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1. Introduction

If M is a commutative monoid, written additively, and F is a field, the monoid

ring F [X;M ] consists of the polynomial expressions (also called polynomials)

f = a0X
α0 + a1X

α1 + · · ·+ anX
αn ,

where n ≥ 0, ai ∈ F , and αi ∈M (i = 0, 1, . . . , n). F [X;M ] is an integral domain if

and only if M is cancellative and torsion-free by [19, Theorem 8.1]. Since we will be

dealing exclusively with cancellative torsion-free monoids, we will call monoid rings

F [X;M ], in that context, monoid domains. If M = N0, then R = F [X;M ] = F [X],

which is a PID and so, in particular, the notions of irreducible elements and prime

elements coincide in R. The domains having this property are called AP domains.

However, if M = 〈2, 3〉 = {0, 2, 3, 4, . . . } (the submonoid of N0 generated by the

elements 2 and 3), then, for example, the elements X2 and X3 of R are atoms that

are not prime. If we do not restrict ourselves to submonoids of N0, but consider

the submonoids of Q+ = {q ∈ Q : q ≥ 0} instead, then, for example, the monoid

domain F [X;Q+] is an AP domain (by a theorem of R. Daileda [12]), while in the

monoid domain F [X;M ] with M = 〈1
2
,

1

22
,

1

23
, . . . ;

1

5
〉 the element X1/5 is an atom

which is not prime (see [22]). So we naturally come to the following question: for

which submonoids M of Q+ is the monoid domain F [X;M ] AP? The goal of this
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paper is to give an answer to this question. In addition to that, we will present an

implication diagram between various properties of submonoids of Q+ in which we

will precisely position the monoids M for which F [X;M ] is AP.

Note that the additive submonoids of Q+ have received a lot of attention by

the researchers in the areas of commutative semigroup theory and factorization

theory during the last few years (see, for example, [4,5,9,12,22,23,25,26,32]) and

they even got a special name, Puiseux monoids, so we will be using that name from

now on. Of course, Puiseux monoids were also used before; the paper [27] is one

of the well-known instances. As we said, in this current paper we will be mainly

dealing with the factorization properties of monoid domains F [X;M ], where F is

a field and M is a Puiseux monoid. Let us just mention that the factorization

properties of general integral domains were thoroughly investigated in the papers

by D. D. Anderson, D. F. Anderson, S. T. Chapman, J. Coykendall, W. W. Smith,

M. Zafrullah, and many others (as stated in [14, page vii]).

2. Notation and preliminaries

We begin by recalling some definitions and facts. All the notions that we use but

do not define in this paper, as well as the definitions and results for which we do not

specify the source, can be found in the classical reference books [8] by P. M. Cohn,

[18] and [19] by R. Gilmer, [32] by I. Kaplansky, and [35] by D. G. Northcott, as well

as in our papers [5] and [22]. We also recommend the paper [1] in which the work of

R. Gilmer is nicely presented, in particular his work on characterizing cancellative

torsion-free monoids M for which the monoid domain F [X;M ] has the property P

for various properties P .

We use ⊆ to denote inclusion and ⊂ to denote strict inclusion. We denote

N = {1, 2, . . . } and N0 = {0, 1, 2, . . . }. An element
m

n
of Q+ = {q ∈ Q : q ≥ 0} is

said to be in reduced form if gcd(m,n) = 1.

All the monoids used in the paper are assumed to be commutative and written

additively. Thus a monoid is a nonempty set M with an associative and commu-

tative operation + : M ×M → M , possessing an identity element 0 ∈ M . We say

that a monoid M is cancellative if for any elements x, y, z ∈ M , x + y = x + z

implies y = z. A monoid M is torsion-free if for any n ∈ N and x, y ∈M , nx = ny

implies x = y. If M,M ′ are Puiseux monoids, then every isomorphism from M

onto M ′ has the form µτ (x) = τx, where τ is a positive rational number (by [24,

Proposition 3.2(1)]). Then M ′ = τM = {τx : x ∈M}. For a Puiseux monoid M ,

the difference group of M is the subgroup Diff(M) = {x− y : x, y ∈M} of Q.
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A subset I of a monoid M is called an ideal of M if M + I = I, i.e., if for every

a ∈ I, M + a ⊆ I. (Here S1 + S2 = {x + y : x ∈ S1, y ∈ S2} for any two

subsets S1, S2 of M .) An ideal I of M is said to be principal if there is an element

a ∈ I such that I = M + a. We then write I = (a). A submonoid of a monoid M

generated by a subset A ⊆ M is denoted by 〈A〉 (while an ideal of M , generated

by a subset A ⊆M , is denoted by (A), in order to avoid eventual confusions). We

have: 〈A〉 = {n1a1 + · · · + ntat : t ≥ 0, ni ∈ N0, ai ∈ A (i = 1, 2, . . . , t)}. We

assume 〈∅〉 = {0}. A monoid M is said to be cyclic if it can be generated by one

element. An element a ∈M is called an atom if a is non-invertible and if a = b+ c

(b, c ∈ M) implies that at least one of the elements b, c is invertible. We say that

a monoid M is atomic if every non-unit element of M can be written as a sum

of (finitely many) atoms. We say that a monoid M is an ACCP monoid if every

increasing sequence

(a1) ⊆ (a2) ⊆ (a3) ⊆ . . .

of principal ideals of M is stationary, meaning that (an0
) = (an0+1) = (an0+2) = . . .

for some n0. (Note that the notions of an atomic and an ACCP monoid are anal-

ogous to the notions of an atomic and an ACCP integral domain. The similarities

and differences between the ideal theories of monoids and integral domains are

studied, for example, in the classical references [3,29,31], as well as in the recent

papers [15,16,17].)

The notion of a Prüfer monoid was introduced in [21, p. 223-224] (see also [19,

p. 166-167]). We include the possibility that M = {0}.

Definition 2.1. We say that a monoid M is a Prüfer monoid it it is a union of an

increasing sequence of cyclic submonoids.

We now give some observations and definitions in the context of Puiseux monoids.

If M is a Puiseux monoid and A a generating set of M , note that:

(a) if a is an atom of M , then a ∈ A;

(b) if a ∈ A is such that 〈A \ {a}〉 6= M , then a is an atom of M ;

(c) if a1, . . . , an ∈ A are not atoms of M , then A′ = A \ {a1, . . . , an} is also a

generating set of M .

Definition 2.2. We say that a Puiseux monoid M is:

(a) difference-closed if for any a, b ∈M with a ≥ b we have a− b ∈M ;

(b) a half-group monoid if there is a subgroup G of the additive group Q of

rational numbers such that M = G ∩Q+;
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(c) integrally closed if for every n ∈ N and any x, y ∈M with x ≥ y, n(x−y) ∈
M implies x− y ∈M .

In this paper all rings are integral domains, i.e., commutative rings with identity

in which xy = 0 implies x = 0 or y = 0. A non-zero non-unit element x of an

integral domain R is said to be irreducible (and called an atom) if x = yz with

y, z ∈ R implies that y or z is a unit. A non-zero non-unit element x of an integral

doman R is said to be prime if x | yz with y, z ∈ R implies x | y or x | z. Every

prime element is an atom, but not necessarily vice-versa. Two elements x, y ∈ R
are said to be associates if x = uy, where u is a unit. We then write x ∼ y.

We now give the definitions of some kinds of integral domains. The definitions of

all other kinds that we use in the paper can be found in [19] and/or in the references

given in the proof of Corollary 4.4 below.

Definition 2.3. An integral domain R is said to be:

(a) an AP domain if every atom of it is prime;

(b) atomic if every non-zero non-unit element of it can be written as a (finite)

product of atoms;

(c) a MIP domain if all maximal ideals of it are principal;

(d) a PC domain if every proper two-generated ideal of it is contained in a

proper principal ideal.

3. Some properties of Puiseux monoids M and the associated monoid

domains F [X;M ]

With respect to the AP-ness of the monoid domains F [X;M ] for Puiseux monoids

M we have the next two propositions.

Proposition 3.1 ([10, Lemma 3.1]). Let M be a Puiseux monoid, not isomorphic

to N0. Then the irreducible elements of F [X;M ] of the form Xa, a ∈ M , are

precisely the Xa with a an atom of M , and they are all non-prime.

Proposition 3.2 ([22, Theorem 4.2]). Let M be a finitely generated Puiseux monoid.

Then precisely one of the following situations occurs:

(a) M = {0}; then F [X;M ] = F , a field;

(b) M = 〈a〉, a 6= 0; then F [X;M ] ∼= F [X], a Euclidean domain;

(c) M = 〈a1, . . . , an〉, n ≥ 2, all ai atoms of M ; then F [X;M ] is an atomic

non-AP domain.
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To further study the AP-ness of the monoid domains F [X;M ] for Puiseux

monoids M we introduced in [22] the following notion.

Definition 3.3 ([22]). We say that a Puiseux monoid M satisfies the gcd/lcm

condition if for any t ∈ N and any elements
m1

n1
,
m2

n2
, . . . ,

mt

nt
∈ M , written in

reduced form, at least one of which is 6= 0, we have
gcd(m1, . . . ,mt)

lcm(n1, . . . , nt)
∈M .

It is easy to see that an equivalent definition of the gcd/lcm condition is that for

any two elements
m1

n1
,
m2

n2
∈M , written in reduced form, at least one of which is

6= 0, we have
gcd(m1,m2)

lcm(n1, n2)
∈M .

The next proposition is a generalization of the theorem of Daileda, mentioned in

Introduction. (The proof that we gave in [22] follows Daileda’s proof of his theorem

from [12].) The proposition is a step toward the main theorem of the paper, namely

Theorem 4.3, and is in fact used in its proof.

Proposition 3.4 ([22, Theorem 5.4]). If a Puiseux monoid M satisfies the gcd/lcm

condition, then for any field F the monoid domain F [X;M ] is AP.

For a prime number p the notion of the p-height hp(a) of an element a of a

torsion-free group G is defined in [13, page 108 ] as the nonnegative integer r such

that a ∈ prG \ pr+1G if such an integer exists and as ∞ otherwise. The sequence

(h2(a), h3(a), h5(a), . . . ) of p-heights of a as p goes through all prime numbers in the

increasing order is called the height sequence of a. In our paper [5] we considered

the elements of height (0, 0, 0, . . . ), but, more generally, in the torsion-free monoids

instead of groups.

Definition 3.5 ([5]). We say that an element a of a torsion-free monoid M is

of height (0, 0, 0, . . . ) if for every prime number p the equation px = a cannot be

solved for an x ∈M .

Example 3.6. Note that every atom of M is an element of height (0, 0, 0, . . . ).

The converse does not hold. For example, in the monoid

M = 〈1
2
,

1

22
,

1

23
. . . ;

1

3
,

1

32
,

1

33
, . . . 〉 ⊆ Q+

the element
5

6
is of height (0, 0, 0, . . . ), but is not an atom.

The next theorem is the main result of our paper [5]. It is not true for fields of

positive characteristics (as the examples and related questions in [5] illustrate). We

use this theorem in the proof of the main theorem of this paper (namely Theorem
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4.3) and that explains why we need in our main theorem the assumption that F is

of characteristic 0.

Theorem 3.7 ([5, Theorem 4.1]). Let M be a Puiseux monoid, F a field of charac-

teristic 0, and π an element of M of height (0, 0, 0, . . . ). Then the binomial Xπ− 1

is irreducible in F [X;M ].

4. When is F [X;M ] an AP domain?

In the next theorem we give several equivalent conditions for Puiseux monoids.

Theorem 4.1. Let M be a Puiseux monoid. The following are equivalent:

(a) M is a Prüfer monoid;

(b) M is difference-closed;

(c) M is a half-group monoid;

(c’) M = Diff(M) ∩Q+;

(d) M satisfies the gcd/lcm condition;

(e) M ∼= N0 or M has no elements of height (0, 0, 0, . . . );

(f) M is integrally closed.

Proof. (a) ⇔ (c’) ⇔ (f): follows from [19, Theorem 13.5].

(c’) ⇔ (c): this is clear because of the minimality of the difference group Diff(M),

which is precisely the Grothendieck group of M . (For the definition and properties

of Grothendieck or universal group of M see [28, Chapter II Section 2].)

(b) ⇔ (c’): it suffices to observe that M being difference closed is a restatement of

M = Diff(M) ∩Q+.

(b) ⇒ (d): Let
m1

n1
,
m2

n2
be two elements of M , written in reduced form, with

m1

n1
<
m2

n2
. Let d = gcd(m1,m2) and e = gcd(n1, n2), both positive. Then

m1 = dx1, m2 = dx2, gcd(x1, x2) = 1,

n1 = ey1, n2 = ey2, gcd(y1, y2) = 1, lcm(n1, n2) = ey1y2.

Since gcd(x1y2, x2y1) = 1, there are k, l ∈ N0 such that

dkx2y1 − dlx1y2 = d or −d. (1)

We will assume that this difference is equal to d, the reasoning being similar if it is

equal to −d. Since
m1

n1
=
dx1
ey1
∈M,
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we have
dlx1
ey1

∈M.

Also
m2

n2
=
dx2
ey2
∈M,

hence
dkx2
ey2

∈M.

Hence, since M is difference closed,

dkx2
ey2

− dlx1
ey1

∈M,

i.e.,

dkx2y1 − dlx1y2
ey1y2

∈M.

Hence by (1),

d

ey1y2
∈M,

i.e.,

gcd(m1,m2)

lcm(n1, n2)
∈M.

Thus M satisfies the gcd/lcm property.

(d) ⇒ (b): Let
m1

n1
,
m2

n2
be two elements of M , written in reduced form, with

m1

n1
<
m2

n2
. Let d = gcd(m1,m2) and e = gcd(n1, n2), both positive. Then

m1 = dx1, m2 = dx2, gcd(x1, x2) = 1,

n1 = ey1, n2 = ey2, gcd(y1, y2) = 1, lcm(n1, n2) = ey1y2.

We have
gcd(m1,m2)

lcm(n1, n2)
=

d

ey1y2
∈M.

Hence M contains the element

d

ey1y2
=
d(x2y1 − x1y2)

ey1y2
=
dx2
ey2
− dx1
ey1

=
m2

n2
− m1

n1
.

Thus M is difference closed.

(e) ⇒ (c): Assume that M has no elements of height (0, 0, 0, . . . ) Let

q1, q2, q3, . . .
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be the list of all the elements of M . Since M has no elements of height (0, 0, 0, . . . ),

there are elements
q1
p1
,
q1
p1p2

,
q1

p1p2p3
, . . . (pi prime numbers) in M , so that the union

M1 of cyclic submonoids

〈q1〉 ⊆ 〈
q1
p1
〉 ⊆ 〈 q1

p1p2
〉 ⊆ 〈 q1

p1p2p3
〉 ⊆ . . .

is a (Prüfer, hence) half-group submonoid of M containing q1. Similarly, there is

a half-group submonoid M2 of M containing q2. Since the sum of two half-group

Puiseux monoids is a half-group Puiseux monoid, the monoid M1,2 = M1 + M2 is

a half-group submonoid of M containing q1 and q2, and M1 ⊆M1,2. Continuing in

a similar way we construct an increasing sequence

M1 ⊆M1,2 ⊆M1,2,3 ⊆ . . .

of half-group submonoids of M , such that M1,2,...,n contains q1, q2, . . . , qn (n =

1, 2, 3, . . . ) Then the union

M = M1 ∪M1,2 ∪M1,2,3 ∪ . . .

is a half-group Puiseux monoid.

(a) ⇒ (e): let M = ∪n∈N〈qn〉, where 〈q1〉 ⊆ 〈q2〉 ⊆ . . . Assume that q ∈ M is of

height (0, 0, 0, . . . ), and take N ∈ N such that q ∈ 〈qk〉 for k ≥ N . Since q has

height (0, 0, 0, . . . ), we find that qk = q for every k ≥ N and so M = 〈qk〉 ∼= N0. �

Corollary 4.2. Let M,M ′ be two isomorphic Puiseux monoids. Then M satisfies

any of the (equivalent) conditions from the previous theorem if and only if M ′

satisfies it.

We can now prove the main theorem of the paper. It characterizes the Puiseux

monoids for which F [X;M ] is an AP domain when F is a field of characteristic 0.

Theorem 4.3. Let M be a Puiseux monoid and F a field.

(i) Each of the conditions (a), (b), (c), (c’), (d), (e), (f) from Theorem 4.1

implies that F [X;M ] is an AP domain.

(ii) If F is of characteristic 0, then each of the conditions from Theorem 4.1 is

equivalent to F [X;M ] being an AP domain.

Proof. (i) It is enough to show that one of the (equivalent) conditions (a)-(e)

implies the condition F [X;M ] AP. Hence the claim (i) follows Theorem 5.4 from

our paper [22] (see the above Proposition 3.4) which states that if M satisfies the

gcd/lcm condition, then F [X;M ] is AP.
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(ii) Because of (i) it is enough to show that the condition F [X;M ] AP implies one

of the (equivalent) conditions (a)-(e). We will show that it implies the condition

(e). Let F be a field of characteristic 0. Assume F [X;M ] is AP and M is not

isomorphic to N0. If M = {0}, the condition (e) holds. So we also assume that

M 6= {0}. By Proposition 3.1 and Proposition 3.2, M is infinitely generated and

without atoms. Suppose to the contrary of the statement, i.e., that M has an

element of height (0, 0, 0, . . . ), say π. Let m,n ∈ N and let p be a prime number,

such that gcd(m,n) = gcd(p, n) = 1 and n > 1. Let q = π−1(m/n + 1/p). The

multiplication by q is an isomorphism from M to qM . The image m/n + 1/p of

π is an element of height (0, 0, 0, . . . ) in qM . Thus we can assume that M has an

element π = (m/n + 1/p) of height (0, 0, 0, . . . ), where gcd(m,n) = gcd(n, p) = 1,

n > 1. We will show that then the element Xπ − 1 of F [X;M ] is irreducible, but

not prime. By Theorem 3.7, Xπ − 1 is irreducible in F [X;M ]. We now show that

it is not prime. We have π =
mp+ n

pn
. Hence

Xπ − 1 = (X
mp+n

pn − 1) | (X
mp+n

p − 1).

We have:

X
mp+n

p − 1 = (X
1
p )mp+n − 1

= (X
1
p − 1) (X

mp+n−1
p +X

mp+n−2
p + · · ·+X

1
p + 1).

Since
1

p
< π, we have (Xπ − 1) - (X

1
p − 1). Suppose that

(Xπ − 1) | (X
mp+n−1

p +X
mp+n−2

p + · · ·+X
1
p + 1). (2)

Then

X
mp+n−1

p +X
mp+n−2

p + · · ·+X
1
p + 1

= (X
mp+n

pn − 1) (Xα1 + g2X
α2 + · · ·+ gk−1X

αk−1 − 1), (3)

where α1 > α2 > · · · > αk−1 > 0 and g2, . . . , gk−1 ∈ F . It follows that

α1 =
(mp+ n)(n− 1)− n

pn
.

Note that

α1 6=
mp+ n− i

p
for all i = 2, 3, . . . ,mp+ n− 1,

since, otherwise, we would get (i−2)n = mp, which is not possible since gcd(m,n) =

1 and gcd(p, n) = 1. Note also that

α1 <
mp+ n− 2

p
.
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Hence the exponent
mp+ n− 2

p
on the left-hand side of (3) has to be obtained

from

X
mp+n

pn · (Xα1 + g2X
α2 + · · ·+ gk−1X

αk−1 − 1),

since it cannot be obtained from

(−1) · (Xα1 + g2X
α2 + · · ·+ gk−1X

αk−1 − 1).

(These two expressions are parts of the right-hand side of (3).) But then we must

have either
mp+ n

pn
+ α2 =

mp+ n− 2

p
, (4)

or, if
mp+ n

pn
+ αi =

mp+ n− 2

p
for some i ≥ 3, (5)

then the terms with the exponents
mp+ n

pn
+ α2, . . . ,

mp+ n

pn
+ αi−1 would have

to be cancelled on the right-hand side, so that we would have

mp+ n

pn
+ α2 = α1,

mp+ n

pn
+ α3 = α2,

. . . . . . . . . . . . . . . . . .

mp+ n

pn
+ αi−1 = αi−2.

Hence

α2 =
(mp+ n)(n− 2)− n

pn
,

α3 =
(mp+ n)(n− 3)− n

pn
,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

αi−1 =
(mp+ n)(n− i+ 1)− n

pn
,

and from (5)

αi =
(mp+ n)(n− i)− 2n

pn
.

Now since αi−1 > αi, we would have

(mp+ n)(n− i+ 1)− n
pn

>
(mp+ n)(n− 1)− 2n

pn
,

which gives

n > (mp+ n)(i− 2) for i ≥ 3,
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which is not true. Hence (4) holds. This gives

α2 =
(mp+ n)(n− 1)− 2n

pn
. (6)

Note that

α2 6=
mp+ n− i

p
for all i = 3, 4, . . . ,mp+ n− 1,

since, otherwise, we would get (i−3)n = mp, which is not possible since gcd(m,n) =

1 and gcd(p, n) = 1. Note also that

α2 <
mp+ n− 3

p
.

Hence the exponent
mp+ n− 3

p
on the left-hand side of (3) has to be obtained

from

X
mp+n

pn · (Xα1 + g2X
α2 + · · ·+ gk−1X

αk−1 − 1)

(we noticed before that it cannot be equal to α1).

Reasoning in the same way as before we conclude that

α3 =
(mp+ n)(n− 1)− 3n

pn
. (7)

By induction we get

αi =
(mp+ n)(n− 1)− in

pn
(8)

for i = 1, 2, 3, . . . , r, where r is the largest integer for which

mp+ n

pn
<
mp+ n− r

p
. (9)

From (9) we get

r < mp+ n− 1− mp

n
.

Hence

r ≤ mp+ n− 2.

However, then
mp+ n− r

p
≥ 2

p
, (10)

so that not all of the exponents
mp+ n− i

p
from the left-hand side are obtained

as
mp+ n

pn
+ αi. As before, αr =

(mp+ n)(n− 1)− rn
pn

cannot be equal to any

mp+ n− i
p

, i = r+1, r+2, . . . ,mp+n−1, otherwise we would get n(i−r−1) = mp,

which is not possible since gcd(m,n) = 1 and gcd(p, n) = 1. Now note that

αr <
mp+ n− (r + 1)

p
. (11)
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It follows that the exponent
mp+ n− (r + 1)

p
from the left-hand side cannot be

obtained from

X
mp+n

pn · (Xα1 + g2X
α2 + · · ·+ gk−1X

αk−1 − 1)

since r was the largest integer for which (9) holds, nor from

(−1)(Xα1 + g2X
α2 + · · ·+ gk−1X

αk−1 − 1)

since (11) holds and no αi with i < r can be equal to any
mp+ n− i

p
, i = r+1, r+

2, . . . ,mp + n − 1. We got a contradiction, hence (2) does not hold. So Xπ − 1 is

not prime.

The theorem is proved. �

Corollary 4.4. The implications between some types of Puiseux monoids illustrated

in Diagram 1 (see below) hold.

Proof. The implications in Diagram 1 are a direct consequence of Theorem 4.3,

Theorem 4.1, [7, Theorem 2.3, Theorem 2.4, Theorem 2.8], [6, page 6], [19, Theorem

7.7, Corollary 12.11, Theorem 13.5, and page 169], [20, Theorem 8.4], [21, Theorem

(iv)], [30, page 51], [32, page 114], [33, Proposition 3.1], and [36, Corollary 2.2, page

1896, page 1904]. �

5. Concluding remarks

(1) In our paper [22] we asked in Question 5.7 if for any Puiseux monoid M

without atoms F [X;M ] is AP. We can now answer this question in the negative.

Namely, the monoid

M = 〈1
2
,

1

22
,

1

23
. . . ;

1

3
,

1

32
,

1

33
, . . . 〉 ⊆ Q+

that we considered in Example 3.6 does not have atoms, however by Theorem 4.3

F [X;M ] is not AP for any field F of characteristic 0 since M contains elements of

height (0, 0, 0, . . . ), the element
5

6
, for example, being one of them.
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M Puiseux monoid

M has at least one atom

or M = {0}

M is atomic

M is ACCP

≡ F [X;M ] ACCP

M finitely generated

≡ F [X;M ] Noetherian

M = {0} or M ∼= N0

≡ F [X;M ] Dedekind domain

≡ F [X;M ] UFD

≡ F [X;M ] PID

≡ F [X;M ] Euclidean domain

M = {0}
≡ F [X;M ] field

M ∼= N0

M has no atoms

or M ∼= N0

M satisfies the conditions

from Theorem 4.1

≡ F [X;M ] pre-Schreier;

≡ F [X;M ] Schreier;

≡ F [X;M ] GCD;

≡ F [X;M ] Prüfer

≡ F [X;M ] Bézout

≡ F [X;M ] integ closed

≡ F [X;M ] MIP

≡ F [X;M ] PC

≡ F [X;M ] AP

Diagram 1: Implications between some types of Puiseux monoids
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(2) In Question 5.7 from our paper [22] we also asked for a characterization

of all Puiseux monoids M such that F [X;M ] is AP. The main theorem of this

paper (namely, Theorem 4.3) answers this question for fields F of characteristic

0. In the proof of our main theorem we use Theorem 3.7 from our paper [5],

which is not true for fields of positive characteristic. So we may naturally ask

the following question: for a given characteristic p > 0 characterize all Puiseux

monoids M such that F [X;M ] is AP for any field F of characteristic p. In parti-

cular, characterize all Puiseux monoids M such that F [X;M ] is AP for any field

F of positive characteristic.

Integrally

closed

Prüfer

WT

Bézout

AP

Pre-Schreier

Schreier

GCD PC

MIP

Diagram 2: Some equivalent types of domains

in the F [X;M ] context with M a Puiseux monoid

(3)1 Another question that we had in [22] was Question 2.11 in which we asked

if for every atomic Puiseux monoid M , F [X;M ] is atomic. (In other words, if M

atomic is equivalent with F [X;M ] atomic, as the other direction was proved in our

1This question was recently answered in the negative by J. Coykendall and F. Gotti in [9].
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[22, Proposition 2.10].) This question is a special case of the question of Gilmer

([19, page 189]) about determining the conditions under which the domain D[X;M ]

is atomic, where D is a domain and M is a cancellative torsion-free monoid. For the

case of torsion-free abelian groups instead of monoids, the question was considered

and some results obtained in [34, Section 8]. (The atomic structure of Puiseux

monoids was recently investigated in several papers of F. Gotti, see for example

[23].)

(4) The following is a natural question about Diagram 1: what would be the

weakest type (WT) of integral domains such that all integrally closed domains and

all AP domains are WT, and such that all the types of domains from Diagram 2

above are equivalent in the context of the monoid domains F [X;M ], where M is a

Puiseux monoid?

(5) In [11] the notion of U-UFD is defined. It was shown that every AP domain is

U-UFD and an example is constructed of an U-UFD which is not AP. A question

one can ask is if the notions of AP and U-UFD are distinct in the context of the

monoid domains F [X;M ] of Puiseux monoids M , and if they are, to characterize

the Puiseux monoids M for which F [X;M ] is a U-UFD. One could then use this

characterization to obtain other examples of U-UFD’s that are not AP.

(6) Another question one can consider is to characterize the Puiseux monoids M

for which the monoid domains F [X;M ] are IDF, HFD, FFD, BFD (these domains

and relations between them are analyzed in detail in [2]).
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