ 2} also forms a

complete set of 2 × 2 matrix units, where e11 = yxj , e12 = y, e21 = xiyxj , and

e22 = xiy.

By Observation 2.11 and the 2 × 2 matrix units {ehk : 1 ≤ h, k ≤ 2}, we

have an isomorphism φ : R(A; i, j, 1, 1) → M2(L). Identifying R(A; i, j, 1, 1) with

M2(L) via φ, we have yxj = ( 1 0
0 0 ) y = ( 0 1

0 0 ), xiyxj = ( 0 0
1 0 ) and xiy = ( 0 0

0 1 )

since yxj = e11, y = e12, xiyxj = e21, and xiy = e22. Hence, we will now

and for the rest of this subsection view R(A; i, j, 1, 1) as the matrix ring M2(L).

Letting xj =
(
a b
c d

)
and xi = ( p qs t ) for some a, b, c, d, p, q, s, t ∈ L, we get from

y · xi = yxi and xi · y = xiy the following matrix equations ( 0 1
0 0 )

(
a b
c d

)
= ( 1 0

0 0 )

and ( p qs t ) ( 0 1
0 0 ) = ( 0 0

0 1 ), and so d = p = 0 and c = s = 1. Since xjxi = xixj , we

also obtain ( a b1 0 )
(
0 q
1 t

)
=
(
0 q
1 t

)
( a b1 0 ) and hence q = b, t = −a, aq = −bt, and so

ab = ba. Further,

xi+j =

(
b 0

0 b

)
and xj − xi =

(
a 0

0 a

)
, (4)

and so by Proposition 2.8 we have the following.

Claim 2.12. Here a, b ∈ L are in the center of L and thus A[a, b] ⊆ L.

Suppose now gcd(i, j) = 1. If i > j, then since x is invertible by Theorem 2.5,

then so is xi+j and also b by Corollary 2.7 in A[a, b]. Further, there are α, β ∈ N0

such that 1 = αj − βi and so

x = xαj−βi =

(
a b

1 0

)α(
0 b

1 −a

)−β
=

(
a b

1 0

)α(
a b

1 0

)β
1

bβ
∈M2(A[a, b]).

If i = j, then i = j = 1 and hence x = ( a b1 0 ) =
(
0 b
1 −a

)
and so a = 0 and

x = ( 0 b
1 0 ) ∈ M2(A[a, b]). Therefore, if gcd(i, j) = 1, then in the isomorphism

R(A; i, j, 1, 1) ∼= M2(L) we see that both x and y are mapped to M2(A[a, b]) and so

all of R(A; i, j, 1, 1) is mapped to M2(A[a, b]). Therefore M2(L) = M2(A[a, b]) and

so L = A[a, b]. This is summed up in the following proposition.
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Proposition 2.13. If a and b are as in Claim 2.12, gcd(i, j) = 1 and i > j then

R(A; i, j, 1, 1) ∼= M2(A[a, b]) as A-algebras. In particular, L from Observation 2.11

is commutative.

Note that to obtain Proposition 2.13 we use the fact that the equality M2(L) =

M2(A[a, b]) implies L = A[a, b]. If the equality in M2(L) = M2(A[a, b]) is replaced

by an isomorphism, we cannot draw the same conclusions: In the papers [11] and [6]

examples of non-isomorphic, non-commutative rings A and B are given such that

Mn(A) ∼= Mn(B). In fact, it is shown in [6] that there is an uncountable family of

pairwise non-isomorphic rings {Sα} such that M2(Sα) ∼= M2(Sβ). Further, all Sα

are Noetherian domains that are finitely-generated over their centers.

The rest of this subsection is devoted to the description of the commutative A-

algebra L = A[a, b] when we have gcd(i, j) = 1. Under this assumption we get by

Lemma 2.9 a commuting reduction rule for yx in R(A; i, j, 1, 1). For this analysis

we begin with a definition.

Definition 2.14. Let A[s, t] be the polynomial ring in two variables s and t over

A and let f : N0 → A[s, t] be defined recursively in the following way: f(0) = 0,

f(1) = 1, and f(n) = tf(n− 1) + sf(n− 2) for n ≥ 2.

The following is easily obtained by induction on n.

Lemma 2.15. For n ≥ 1, we have ( t s1 0 )
n

=
(
f(n+1) sf(n)
f(n) sf(n−1)

)
.

The main result of this section is the following theorem, in which a complete

description of the algebra A[a, b] from Proposition 2.13 is given.

Theorem 2.16. Let f be as in Definition 2.14. If gcd(i, j) = 1, then we have

R(A; i, j, 1, 1) ∼= M2(A[s, t]/I) where

I =
(
f(i+ j), f(i+ j − 1)− sj−1, si−j − (−1)i−j

)
and A[s, t] is the polynomial ring in two indeterminates s and t over A.

Before beginning our proof, we discuss some interesting consequences of Propo-

sition 2.13 and Theorem 2.16.

First, for any ringR, the matrix ringMn(R) andR are Morita equivalent (see [3]),

meaning there is an equivalence of their modules in a categorical sense. By The-

orem 2.16 we have in particular that R(A; i, j, 1, 1) is Morita equivalent to a com-

mutative ring when gcd(i, j) = 1.

For the second consequence, we recall that a polynomial identity ring (or a PI

ring for short) R is a ring such that there exists a polynomial in non-commuting
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indeterminates p(x1, x2, . . . , xn) ∈ R〈x1, x2, . . . , xn〉 such that p(r1, r2, . . . , rn) = 0

for all ri ∈ R. For example, any commutative ring R is a PI ring since it satisfies

the identity xy− yx = 0. Similarly, any 2× 2 matrix ring over a commutative ring

is also a PI ring since it satisfies the Hall identity (xy − yx)2z = z(xy − yx)2. In

fact, any n× n matrix ring over a commutative ring satisfies the Amitsur-Levitzki

identity [10]

S2n(x1, x2, . . . , x2n) =
∑

π∈Sym(2n)

sgn(π)xπ(1)xπ(2) . . . xπ(2n) = 0.

Therefore, by Theorem 2.16 R(A; i, j, 1, 1) satisfies both the Hall identity and

the Amitsur-Levitzki identity S4(x1, x2, x3, x4) and is therefore a PI ring when

gcd(i, j) = 1.

We now delve into the proof of Theorem 2.16.

Proof of Theorem 2.16. First case: Suppose i = j, and so i, j = 1. This

case is special, in great part since L from Observation 2.11 is here not a finitely

generated A-module, unlike the case when i > j (see Theorem 2.10.)

First we note that in this case I = (f(2), f(1) − s0, s0 − (−1)0) = (t) and so

A[s, t]/I = A[s, t]/(t) = A[s], the polynomial ring over A in one indeterminate s.

In the A-algebra R(A; 1, 1, 1, 1) we can show that {yx = 1 − xy, y2 = 0} forms

a complete set of reductions under the degree lexicographic order, or deglex order

for short w.r.t. x < y and hence R(A; 1, 1, 1, 1) has a free A-module basis given by

{1, x, x2, . . . , y, xy, x2y, . . . }. To see that R(A; 1, 1, 1, 1) is isomorphic to the 2 × 2

matrix algebra over A[s], we introduce the variable s := x2 ∈ R(A; 1, 1, 1, 1) and so

R(A; 1, 1, 1, 1) = k〈x, y, s : yx = 1 − xy, y2 = 0, x2 = s〉. This yields the following

set of reductions {yx = 1 − xy, y2 = 0, x2 = s} under the deglex order s < x < y,

which is not complete as in the Diamond Lemma by Bergman from [4], since it

contains two overlap ambiguities yx2 and x3. Resolving the first one we get

yx2 = (yx)x = (1− xy)x = x− xyx = x− x(1− xy) = x2y = sy,

on one hand, and yx2 = y(x2) = ys on the other, and hence we obtain a new

relation sy = ys. Resolving the second one we get x3 = x(x2) = xs on one hand,

and x3 = (x2)x = sx on the other, and hence we obtain a new relation sx = xs.

By adding these two new relations to our system of deglex reductions we obtain a

complete set of reductions {yx = 1 − xy, y2 = 0, x2 = s, xs = sx, ys = sy} under

the deglex order. Therefore s is in the center of R(A; 1, 1, 1, 1) and so R(A; 1, 1, 1, 1)

is an A[s]-algebra. By our complete set of reductions we see that R(A; 1, 1, 1, 1) is

a free A[s]-module with a basis consisting of {1, x, y, xy} and hence of rank 4 over
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A[s]. Further, R(A; 1, 1, 1, 1) has the set of 2× 2 matrix units e11 = 1− xy, e12 =

y, e21 = x − sy, e22 = xy, which shows R(A; 1, 1, 1, 1) ∼= M2(L) for some A[s]-

algebra L. Since both R(A; 1, 1, 1, 1) and M2(L) have rank 4 over A[s], we have

T = A[s] and hence R(A; 1, 1, 1, 1) ∼= M2(A[s]) as A[s]-algebras.

Second case: Suppose i > j. In this case L is a finitely generated A-module

by Theorem 2.10. Let I = (f(i + j), f(i + j − 1) − sj−1, si−j − (−1)i−j) be as

stated in Theorem 2.16. We note that s−1 exists in A[s, t]/I and is given by s−1 =

(−1)i−jsi−j−1. Since gcd(i, j) = 1, there are α, β ∈ N0 such that αj − βi = 1. Let

X,Y ∈ M2(A[s, t]/I) be given by X = 1
sβ

( t s1 0 )
α+β

and Y = ( 0 1
0 0 ). By definition

of I we have in A[s, t]/I that sf(i+ j) = f(i+ j) = 0, sf(i+ j − 1) = s · sj−1 = sj

and f(i+ j+ 1) = tf(i+ j) + sf(i+ j− 1) = sj and hence in M2(A[s, t]/I) we have

by Lemma 2.15 that (
t s

1 0

)i+j
=

(
sj 0

0 sj

)
(5)

and hence, since αj − βi = 1 we have (α + β)j = 1 + β(i + j) and so we get from

(5) that

Xj =
1

sβj

(
t s

1 0

)(α+β)j

=
1

sβj

(t s

1 0

)i+jβ (t s

1 0

)
=

(
t s

1 0

)
.

Similarly, since ( t s1 0 )
−1

= 1
s

(
0 s
1 −t

)
and (α+ β)i = α(i+ j)− 1 we get

Xi =
1

sβi

(
t s

1 0

)(α+β)i

=
1

sβi

(
sαj 0

0 sαj

)
1

s

(
0 s

1 −t

)
=

(
0 s

1 −t

)
.

Therefore we have XiY +Y Xj = I and Y 2 = 0 in M2(A[s, t]/I) and hence there is a

well-defined A-algebra homomorphism R(A; i, j, 1, 1)→M2(A[s, t]/I) with x 7→ X

and y 7→ Y . For this map we further have xi+j 7→ ( s 0
0 s ) and xj − xi 7→ ( t 0

0 t ),

and so this homomorphism is a surjection. By (4) this homomorphism induces an

A-algebra surjection L = A[a, b] � A[s, t]/I where b 7→ s and a 7→ t since L is

commutative. This means, in particular, that t and s satisfy any equations that a

and b do in L = A[a, b]. It remains to show that a and b satisfy the same relations

over A that s and t do in A[s, t]/I.

Since Lemma 2.15 holds for arbitrary s and t, then we get the same equations by

replacing s with a and t with b and hence we have in R(A; i, j, 1, 1) ∼= M2(A[a, b])

on one hand that (xj)i+j = ( a b1 0 )
i+j

=
(
f(i+j+1) bf(i+j)
f(i+j) bf(i+j−1)

)
and on the other

hand we obtain (xj)i+j = (xi+j)j =
(
b 0
0 b

)j
=
(
bj 0
0 bj

)
. Since by Lemma 2.5 x is

invertible, then so is b in L, and we then obtain from the above two equations that
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f(i + j − 1) = bj−1 and f(i + j) = 0. We therefore get that a and b satisfy the

same relations in L = A[a, b] as t and s do in I respectively and so L ∼= A[s, t]/I

and hence R(A; i, j, 1, 1) ∼= M2(A[s, t]/I) which completes our proof. �

In [1], it is shown that for A = k a field, R(k; i, j, 1, 1) always maps to some

MN (k) and is therefore non-zero. It remains to show that if gcd(i, j) = 1, then

for any commutative ring A we have R(A; i, j, 1, 1) 6= {0}. For that, we need a few

technical results for the function f . The following lemma can be shown with simple

induction arguments.

Lemma 2.17. As a polynomial of t, we have (I) f(n) is monic with degree n− 1,

(II) f(2n) has no constant term, (III) f(2n+ 1) has constant term sn.

Lemma 2.18. Let f̄ be the image of f under the map A[s, t] → A[t], s 7→ −1, so

f̄(n) = tf̄(n− 1)− f̄(n− 2). In this case we have for each n ≥ 1:

f̄(2n− 1) = (f̄(n) + f̄(n− 1))(f̄(n)− f̄(n− 1)), (6)

f̄(2n)− 1 = (f̄(n+ 1)− f̄(n))(f̄(n) + f̄(n− 1)), (7)

f̄(2n) + 1 = (f̄(n+ 1) + f̄(n))(f̄(n)− f̄(n− 1)). (8)

Proof. We first note that (6) is by Definition 2.14 clearly true for n = 1, 2. We

proceed by induction on n. Suppose now

f̄(2m− 1) = (f̄(m) + f̄(m− 1))(f̄(m)− f̄(m− 1)) = f̄(m)2 − f̄(m− 1)2

for all m ≤ n. Then, by the defining recursion, we get

f̄(2n+ 1) = tf̄(2n)− f̄(2n− 1)

= t[tf̄(2n− 1)− f̄(2n− 2)]− f̄(2n− 1)

= t2f̄(2n− 1)− tf̄(2n− 2)− f̄(2n− 1)

= t2f̄(2n− 1)− [f̄(2n− 1) + f̄(2n− 3)]− f̄(2n− 1)

= (t2 − 2)f̄(2n− 1)− f̄(2n− 3).

Using the induction hypothesis for f̄(2n− 1) and f̄(2n− 3) and the defining recur-

sion, we further get

f̄(2n+ 1) = (t2 − 2)[f̄(n)2 − f̄(n− 1)2]− [f̄(n− 1)2 − f̄(n− 2)2]

= (t2 − 2)[(tf̄(n− 1)− f̄(n− 2))2 − f̄(n− 1)2]

−[f̄(n− 1)2 − f̄(n− 2)2]

= (t4 − 3t2 + 1)f̄(n− 1)2 − (2t3 − 4t)f̄(n− 1)f̄(n− 2)

+(t2 − 1)f̄(n− 2)2.
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Again, using the defining recurrence for f̄(n+ 1) and f̄(n), we obtain

f̄(n+ 1)2 − f̄(n)2 = (f̄(n+ 1) + f̄(n))(f̄(n+ 1)− f̄(n))

=
(
[tf̄(n)− f̄(n− 1)] + f̄(n)

) (
[tf̄(n)− f̄(n− 1)]− f̄(n)

)
= ((t+ 1)f̄(n)− f̄(n− 1))((t− 1)f̄(n)− f̄(n− 1))

= ((t+ 1)[tf̄(n− 1)− f̄(n− 2)]− f̄(n− 1))

·((t− 1)[tf̄(n− 1)− f̄(n− 2)]− f̄(n− 1))

= ((t2 + t− 1)f̄(n− 1)− (t+ 1)f̄(n− 2))

·((t2 − t− 1)f̄(n− 1)− (t− 1)f̄(n− 2))

= (t4 − 3t2 + 1)f̄(n− 1)2 − (2t3 − 4t)f̄(n− 1)f̄(n− 2)

+(t2 − 1)f̄(n− 2)2.

Hence, we obtain from the last two displayed relations

f̄(2n+ 1) = f̄(n+ 1)2 − f̄(n)2 = (f̄(n+ 1) + f̄(n− 1))(f̄(n+ 1)− f̄(n)),

and thus (6) is proved by induction.

We will use induction to prove both (7) and (8) simultaneously. For n = 1 we

have f̄(2) = t, f̄(1) = 1 and f̄(0) = 0 and so f̄(2)−1 = t−1 = (f̄(2)− f̄(1))(f̄(1)+

f̄(0)) and f̄(2)+1 = t+1 = (f̄(2)+f̄(1))(f̄(1)−f̄(0)). Suppose f̄(2m)−1 = (f̄(m+

1)− f̄(m))(f̄(m)+ f̄(m−1)) and f̄(2m)+1 = (f̄(m+1)+ f̄(m))(f̄(m)− f̄(m−1))

for all m ≤ n. Using the defining recurrence, (6), and our induction hypothesis we

get,

f̄(2n+ 2) = tf̄(2n+ 1)− f̄(2n)

= t(f̄(n+ 1)− f̄(n))(f̄(n+ 1) + f̄(n))

−
[
(f̄(n+ 1)− f̄(n))(f̄(n) + f̄(n− 1)) + 1

]
= (f̄(n+ 1)− f̄(n))(tf̄(n+ 1) + tf̄(n)− f̄(n)− f̄(n− 1))− 1

= (f̄(n+ 1)− f̄(n))(f̄(n+ 2) + f̄(n+ 1))− 1.

Thus f̄(2n+2)+1 = (f̄(n+1)−f̄(n))(f̄(n+2)+f̄(n+1)). Similarly, f̄(2n+2)−1 =

(f̄(n+ 1) + f̄(n))(f̄(n+ 2)− f̄(n+ 1)), which completes our proof. �

We now argue directly that if gcd(i, j) = 1, then R(A; i, j, 1, 1) 6= {0} for any

commutative ring A.

Theorem 2.19. If gcd(i, j) = 1 and I is as in Theorem 2.16, then I 6= A[s, t] and

thus R 6= {0}.
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Proof. First case: Suppose i + j is even. Let A[s, t] → A[t] be the evaluation

such that s 7→ 1. Then Ī = (f̄(i+ j − 1)− 1, f̄(i+ j), 0). By Lemma 2.17, we have

that f̄(i+ j− 1) has constant term 1 and so both f̄(i+ j− 1)− 1 and f̄(i+ j) have

no constant term. Therefore I ⊆ (t) and thus Ī 6= A[t]. Hence I 6= A[s, t] and so

R 6= {0}.
Second case: Suppose i + j is odd. Let A[s, t] → A[t] be the evaluation such

that s 7→ −1. Then Ī = (f̄(i+j−1)−(−1)j−1, f̄(i+j), 0). Regardless of the parity

of j − 1, both f̄(i+ j − 1)− (−1)j−1 and f̄(i+ j) are monic by Lemma 2.17, and

they share a common factor by Lemma 2.18, and thus Ī 6= A[t]. Hence I 6= A[s, t]

and so R 6= {0}. �

2.3. Examples. We conclude this section with two examples, the first of which is

a consequence of Theorem 2.16 and is stated in the following corollary.

Corollary 2.20. Let A be a commutative ring, then R(A; 2, 1, 1, 1) ∼= M2(A).

Proof. We know R(A; 2, 1, 1, 1) ∼= M2(A[s, t]/I) where

I = (f(3), f(2)− s0, s1 − (−1)1) = (t2 + s, t− 1, s+ 1) = (t− 1, s+ 1)

and so A[s, t]/I ∼= A and therefore R(A; 2, 1, 1, 1) ∼= M2(A). �

Example 2.21. We now consider the specific Q-algebra R(Q; 4, 3, 1, 1). Again,

using Theorem 2.16, we know R(Q; 4, 3, 1, 1) ∼= M2(A[s, t]/I) where

I = (f(7), f(6)− s2, s1 − (−1)1)

= (t6 + 5st4 + 6s2t2 + s3, t5 + 4st3 + 3s2t− s2, s+ 1)

= (t3 − t2 − 2t+ 1, s+ 1),

since s and −1 are in the same coset and the gcd(t6−5t4+6t2−1, t5−4t3+3t−1) =

t3 − t2 − 2t + 1. Since t3 − t2 − 2t + 1 is irreducible over Q, then Q[s, t]/I is a

field extension of Q given by Q(λ) where λ ∈ C satisfies the polynomial equation

λ3 − λ2 − 2λ+ 1 = 0.

While R(Q; 4, 3, 1, 1) ∼= M2(Q(λ)), we still have (4, 3, 1, 1) /∈ AQ since there is

no non-trivial homomorphism that maps a field extension to its base field. This is

the case since 1 must map to 1 and hence Q must map identically to Q.

Further, we note that by Theorem 2.6 we have for x ∈ R(Q; 4, 3, 1, 1) that

x6−x5 +x4−x3 +x2−x+ 1 = 0 where x6−x5 +x4−x3 +x2−x+ 1 is irreducible

over Q. Since each matrix over Q satisfies its characteristic polynomial, this means

that the matrix ring M6(Q) is the smallest possible matrix ring that R(Q; 4, 3, 1, 1)

can be mapped to non-trivially. On the other hand, since, every field extension is
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a vector space over its base ring and every element of a field extension acts linearly

on that vector space by multiplication, then every field extension can be realized

as set of matrices of dimension equal to the degree of the extension. Therefore,

since λ satisfies the polynomial equation λ3 − λ2 − 2λ + 1 = 0 of degree three,

we have that Q(λ) is isomorphic to a subring of M3(Q). This gives an explicit

isomorphism of M2(Q(λ)) into a subring of M2(M3(Q)) = M6(Q). This means

that the smallest N in [1] for which there is a non-trivial Q-algebra homomorphism

R(Q; 4, 3, 1, 1) → MN (Q) is here N = 6. We will see that this observation agrees

with Theorem 3.8 in the following Section 3.

3. Surjections onto matrix rings over base fields

In the previous section we showed in Theorem 2.16 that if gcd(i, j) = 1, then

R(A; i, j, 1, 1) ∼= M2(A[s, t]/I). However, we also argued that just because we have

R(A; i, j, 1, 1) ∼= M2(L) for some commutative ring L, does not necessarily mean

that (i, j, 1, 1) ∈ AA from Definition 1.6, as Example 2.21 in the previous Subsec-

tion 2.3 showed us. In this section, we will restrict our attention to R(k; i, j, 1, 1)

where k is a field and investigate the set Ak ∈ N4 for various fields k.

Note that (i, j, 1, 1) ∈ Ak is equivalent to: “One can find nonzero 2× 2 matrices

x, y ∈ M2(k) satisfying xiy + yxj = 1 and y2 = 0.” Clearly, if x = ( 0 1
1 0 ) and

y = ( 0 1
0 0 ), then we have x2u+1y + yx2v+1 = 1 and y2 = 0 for any integers u, v, and

so we trivially have the following observations.

Observation 3.1. For any field k and odd i, j ∈ N, we have (i, j, 1, 1) ∈ Ak.

For a given field k, we would ideally like to determine exactly for which i, j ∈ N
we have (i, j, 1, 1) ∈ Ak. As this question is too general to generate any interesting

results, we will focus on the base fields Q and Zp for prime numbers p ≥ 2. By

left-right symmetry (or stronger, by Theorem 2.2) we can assume j ≥ i.

3.1. Reducing to a four dimensional matrix algebra.

Definition 3.2. Let k be a field. For a, b ∈ k define

S(k; i, j, a, b) = R(k; i, j, 1, 1)/(x2 − ax+ b)

= k〈x, y : xiy + yxj = 1, y2 = x2 − ax+ b = 0〉.

We have the following lemma:

Lemma 3.3. Either S(k; i, j, a, b) is trivial or S(k; i, j, a, b) ∼=k M2(k) as k-algebras.
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Proof. Assume S(k; i, j, a, b) is nonzero. Then as an image of R(k; i, j, 1, 1), it

must be a nonzero 2× 2 matrix algebra. By applying the rule x2 = ax− b one gets

the formulas:

xi = fix+ gi, xj = fjx+ gj ,

where fl, gl ∈ k. Clearly since S(k; i, j, a, b) is nonzero, fi, fj 6= 0 must hold. By

putting these expressions into the equation xiy + yxj = 1 and then isolating yx,

one gets an expression of the form

yx = − fi
fj
xy − gi + gj

fj
x+

1

fj

which gives a commuting rule for x and y. Hence S(k; i, j, a, b) is generated by x

and y satisfying:

x2 = ax− b, y2 = 0, yx = − fi
fj
xy − gi + gj

fj
x+

1

fj

which makes S(k; i, j, a, b) a nonzero k-algebra spanned by {1, x, y, xy} and can

therefore be at most 4-dimensional. As a 2 × 2 matrix algebra over k, it must be

of dimension exactly 4, and so it must be isomorphic to M2(k). �

We will now examine the conditions that i, j and k must satisfy in order for

(i, j, 1, 1) ∈ Ak. We have already seen in Observation 3.1 that if both i and j are

odd then (i, j, 1, 1) ∈ Ak for all field k, so we will therefore concentrate on other

values of i and j. We will no longer assume gcd(i, j) = 1.

We note that if (i, j, 1, 1) ∈ Ak then, since R(k; i, j, 1, 1) can be mapped onto

M2(k) in which every element satisfies its second degree characteristic polynomial,

there must be a, b ∈ k such that S(k; i, j, a, b) is nonzero, in which case it is isomor-

phic to M2(k) as a k-algebra. It therefore is sufficient to find the conditions i, j and

k must satisfy such that there are a, b ∈ k which make S(k; i, j, a, b) nonzero. Now,

if a, b ∈ k and F is an extension field of k, then S(F ; i, j, a, b) = S(k; i, j, a, b)⊗k F ,

so S(k; i, j, a, b) is nonzero if and only if S(F ; i, j, a, b) is nonzero.

Lemma 3.4. For (i, j) 6= (1, 1) we have the following: if x2 − ax + b ∈ k[x] is

inseparable with double root r ∈ k̄, the algebraic closure of k, then: S(k; i, j, a, b) is

nonzero if and only if char(k) | i+ j, char(k) 6 | i and rj−i = −1.

Proof. S(k; i, j, a, b) is nonzero if and only if S(k̄; i, j, a, b) is nonzero, so we assume

either one. Since x2 − ax+ b = (x− r)2 ∈ k̄[x], by putting z = x− r we get a new

representation of S(k̄; i, j, a, b) as

k̄〈y, z : (iri−1z + ri)y + y(jrj−1z + rj) = 1, y2 = z2 = 0〉.
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By multiplying the first equation by y left and right, one gets iri−1yzy = y =

jrj−1yzy. Since our algebra is nonzero we get:

iri−1 = jrj−1 6= 0. (9)

By multiplying the same equation by z left and right we get:

(ri + rj)zy = z − jrj−1zyz, (ri + rj)yz = z − iri−1zyz.

By (9) we get (ri + rj)(yz − zy) = 0. Since S(k̄; i, j, a, b) is nonzero and hence

∼=k M2(k), it is noncommutative so yz − zy 6= 0, and so ri + rj = 0 must hold.

Since (i, j) 6= (1, 1) either i−1 or j−1 is greater than 0 so by (9), r cannot be zero.

We get therefore rj−i = −1 and jrj−i = i 6= 0, so we get the necessary conditions:

rj−i = −1 and i+ j is divisible by char(k) but neither i nor j are. These conditions

are sufficient since if they hold, then one can map:

y 7→

(
0 1

iri−1

0 0

)
z 7→

(
0 0

1 0

)
.

Clearly these matrices satisfy the defining equations for S(k̄; i, j, a, b) in its new

representation. �

Next we examine conditions that will make S(k; i, j, a, b) nonzero when x2−ax+

b ∈ k[x] is separable with two distinct roots r, s ∈ k̄. S(k; i, j, a, b) is nonzero if

and only if S(k̄; i, j, a, b) ∼=k M2(k̄). Now if the image of x under this isomorphism

satisfies x2 − ax + b = (x − r)(x − s), then x is mapped to a 2 × 2 matrix that

has (x − r)(x − s) as a minimal polynomial and is therefore diagonalizible with

eigenvalues r and s. We may therefore by an inner isomorphism of M2(k̄) assume

the k̄-algebra isomorphism S(k̄; i, j, a, b) ∼= M2(k̄) to have the form x 7→ ( r 0
0 s ) and

y 7→
(
b11 b12
b21 b22

)
. In order for these matrices to satisfy all the defining relations of

S(k; i, j, a, b) we now only need to examine xiy + yxj = 1 and y2 = 0. The first

equation gives the conditions:

(ri + rj)b11 = 1, (ri + sj)b12 = 0, (si + sj)b22 = 1, (rj + si)b21 = 0.

Clearly r, s 6= 0. Now if b12 = 0 then, since y2 = 0, we must have b11 = b22 = 0

which is impossible. We have therefore b12 6= 0. The same holds for b21, so we have

necessary conditions that r and s must satisfy:

ri + sj = 0 6= ri + rj , rj + si = 0 6= si + sj . (10)

If we do have r, s ∈ k satisfying (10), then letting b11 = 1
ri+rj , b22 = 1

si+sj , b12 =

b21 = i
ri+rj , where i2 = −1, it is easy to check that: x 7→ ( r 0

0 s ), y 7→
(
b11 b12
b21 b22

)
is
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indeed a k̄-algebra isomorphism S(k̄; i, j, a, b) ∼= M2(k̄). It is therefore sufficient to

find r, s ∈ k̄ satisfying (10).

Therefore, we are looking for r, s ∈ k̄ satisfying a second degree polynomial over

k, so in addition to the necessary conditions of (10) that r, s ∈ k̄ must satisfy, we

must also have r + s, rs ∈ k. Clearly these conditions combined are sufficient to

make S(k; i, j, a, b) well defined and nonzero.

Lemma 3.5. For r, s ∈ k̄∗, (10) are equivalent to:

(rs)j−i = 1, ri+j + (rs)i = 0, rj−i 6= −1. (11)

So, S(k; i, j, a, b) 6= {0} if and only if there are r, s ∈ k̄∗ satisfying (11) such that

r + s, rs ∈ k.

By looking at the conditions of Lemma 3.5, along with the condition r+s, rs ∈ k,

we see that whether there is a root r of xi+j + ζi ∈ k[x] in k̄, where ζ is a root

of xj−i − 1 in k, such that r + ζ/r ∈ k and rj−i 6= −1, depends not only on the

characteristic of k but also on what kind of an extension field of the base fields

(Q or Zp) k is. Since by Definition 1.6 we have for all fields that k1 ⊆ k2 implies

that Ak1 ⊆ Ak2 and Bk1 ⊆ Bk2 , it seems natural to study the initial element in the

category of fields with a certain characteristic. Hence we will consider the cases

k = Q,Zp for primes p ≥ 2. Since −1 = 1 in k = Z2 we will dispatch that special

case first.

Theorem 3.6. (i, j, 1, 1) ∈ AZ2
if and only if

(i, j) ≡

{
(1, 1) (mod 2)

(1, 2), (2, 1) (mod 3).

Proof. We need to find necessary and sufficient conditions on (i, j) such that one

can find a, b ∈ Z2 with S(Z2; i, j, a, b) nonzero. There are two cases:

First case: x2− ax+ b is inseparable: Here by Lemma 3.4 we must have both

i and j odd numbers, which is also sufficient by Observation 3.1.

Second case: x2 − ax + b is separable: Here by Lemma 3.5 the roots must

satisfy rs = 1, ri+j = 1, rj−i 6= 1 and r + s ∈ Z2 and so r + 1/r = 0 or 1.

If r + 1/r = 0, then r2 = 1 so 1 = ri+j = rj−i+2i = rj−i, which is impossible.

If r + 1/r = 1, then r2 + r + 1 = 0 and so r3 = 1. Since gcd(x3 − 1, xi+j − 1) =

xgcd(3,i+j) − 1, we must have i+ j divisible by 3 and j − i not divisible by 3. Since

i, j ≡ 0, 1, 2 (mod 3), we must have (i, j) ≡ (1, 2) or (2, 1) (mod 3). This is also

sufficient since x 7→ ( 0 1
1 1 ), y 7→ ( 0 1

0 0 ) works for this case. �
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3.2. The case for the field of rational numbers. Consider a class of polyno-

mials fn(x) ∈ Z[x] defined by:

f0(x) = 2, f1(x) = x and fn+1(x) = xfn(x)− fn−1(x), for n ≥ 1. (12)

By induction we easily get that

xn + x−n = fn(x+ x−1) (13)

for every n ∈ N. If k is a base field Q or Zp then through the natural map Z → k

we can view the polynomials fn(x) in k[x].

Suppose k 6= Z2 and there are r, s ∈ k̄ and n ∈ N such that that r + s ∈ k,

rs ∈ k∗ and r2n + s2n = 0. Then by (13) we have fn(r/s+ s/r) = r2n+s2n

(rs)n = 0 and

so fn(x) has a root r/s + s/r ∈ k. On the other hand if fn(x) has a root t ∈ k,

then by (13) t 6= −2 and we can find r, s ∈ k̄ with r + s = rs = t+ 2 ∈ k and

0 = fn(t) = fn

(
(r + s)2

rs
− 2

)
= fn

(r
s

+
s

r

)
=
r2n + s2s

(rs)n
.

Hence we have the following.

Lemma 3.7. For a base field k there are r, s ∈ k̄ such that r + s ∈ k, rs ∈ k∗ and

r2n + s2n = 0 if and only if fn(x) from (12) has a root in k.

We can now prove the main result of this subsection.

Theorem 3.8. (i, j, 1, 1) ∈ AQ if and only if

(i, j) ∈ {(n, n) | n 6≡ 0 (mod 4)} or

(i, j) ≡

{
(1, 1) (mod 2)

(1, 2), (2, 1), (4, 5), (5, 4) (mod 6).

Proof. To find out if there are a, b ∈ Q which will make S(Q; i, j, a, b), nonzero we

may by Lemma 3.4 assume x2−ax+b is separable with distinct roots r, s ∈ Q ⊆ C.

We now have two cases.

First case: i = j: Here the necessary and sufficient conditions for S(Q; i, j, a, b)

to be nonzero are, by Lemma 3.5, the existences of r, s ∈ C such that ri + si =

0, r + s ∈ Q and rs ∈ Q∗. Clearly if i is odd one can let r = 1 and s = −1, so

assume i = 2n to be even.

By Lemma 3.7 there are such r, s ∈ C if and only if fn(x) has a rational root,

which is the case iff fn(x− 2) has a rational root. By the recursive definition of fn

in (12), we see that fn(x − 2) is an n-th order polynomial with leading coefficient

1 and constant coefficient (−1)n2. So a rational number a/b with gcd(a, b) = 1 is a
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root of fn(x− 2) if and only if b | 1 and a | 2, hence the only possible rational roots

of fn(x− 2) are ±1 or ±2. The only positive result one finds is fn(0) for which

| fn(0) |=

{
0 if n is odd

2 if n is even

holds. We therefore have from this and Observation 3.1 that (i, i, 1, 1) ∈ AQ if and

only if i 6≡ 0 (mod 4).

Second case: i 6= j: Again by left-right symmetry of R(Q; i, j, 1, 1) we may

assume j > i. Here the necessary and sufficient conditions for r, s ∈ C to fulfill are

by Lemma 3.5

(rs)j−i = 1, ri+j + (rs)i = 0, rj−i 6= −1, r + s, rs ∈ Q. (14)

Since rs ∈ Q and (rs)j−i = 1 we have rs = ±1. Since both r and s are here roots

of unity in C, then in order for r + s ∈ Q to hold, s must be either −r or 1/r.

If s = −r then we get from (14) that 0 = r2i(rj−i + (−1)i) and hence, rj−i =

(−1)i−1. Since rj−i 6= −1 then i must be odd. Also, 1 = (−1)j−ir2(j−i) = (−1)j−i

and so j must be odd as well. We conclude, what we already knew from Observa-

tion 3.1, that (i, j, 1, 1) ∈ AQ if both i and j are odd.

If s = 1/r then (14) becomes

ri+j = −1, r + 1/r ∈ Q, rj−i 6= −1. (15)

By looking at the two first equations of (15) one sees by (13) that r + 1/r ∈ [2, 2]

is a rational root of fi+j(x) + 2. On the other hand if c ∈ [2, 2] is a rational root of

fi+j(x)+2 then by putting r+1/r = c one gets ri+j+r−(i+j) = fi+j(r+1/r) = −2

and so ri+j = −1. So the existence of an r in C satisfying the two first conditions

of (15) is equivalent to the existence of a rational root c ∈ [2, 2] of fi+j(x) + 2.

The leading coefficient of fn(x) + 2 is 1 and the constant term is 2 if n is odd, so

the only possible rational roots of fn(x) + 2 in [2, 2] when n is odd are ±1 or ±2.

By (13) one gets f2n(x) + 2 = fn(x)2 so f2n(x) + 2 has a rational root if and

only if fn(x) has one. As we saw above n must be odd and fn(0) = 0 is the only

possibility.

We have therefore that the only possible rational roots of fn(x) + 2 in [2, 2] are

0,±1,±2 and the only positive results we find are:

fn(0) + 2 = 0 ⇔ n ≡ 2 (mod 4)

fn(1) + 2 = 0 ⇔ n ≡ 3 (mod 6)

fn(−2) + 2 = 0 ⇔ n ≡ 1 (mod 2).
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We have therefore the following cases for r + 1/r being a root of fi+j(x) + 2 to

consider:

r+ 1/r = 0 and i+ j = 4k+ 2: Here we have r2 = −1, so in order for rj−i 6= −1

to hold we must have neither i nor j even and so we get no new information.

r + 1/r = 1 and i+ j = 6k + 3: Here we have r2 − r + 1 = 0 and hence r3 = 1,

so in order for rj−i 6= −1 to hold we must have neither i nor j divisible by 3, hence

(i, j) ≡ (1, 2), (2, 1), (4, 5) or (5, 4) (mod 6). It is on the other hand clear that for

these values (i, j) there is r ∈ C satisfying (15).

r+ 1/r = −2 and i+ j odd: Here we have r = −1 and j− i is odd so rj−i = −1.

This case is impossible, and we have completed the proof. �

3.3. The case for a general prime number p ≥ 3. For a prime number p recall

the p-adic order or the p-adic valuation of the integers νp : Z → N ∪ {∞} defined

by νp(n) = max({ν ∈ N : pν |n}) for n 6= 0 and νp(0) =∞.

We now tackle the case k = Zp for primes p ≥ 3. We start with a few useful

lemmas.

Lemma 3.9. If G ⊆ k∗ is a multiplicative subgroup of a field k of characteristic 6= 2

and |G| = n, then G has an element g with gm = −1 if and only if ν2(m)+1 ≤ ν2(n).

Proof. As a subgroup of k∗ then G and so every subgroup of G is cyclic. Let

ν = ν2(m). If there is a g ∈ G with gm = −1, then h2
ν

= −1 for some power h of

g. Since the characteristic is not 2 one has h2
ν+1

= 1 and h2
ν 6= 1. Hence h has

order 2ν+1 in G and so 2ν+1 must divide |G|, the order of G.

If 2ν+1 divides | G |= n, say n = 2ν+1c, then let g = ξc where G = 〈ξ〉. As an

element of a field we have: 0 = g2
ν+1 − 1 = (g2

ν − 1)(g2
ν

+ 1) and hence g2
ν

= −1

must hold and so g ∈ G satisfies gm = −1. �

Lemma 3.10. For c ∈ Zp and z ∈ Zp
∗

we have z+ c
z ∈ Zp if and only if zp−1 = 1

or zp+1 = c.

Proof. For t = z + c
z ∈ Zp we have t ∈ Zp if and only if tp = t, which again is

equivalent to (zp−1 − 1)(zp+1 − c) = 0. �

We can now dispatch the case when i = j.

Theorem 3.11. For a prime p ≥ 3 we have (i, i, 1, 1) ∈ AZp if and only if ν2(p2−
1) ≥ ν2(i) + 2.

Proof. For an odd i we have by Observation 3.1 that (i, i, 1, 1) ∈ AZp and since

p ≥ 3 we have ν2(p2 − 1) ≥ 2 = ν2(i) + 2. Hence we can for the remainder of the

proof assume i to be even.
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We want to find a, b ∈ Zp such that S(Zp; i, i, a, b) is nonzero. We have two

cases.

First case: x2 − ax+ b is inseparable: by Lemma 3.4 we see that if i 6= 1 then

we must have that p divides 2i and not i, which is impossible since p ≥ 3. Hence

i = 1 must hold which is covered in the theorem.

Second case: x2 − ax+ b is separable: assume the two roots are r and s. By

Lemma 3.5 the necessary and sufficient conditions for S(Zp; i, i, a, b) to be nonzero

are the existences of r, s ∈ Zp such that:

ri + si = 0, r + s ∈ Zp, rs ∈ Z∗p. (16)

We will show that these conditions are equivalent to the existence of γ ∈ Zp such

that:

γi = −1 and γ + γ−1 ∈ Zp. (17)

That (16) implies (17) can clearly be gotten by putting γ = r/s. Then γi + 1 = 0

and γ + γ−1 = r/s+ s/r = (r+s)2

rs − 2 ∈ Zp.
The other implication we get by putting r = γ+1 and s = γ−1+1. Then we have:

ri+si = (γ+1)i+(γ−1+1)i = (γ−1+1)i(γi+1) = 0 and r+s = rs = γ+γ−1+2 ∈ Zp
where i is even, γ 6= −1 and so γ + γ−1 + 2 6= 0, and therefore r + s, rs ∈ Z∗p.

It suffices therefore to find the conditions for i and p such that there exists a

γ ∈ Zp satisfying (17).

By Lemma 3.10 γ+γ−1 ∈ Zp is equivalent to γ satisfying (γp−1−1)(γp+1−1) = 0,

and so either γ ∈ Z∗p or γ ∈ G ⊆ Z∗p, where G is the cyclic group of order p + 1

formed by all the roots of xp+1 − 1 ∈ Zp[x].

In order for Zp orG to contain an element γ such that γi = −1, it is by Lemma 3.9

necessary and sufficient that either ν2(p − 1) ≥ ν2(i) + 1 or ν2(p + 1) ≥ ν2(i) + 1.

Since gcd(p− 1, p+ 1) = 2, this is equivalent to ν2(p2 − 1) ≥ ν2(i) + 2. �

We will now conclude the article by finding necessary and sufficient conditions

for (i, j, 1, 1) ∈ AZp to hold for primes p ≥ 3, together with a couple of corollar-

ies. The proof is elementary and based on “case-chasing” using group theory and

congruences.

Theorem 3.12. For a prime p ≥ 3 we have (i, j, 1, 1) ∈ AZp only in the following

cases: (I) ν2(j−i) > ν2(p−1) ≥ ν2(i+j), (II) ν2(j−i) = ν2(p−1) 6= ν2(i+j), (III)

ν2(j− i) < ν2(p− 1) and gcd(j− i, p− 1) is not an odd multiple of gcd(j+ i, p− 1),

(IV) ν2(j− i) < ν2(p− 1), p|i+ j and p 6 |i, (V) ν2(j− ip) < ν2(p+ 1) + min(ν2(j−
i), ν2(p− 1)) and j − i is not an odd multiple of gcd(j − ip, (p+ 1)(j − i), p2 − 1).
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Remark 3.13. Note that in the case of i = j we have ν2(j − i) =∞ and so cases

(II), (III) and (IV) do not occur. Case (I) reduces then to ν2(p−1) ≥ ν2(i) + 1 and

case (V) to ν2(p + 1) ≥ ν2(i) + 1. We therefore see that Theorem 3.11 is covered

by the above Theorem 3.12.

Proof of Theorem 3.12. By Theorem 3.11 and by left-right symmetry of

R(k; i, j, 1, 1) we can assume j > i.

Convention: For convenience in writing this proof we define d = gcd(j−i, p−1)

and e = gcd(j+ i, p− 1). Also, for the remainder of this proof we will be using x, y

and z for integer variables in congruence equations and not as generators of our

noncommutative algebra R(A; i, j,m, n).

To find out whether there are a, b ∈ Zp with S(Zp; i, j, a, b) nonzero, we have, as

in the proof of Theorem 3.11, two cases:

First case: x2 − ax + b is inseparable with a double root r ∈ Zp. If r = 0 we

must have i = j = 1 which is not the case here, so r 6= 0. In this case by Lemma 3.4

we must have p divide i+ j but not i and rj−i = −1 which by Lemma 3.9 can only

occur when ν2(j − i) < ν2(p− 1) so we have gotten case (IV ) in the theorem.

Second case: x2 − ax + b is separable with roots r, s ∈ Zp. By Lemma 3.5 r

and s must satisfy the following conditions:

(rs)j−i = 1, ri+j + (rs)i = 0, rj−i 6= −1, r + s, rs ∈ Zp. (18)

Since rs ∈ Zp here we have (rs)p−1 = 1 and so if d = gcd(j − i, p − 1), then rs

must be some power of a primitive d-th root of unity in Zp, that is rs = ρβy where

β = p−1
d , y is some integer in Z and 〈ρ〉 = Z∗p. So the conditions (18) become

ri+j = −ρβyi, rj−i 6= −1, r+ ρyβ

r ∈ Zp. By Lemma 3.10 r+ ρyβ

r ∈ Zp is equivalent

to (rp−1 − 1)(rp+1 − ρyβ) = 0, so either r ∈ Zp, or r ∈ Zp satisfying rp+1 = ρyβ

where y ∈ Z and so we have two sub-cases.

First sub-case: r ∈ Zp. Since r 6= 0 we have that r = ρx for some x ∈ Z. So

here we get the conditions

ρx(i+j) = −ρβyi = ρ
p−1
2 +βyi and ρx(j−i) 6= ρ

p−1
2 .

Since ρ is the generator of Z∗p it has period p−1 so we get the conditions for x, y ∈ Z:

x(i+ j) ≡ p− 1

2
+ βyi (mod p− 1)

x(j − i) 6≡ p− 1

2
(mod p− 1)
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which is the same as whether one can find x, y, z ∈ Z such that:

2x(i+ j)− 2βyi = (2z + 1)(p− 1)

2x(j − i) 6= (odd# )(p− 1).

Since p− 1 = βd, let j − i = αd. Then gcd(α, β) = 1 and 2βi = β(i+ j)−α(p− 1)

and so we get:

(i+ j)(2x− βy) = (2z − αy + 1)(p− 1), 2x(j − i) 6= (odd# )(p− 1). (19)

If ν2(j − i) = ν2(p− 1) then by definition, both α and β are odd, say α = 2α′ − 1

and β = 2β′ − 1. Let us now change the variables x and z to x′ = x − β′y and

z′ = z − α′y. Now the first equation of (19) becomes:

(i+ j)(2x′ + y) = (2z′ + y + 1)(p− 1)

which clearly has a solution x′, y, z′ ∈ Z and hence also x, y, z ∈ Z in this case, if

and only if ν2(i+j) 6= ν2(p−1), because 2x′+y and 2z′+y+1 have distinct parity.

When ν2(j − i) = ν2(p− 1) 6= ν2(i+ j) then 2x(j − i) 6= (odd#)(p− 1) so we have

gotten the case (II) in the theorem.

If ν2(j− i) > ν2(p−1) then α is even and β is odd, say α = 2α′ and β = 2β′−1.

Again let x′ = x− β′y and z′ = z − α′y. Here the first equation of (19) becomes:

(i+ j)(2x′ + y) = (2z′ + 1)(p− 1)

which clearly has solutions x′, y, z′ ∈ Z and hence also x, y, z ∈ Z if and only if

ν2(p− 1) ≥ ν2(i+ j). In this case 2x(j − i) is never an odd multiple of (p− 1), so

we have gotten here case (I) in the theorem.

If ν2(j− i) < ν2(p−1) then α is odd and β is even, say α = 2α′−1 and β = 2β′.

Let x′, z′ be as before and we get from (19) that

(i+ j)(2x′) = (2z′ + y + 1)(p− 1). (20)

Here we clearly can always find solutions x′, y, z′ ∈ Z to (20) and hence also cor-

responding solutions in x, y, z ∈ Z. Assume now that for every such solution

x, y, z ∈ Z we have 2x(j − i) = (odd# )(p − 1). We first notice that this con-

dition is equivalent to x = (odd# )β′, so we are here assuming that every solution

x, y, z ∈ Z to (i + j)(2x − βy) = (2z − αy + 1)(p − 1) has x = (odd# )β′. Let us

write i+ j = et and p− 1 = se where e = gcd(i+ j, p− 1). Then since gcd(s, t) = 1

every solution x, y, z must satisfy:

2x− βy = `s

2z − αy + 1 = `t
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for some ` ∈ Z. Since x′ = x − β′y and z′ = z − α′y, then we assume that every

solution x′, y, z′ to

2x′ = `s

2z′ + y + 1 = `t

has x′ = (odd# −y)β′, i.e. whenever 2x′ = `s then x′ = (odd# −(`t−2z′−1))β′ =

(2c` − `t)β′ for some c` ∈ Z. So in particular when x′ = s (i.e. ` = 2) we have

x′ = (2c2 − 2t)β′ = (c2 − t)β and hence s is even, which means t is odd since

gcd(s, t) = 1. We therefore have a solution 2x′ = s (i.e. ` = 1) and from this we

get s = (2c1 − t)β = (odd# )β, an odd multiple of β.

Suppose now that s is an odd multiple of β, say s = (2w + 1)β for some w ∈ Z,

then x′ = `(2w+1)β′ and y = `t−(2z′+1). Since t is odd, `(2w+1+t)−2z′ is even

and so `(2w+ 1) + y is odd, say 2w′+ 1, and so x′ = `(2w+ 1)β′ = (2w′+ 1− y)β′.

In summary, if s is an odd multiple of β, then every solution x′, y, z′ to (20) has

x′ = (odd# − y)β′.

We have therefore in the case ν2(j − i) < ν2(p − 1) that s not being an odd

multiple of β is the necessary and sufficient condition, and since this is equivalent

to d 6= (odd# )e we get case (III) in the theorem.

Second sub-case: rp+1 = ρyβ , where y ∈ Z. By (18) we want to find the

conditions for the existence of r ∈ Zp such that:

ri+j = −ρβyi, rp+1 = ρβy, rj−i 6= −1. (21)

Since r 6= 0 and the cyclic group Z∗p of order p− 1 is generated by ρ, so Z∗p = 〈ρ〉,
then (21) is equivalent to

rj−ip = −1, r(p+1)d = 1, rj−i 6= −1.

The condition r(p+1)d = 1 is equivalent to r ∈ G ⊆ Z∗p where G is the finite cyclic

group of order (p + 1)d formed by all the roots of x(p+1)d − 1. By lemma 3.9 we

must have ν2((p+ 1)d) > ν2(j − ip).
Let us now assume that each solution of r(p+1)d = 1, rj−ip = −1 satisfies rj−i =

−1. Let ξ be the generator of G. Since ξ is an element of Zp, we have 0 =

ξ(p+1)d − 1 =
(
ξ(

p+1
2 )d − 1

)(
ξ(

p+1
2 )d + 1

)
so ξ(

p+1
2 )d = −1. Since now r is a

power of ξ we are in fact assuming that every x satisfying x(j − ip) ≡
(
p+1
2

)
d

(mod (p+ 1)d) also satisfies x(j − i) ≡
(
p+1
2

)
d (mod (p+ 1)d). This is equivalent

to assuming that every solution x, y ∈ Z to

2x(j − ip) = (2y + 1)(p+ 1)d (22)

has 2x(j − i) as an odd multiple of (p+ 1)d.
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Since ν2((p+ 1)d) > ν2(j− ip) we have q = gcd
(
j − ip, p+1

2 d
)

= gcd(j− ip, (p+

1)d). Write j − ip = qu and p+1
2 d = qv. Then every solution to (22) must be:

x = `v

2y + 1 = `u

where ` ∈ Z. Clearly ` can only be odd. We have in particular for the solution

x = v and y = u−1
2 (i.e. ` = 1) that 2x(j − i) = (odd# )2qv; that is to say

j − i = (odd# )q.

On the other hand, one can easily see that if j − i = (odd# )q then every

solution to (22) satisfies 2x(j − i) = (odd# )(p + 1)d. We have therefore finally

that one can find r ∈ ZP satisfying (21) if and only if ν2((p+ 1)d) > ν2(j− ip) and

j − i 6= (odd# ) gcd(j − ip, (p+ 1)d). Since ν2((p+ 1)d) > ν2(j − ip) = ν2(p+ 1) =

min(ν2(j − i), ν2(p− 1)) we finally have case (V ) in the theorem. �

Remark 3.14. (i) The case that i and j are odd numbers is included in the

theorem since i, j both odd is the same as saying “Exactly one of the numbers

ν2(i+ j), ν2(j − i) ∈ N is equal to 1 and the other is 2 or greater”.

(ii) The case (V ) in the theorem doesn’t look symmetrical in i, j, but it is since

j − ip ≡ i− jp (mod (p+ 1)d) means that ν2((p+ 1)d) > ν2(j − ip) if and only if

ν2((p+ 1)d) > ν2(i− jp).

We conclude the article by two corollaries of Theorem 3.12 for particular primes

p. Since ν2(p− 1) = 1 is equivalent to p ≡ −1 (mod 4), we have by Theorem 3.12

and the Chinese Remainder Theorem the following corollary.

Corollary 3.15. For a prime p of the form p = 2a(2b + 1) − 1 where a ≥ 2, in

particular for each Mersenne prime of the form p = 2q − 1 for a prime q, we have

(i, j, 1, 1) ∈ AZp only in the following cases: (I) i and j are both odd, (II) i and j

have distinct parity and gcd(j − i, p− 1) is not an odd multiple of gcd(j + i, p− 1),

(III)

(i, j) ≡ (`(p+ 1), (p+ 1)(p− `) + p), ((p+ 1)(p− `) + p, `(p+ 1)) (mod 2p),

for ` ∈ {1, . . . , p − 1}, (IV) ν2(j − ip) ≤ a and j − i is not an odd multiple of

gcd(j − ip, (p+ 1)(j − i), p2 − 1).

Further, for p = 3 we note that the second condition (II) in the above Corol-

lary 3.15 cannot occur, and since p2 − 1 = 8, a pure power of 2, the last condition

(IV) becomes “ν2(j − 3i) ≤ 2 and j − i is not an odd multiple of gcd(j − 3i, 4(j −
i), 8).” We now briefly translate this condition by considering two cases: (a) if



ON A SPECIAL PRESENTATION OF MATRIX ALGEBRAS 41

ν2(i) 6= ν2(j), then i = 2νi′ and j = 2νj′ where i′ and j′ have distinct parity

and ν2(j − i) = ν2(j − 3i) = ν ≤ 2. Since both j′ − i′ and j′ − 3i′ are odd and

gcd(j′ − 3i′, 4(j′ − i′), 23−ν) = 1, then j − i = 2ν(j′ − i′) is always an odd multiple

of 2ν gcd(j′− 3i′, 4(j′− i′), 23−ν) = gcd(j− 3i, 4(j− i), 8). (b) If ν2(i) = ν2(j) = ν,

then i = 2ν(2i′ + 1) and j = 2ν(2j′ + 1), and hence j − i = 2ν+1(j′ − i′) and

j − 3i = 2ν+1(j′ − 3i′ − 1). By the first condition (I) we can assume ν ≥ 1, and

since ν + ν2(j′ − 3i′ − 1) ≤ 1 we can assume ν = 1 and j′ − 3i′ − 1 to be odd.

We note that gcd(j − 3i, 4(j − i), 8) = 2ν+1 gcd(j′ − 3i′ − 1, 4(j′ − i′), 22−ν) =

2ν+1 gcd(j′− 3i′− 1, 22−ν). Since j′− i′ and j′− 3i′− 1 have distinct parity, j′− i′

is never an odd multiple of gcd(j′ − 3i′ − 1, 22−ν) = 1. We therefore have from

Corollary 3.15 the following.

Corollary 3.16. (i, j, 1, 1) ∈ AZ3
if and only if

(i, j) ≡


(1, 1) (mod 2),

(1, 2), (2, 1), (4, 5), (5, 4) (mod 6),

(2, 2), (6, 6) (mod 8).
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