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Abstract. Let R be a commutative ring with identity andM be an R-module.

Let ψ : S(M) → S(M) ∪ {∅} be a function, where S(M) denote the set of

all submodules of M . The main purpose of this paper is to introduce and

investigate the notion of ψ-secondary submodules of an R-module M as a

generalization of secondary submodules of M .
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1. Introduction

Throughout this paper, R will denote a commutative ring with identity, Z and

N will denote the ring of integers and the set of positive integers, respectively. We

will denote the set of ideals of R by S(R) and the set of all submodules of M by

S(M), where M is an R-module.

Let M be an R-module. A proper submodule P of M is said to be prime if for

any r ∈ R and m ∈ M with rm ∈ P , we have m ∈ P or r ∈ (P :R M) [5]. A

non-zero R-module M is said to be secondary if for each a ∈ R the endomorphism

of M given by multiplication by a is either surjective or nilpotent [8]. A non-zero

submodule N of M is said to be second if for each a ∈ R, the endomorphism of N

given by multiplication by a is either surjective or zero [9].

Anderson and Bataineh in [1] defined the notation of φ-prime ideals as follows:

let φ : S(R)→ S(R)∪{∅} be a function. Then, a proper ideal P of R is φ-prime if

for r, s ∈ R, rs ∈ P \φ(P ) implies that r ∈ P or s ∈ P [1]. A proper ideal I of R is

said to be φ-primary if for a, b ∈ R with ab ∈ I \ φ(I), then either a ∈ I or b ∈
√
I

[1].

Zamani in [10] extended this concept to prime submodule. For a function φ :

S(M) → S(M) ∪ {∅}, a proper submodule N of M is called φ-prime if whenever

r ∈ R and x ∈ M with rx ∈ N \ φ(N), then r ∈ (N :R M) or x ∈ N . Bataineh

and Kuhail in [4] generalized the concept of φ-prime submodules to φ-primary
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submodules. For a function φ : S(M)→ S(M)∪ {∅}, a proper submodule N of M

is called φ-primary if whenever r ∈ R and x ∈M with rx ∈ N \ φ(N), then x ∈ N
or rn ∈ (N :R M) for some n ∈ N.

Let ψ : S(M) → S(M) ∪ {∅} be a function. Farshadifar and Ansari-Toroghy

in [6], defined the notation of ψ-second submodules of M as a dual notion of φ-

prime submodules of M . A non-zero submodule N of M is said to be a ψ-second

submodule of M if r ∈ R, K a submodule of M , rN ⊆ K, and rψ(N) 6⊆ K, then

N ⊆ K or rN = 0.

The main purpose of this paper is to introduce and study the concept of ψ-

secondary submodules of M as a generalization of the notion of secondary submod-

ules of M . Also, the notion of ψ-secondary submodules of M can be regarded as a

generalization of the notion of ψ-second submodules of M . We say that a non-zero

submodule N of M is a ψ-secondary submodule of M if r ∈ R, K a submodule of

M , rN ⊆ K, and rψ(N) 6⊆ K, then N ⊆ K or rnN = 0 for some n ∈ N. In fact

the notion of ψ-secondary submodules is a dual notion of φ-primary submodules.

There are some works about φ-primary submodules. It is natural to ask the follow-

ing question: To what extent does the dual of these results hold for ψ-secondary

submodules of an R-module? The aim of this paper is to provide some information

in this case. Among the other results, we have shown that if N is a ψ-secondary

submodule of M such that AnnR(N)ψ(N) 6⊆ N , then N is a secondary submodule

of M (see Theorem 2.5). Also, we have proved that if H is a submodule of M such

that far all ideals I and J of R, (H :M I) ⊆ (H :M J) implies that J ⊆ I, then H

is a secondary submodule of M if and only if H is a ψ1-secondary submodule of M

(see Corollary 2.9). In Theorem 2.10, it is shown that for a submodule S of M , we

have

(a) If S is a ψ-secondary submodule ofM such thatAnnR(ψ(S)) ⊆ φ(AnnR(S)),

then AnnR(S) is a φ-primary ideal of R.

(b) If ψ(S) = (0 :M φ(AnnR(S)), M is a comultiplication R-module and

AnnR(S) is a φ-primary ideal of R, then S is a ψ-secondary submodule

of M .

The Example 2.11 shows that the condition “M is a comultiplication R-module”

in Theorem 2.10 (b) can not be omitted. Also, it is shown that if a is an element

of R such that (0 :M a) ⊆ a(0 :M aAnnR((0 :M a))) and (0 :M a) is a ψ1-secondary

submodule of M , then (0 :M a) is a secondary submodule of M (see Theorem 2.17).

Finally, in Theorem 2.18, we characterize ψ-secondary submodules of M .
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2. Main results

Definition 2.1. Let M be an R-module. We say that a non-zero submodule N of

M is a weak secondary submodule of M if r ∈ R, K a submodule of M , rN ⊆ K,

and rM 6⊆ K, then N ⊆ K or rnN = 0 for some n ∈ N.

Clearly, every secondary submodule of an R-module M is a weak secondary

submodule of M . But the converse is not true in general, as we see in the following

example.

Example 2.2. Due to the fact that in logic if P is false, then P ⇒ Q is true,

every R-module is a weak secondary submodule of itself but not every R-module is

a secondary R-module. For example, the Z-module Z is weak secondary which is

not secondary.

Definition 2.3. Let M be an R-module, S(M) be the set of all submodules of M ,

and let ψ : S(M)→ S(M)∪ {∅} be a function. We say that a non-zero submodule

N of M is a ψ-secondary submodule of M if r ∈ R, K a submodule of M , rN ⊆ K,

and rψ(N) 6⊆ K, then N ⊆ K or rnN = 0 for some n ∈ N.

In Definition 2.3, since rψ(N) 6⊆ K implies that r(ψ(N) + N) 6⊆ K, there is no

loss of generality in assuming that N ⊆ ψ(N) in the rest of this paper. Let M be

an R-module. We use the following functions ψ : S(M)→ S(M) ∪ {∅}.

ψi(N) = (N :M AnniR(N)), ∀N ∈ S(M), ∀i ∈ N,

ψσ(N) =

∞∑
i=1

ψi(N), ∀N ∈ S(M).

ψM (N) = M, ∀N ∈ S(M).

Then it is clear that the set of all ψM -secondary submodules is exactly the set of

all weakly secondary submodules. Clearly, for any submodule and every positive

integer n, we have the following implications:

secondary ⇒ ψn−1 − secondary ⇒ ψn − secondary ⇒ ψσ − secondary.

For functions ψ, θ : S(M)→ S(M) ∪ {∅}, we write ψ ≤ θ if ψ(N) ⊆ θ(N) for each

N ∈ S(M). So whenever ψ ≤ θ, any ψ-secondary submodule is θ-secondary.

Theorem 2.4. [3, 2.8]. For a submodule S of an R-module M the following state-

ments are equivalent.

(a) S is a secondary submodule of M .
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(b) S 6= 0 and rS ⊆ K, where r ∈ R and K is a submodule of M , implies

either rnS = 0 for some n ∈ N or S ⊆ K.

Theorem 2.5. Let M be an R-module and ψ : S(M)→ S(M)∪{∅} be a function.

Let N be a ψ-secondary submodule of M such that AnnR(N)ψ(N) 6⊆ N . Then N

is a secondary submodule of M .

Proof. Let a ∈ R and K be a submodule of M such that aN ⊆ K. If aψ(N) 6⊆ K,

then we are done because N is a ψ-secondary submodule of M . Thus suppose

that aψ(N) ⊆ K. If aψ(N) 6⊆ N , then aψ(N) 6⊆ N ∩ K. Hence aN ⊆ N ∩ K
implies that N ⊆ N ∩ K ⊆ K or anN = 0 for some n ∈ N, as required. So let

aψ(N) ⊆ N . If AnnR(N)ψ(N) 6⊆ K, then (a+AnnR(N))ψ(N) 6⊆ K. Hence, there

exists x ∈ AnnR(N) such that (a + x)ψ(N) 6⊆ K. Thus (a + x)N ⊆ K implies

that N ⊆ K or anN = (an + xn)N ⊆ (a + x)nN = 0 for some n ∈ N, since N is

a ψ-secondary submodule of M . So suppose that AnnR(N)ψ(N) ⊆ K. Since by

assumption, AnnR(N)ψ(N) 6⊆ N , there exists b ∈ AnnR(N) such that bψ(N) 6⊆ N .

Hence bψ(N) 6⊆ N ∩ K. This in turn implies that (a + b)ψ(N) 6⊆ N ∩ K. Thus

(a+b)N ⊆ N∩K implies that N ⊆ N∩K ⊆ K or anN = (an+bn)N ⊆ (a+b)nN =

0 for some n ∈ N, as desired. �

Corollary 2.6. Let N be a weak secondary submodule of an R-module M such that

AnnR(N)M 6⊆ N . Then N is a secondary submodule of M .

Proof. In Theorem 2.5 set ψ = ψM . �

Corollary 2.7. Let M be an R-module and ψ : S(M)→ S(M)∪{∅} be a function.

If N is a ψ-secondary submodule of M such that (N :M Ann2R(N)) ⊆ ψ(N), then

N is a ψσ-secondary submodule of M .

Proof. If N is a secondary submodule of M , then the result is clear. So sup-

pose that N is not a secondary submodule of M . Then by Theorem 2.5, we have

AnnR(N)ψ(N) ⊆ N . Therefore, by assumption,

(N :M Ann2R(N)) ⊆ ψ(N) ⊆ (N :M AnnR(N)).

This implies that ψ(N) = (N :M Ann2R(N)) = (N :M AnnR(N)) because always

(N :M AnnR(N)) ⊆ (N :M Ann2R(N)). Now

(N :M Ann3R(N)) = ((N :M Ann2R(N)) :M AnnR(N)) =

((N :M AnnR(N)) :M AnnR(N)) = (N :M Ann2R(N)) = ψ(N).

By continuing, we get that ψ(N) = (N :M AnniR(N)) for all i ≥ 1. Therefore,

ψ(N) = ψσ(N) as needed. �
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Theorem 2.8. Let M be an R-module and ψ : S(M)→ S(M)∪{∅} be a function.

Let H be a submodule of M such that far all ideals I and J of R, (H :M I) ⊆
(H :M J) implies that J ⊆ I. If H is not a secondary submodule of M , then H is

not a ψ1-secondary submodule of M .

Proof. As H is not a secondary submodule of M , there exists r ∈ R and a sub-

module K of M such that rnH 6= 0 for each n ∈ N and H 6⊆ K, but rH ⊆ K by

Theorem 2.4. We have H 6⊆ K ∩ H and rH ⊆ K ∩ H. If r(H :M AnnR(H)) 6⊆
K ∩ H, then by our definition H is not a ψ1-secondary submodule of M . So let

r(H :M AnnR(H)) ⊆ K ∩ H. Then r(H :M AnnR(H)) ⊆ K ∩ H ⊆ H. Thus

(H :M AnnR(H)) ⊆ (H :M r) and so by assumption, r ∈ AnnR(H). This is a

contradiction. �

Corollary 2.9. Let M be an R-module and ψ : S(M)→ S(M)∪{∅} be a function.

Let H be a submodule of M such that far all ideals I and J of R, (H :M I) ⊆
(H :M J) implies that J ⊆ I. Then H is a secondary submodule of M if and only

if H is a ψ1-secondary submodule of M .

An R-module M is said to be a comultiplication module if for every submodule

N of M , there exists an ideal I of R such that N = (0 :M I) [2]. It is easy to see

that M is a comultiplication module if and only if N = (0 :M AnnR(N)) for each

submodule N of M .

Theorem 2.10. Let M be an R-module, φ : S(R)→ S(R)∪{∅}, and ψ : S(M)→
S(M) ∪ {∅} be functions.

(a) If S is a ψ-secondary submodule of M such that AnnR(ψ(S)) ⊆ φ(AnnR(S)),

then AnnR(S) is a φ-primary ideal of R.

(b) If ψ(S) = (0 :M φ(AnnR(S)), M is a comultiplication R-module and

AnnR(S) is a φ-primary ideal of R, then S is a ψ-secondary submodule

of M .

Proof. (a) Let ab ∈ AnnR(S) \ φ(AnnR(S)) for some a, b ∈ R. Then abψ(S) 6= 0

by assumption. If aψ(S) ⊆ (0 :M b), then abψ(S) = 0, a contradiction. Thus

aψ(S) 6⊆ (0 :M b). Therefore, S ⊆ (0 :M b) or anS = 0 for some n ∈ N because S is

a ψ-secondary submodule of M .

(b) Let a ∈ R and K be a submodule of M such that aS ⊆ K and aψ(S) 6⊆ K.

As aS ⊆ K, we have S ⊆ (K :M a). It follows that

S ⊆ ((0 :M AnnR(K)) :M a) = (0 :M aAnnR(K)).
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This implies that aAnnR(K) ⊆ AnnR((0 :M aAnnR(K))) ⊆ AnnR(S). Hence,

aAnnR(K) ⊆ AnnR(S). If aAnnR(K) ⊆ φ(AnnR(S)), then ψ(S) = (0 :M

φ(AnnR(S)) ⊆ ((0 :M AnnR(K) :M a). As M is a comultiplication R-module,

we have aψ(S) ⊆ K, a contradiction. Thus aAnnR(K) 6⊆ φ(AnnR(S)) and so as

AnnR(S) is a φ-primary ideal of R, we conclude that anS = 0 for some n ∈ N or

S = (0 :M AnnR(S)) ⊆ (0 :M AnnR(K)) = K,

as needed. �

The following example shows that the condition “M is a comultiplication R-

module” in Theorem 2.10 (b) can not be omitted.

Example 2.11. Let R = Z, M = Z ⊕ Z, and S = 2Z ⊕ 2Z. Clearly, M is not a

comultiplication R-module. Suppose that φ : S(R)→ S(R) ∪ {∅} and ψ : S(M)→
S(M) ∪ {∅} be functions such that φ(I) = I for each ideal I of R and ψ(S) = M .

Then clearly, AnnR(S) = 0 is a φ-primary ideal of R and ψ(S) = M = (0 :M

φ(AnnR(S)). But as 3S ⊆ 6Z⊕ 6Z, S 6⊆ 6Z⊕ 6Z, and 3nS 6= 0 for each n ∈ N, we

have that S is not a ψ-secondary submodule of M .

The following lemma is known, but we write it here for the sake of reference.

Lemma 2.12. Let M be an R-module, S a multiplicatively closed subset of R, and

N be a finitely generated submodule of M . If S−1N ⊆ S−1K for a submodule K of

M , then there exists an s ∈ S such that sN ⊆ K.

Proof. This is straightforward. �

Proposition 2.13. Let M be an R-module, ψ : S(M)→ S(M)∪{∅} be a function,

and N be a ψ-secondary submodule of M . Then we have the following statements.

(a) If K is a submodule of M with K ⊂ N and ψK : S(M/K)→ S(M/K)∪{∅}
is a function such that ψK(N/K) = ψ(N)/K, then N/K is a ψK-secondary

submodule of M/K.

(b) If N is a finitely generated submodule of M , S is a multiplicatively closed

subset of R with AnnR(N)∩S = ∅, and S−1ψ : S(S−1M)→ S(S−1M)∪{∅}
is a function such that (S−1ψ)(S−1N) = S−1ψ(N), then S−1N is a S−1ψ-

secondary submodule of S−1M .

Proof. (a) This is straightforward.

(b) As N is a ψ-secondary submodule of M , we have N 6= 0. This implies that

S−1N 6= 0 since N is finitely generated and AnnR(N)∩S = ∅ by using Lemma 2.12.
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Let a/s ∈ S−1R and S−1K be a submodule of S−1M such that (a/s)S−1N ⊆ S−1K
and (a/s)S−1(ψ(S−1N)) 6⊆ S−1K. It follows that (a/s)S−1(ψ(N)) 6⊆ S−1K. Now

the result follows from the fact that N is a ψ-secondary submodule of M and

Lemma 2.12. �

Proposition 2.14. Let M and Ḿ be R-modules and f : M → Ḿ be an R-

monomorphism. Let ψ : S(M) → S(M) ∪ {∅} and ψ́ : S(Ḿ) → S(Ḿ) ∪ {∅}
be functions such that ψ(f−1(Ń)) = f−1(ψ́(Ń)), for each submodule Ń of Ḿ . If

Ń is a ψ́-secondary submodule of Ḿ such that Ń ⊆ Im(f), then f−1(Ń) is a

ψ-secondary submodule of M .

Proof. As Ń 6= 0 and Ń ⊆ Im(f), we have f−1(Ń) 6= 0. Let a ∈ R and K

be a submodule of M such that af−1(Ń) ⊆ K and aψ(f−1(Ń)) 6⊆ K. Then by

using assumptions, aŃ ⊆ f(K) and aψ́(Ń) 6⊆ f(K). Thus anŃ = 0 for some

n ∈ N or Ń ⊆ f(K) since Ń is a ψ́-secondary submodule of Ḿ . This implies that

anf−1(Ń) = 0 or f−1(Ń) ⊆ K, as needed. �

A proper submodule N of an R-module M is said to be completely irreducible if

N =
⋂
i∈I Ni, where {Ni}i∈I is a family of submodules of M , implies that N = Ni

for some i ∈ I. It is easy to see that every submodule of M is an intersection of

completely irreducible submodules of M [7].

Remark 2.15. Let N and K be two submodules of an R-module M . To prove

N ⊆ K, it is enough to show that if L is a completely irreducible submodule of M

such that K ⊆ L, then N ⊆ L.

Proposition 2.16. Let M be an R-module, ψ : S(M) → S(M) ∪ {∅} be a func-

tion, and let N be a ψ1-secondary submodule of M . Then we have the following

statements.

(a) If for a ∈ R, aN 6= N , then (N :M
√
AnnR(N)) ⊆ (N :M a).

(b) If J is an ideal of R such that
√
AnnR(N) ⊆ J and JN 6= N , then (N :M√

AnnR(N)) = (N :M J).

Proof. (a) Let a ∈ R such that aN 6= N . If anN = 0 for some n ∈ N, then clearly

(N :M
√
AnnR(N)) ⊆ (N :M a). So let anN 6= 0 for each n ∈ N. Now let Ĺ be

a completely irreducible submodule of M such that N ⊆ Ĺ. Then N 6⊆ Ĺ ∩ aN
and aN ⊆ Ĺ ∩ aN . Hence as N is a ψ1-secondary submodule of M , we have

a(N :M AnnR(N)) ⊆ Ĺ ∩ aN ⊆ Ĺ. Therefore, a(N :M AnnR(N)) ⊆ N by

Remark 2.15. Hence, a(N :M
√
AnnR(N)) ⊆ a(N :M AnnR(N)) implies that

a(N :M
√
AnnR(N)) ⊆ N . Thus (N :M

√
AnnR(N)) ⊆ (N :M a).
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(b) As JN 6= N , we have aN 6= N for each a ∈ J . Thus by part (a), for each

a ∈ J , (N :M
√
AnnR(N)) ⊆ (N :M a). This implies that

(N :M J) = ∩a∈J(N :M a) ⊇ (N :M
√
AnnR(N)).

The inverse inclusion follows from the fact that
√
AnnR(N) ⊆ J . �

Theorem 2.17. Let M be an R-module, ψ : S(M) → S(M) ∪ {∅} be a function,

and let a be an element of R such that (0 :M a) ⊆ a(0 :M aAnnR((0 :M a))). If

(0 :M a) is a ψ1-secondary submodule of M , then (0 :M a) is a secondary submodule

of M .

Proof. Let N := (0 :M a) be a ψ1-secondary submodule of M . Then (0 :M a) 6= 0.

Now let t ∈ R and K be a submodule of M such that t(0 :M a) ⊆ K. If t(N :M

AnnR(N)) 6⊆ K, then tn(0 :M a) = 0 for some n ∈ N or (0 :M a) ⊆ K since (0 :M a)

is a ψ1-secondary submodule of M . So suppose that t(N :M AnnR(N)) ⊆ K. Now

we have (t+ a)(0 :M a) ⊆ K. If (t+ a)(N :M AnnR(N)) 6⊆ K, then as (0 :M a) is

a ψ1-secondary submodule of M ,

tn(0 :M a) = (tn + an)(0 :M a) ⊆ (t+ a)n(0 :M a) = 0

for some n ∈ N or (0 :M a) ⊆ K, and we are done. So assume that (t + a)(N :M

AnnR(N)) ⊆ K. Then t(N :M AnnR(N)) ⊆ K gives that a(N :M AnnR(N)) ⊆ K.

Hence by assumption, (0 :M a) ⊆ K and the result follows from Theorem 2.4. �

Theorem 2.18. Let N be a non-zero submodule of an R-module M and let ψ :

S(M)→ S(M) ∪ {∅} be a function. Then the following are equivalent:

(a) N is a ψ-secondary submodule of M ;

(b) for a submodule K of M with N 6⊆ K, we have√
(K :R N) =

√
AnnR(N) ∪

√
(K :R ψ(N));

(c) for a submodule K of M with N 6⊆ K, we have
√

(K :R N) =
√
AnnR(N)

or
√

(K :R N) =
√

(K :R ψ(N));

(d) for any ideal I of R and any submodule K of M , if IN ⊆ K and I 6⊆√
(K :R ψ(N)), then IN = 0 or N ⊆ K;

(e) for each a ∈ R with aψ(N) 6⊆ aN , we have aN = N or anN = 0 for some

n ∈ N.

Proof. (a) ⇒ (b) Let for a submodule K of M with N 6⊆ K, we have a ∈√
(K :R N) \

√
(K :R ψ(N)). Then anN ⊆ K for some n ∈ N and anψ(N) 6⊆ K.

Since N is a ψ-secondary submodule of M , we have a ∈
√
AnnR(N). As we may

assume that N ⊆ ψ(N), the other inclusion always holds.
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(b) ⇒ (c) This follows from the fact that if a subgroup is a union of two sub-

groups, it is equal to one of them.

(c)⇒ (d) Let I be an ideal of R and K be a submodule of M such that IN ⊆ K
and I 6⊆

√
(K :R ψ(N)). Suppose I 6⊆

√
AnnR(N) and N 6⊆ K. We show that

I ⊆
√

(K :R ψ(N)). Let a ∈ I and first let a 6∈
√
AnnR(N). Then, since aN ⊆ K,

we have
√

(K :R N) 6=
√
AnnR(N). Hence by our assumption

√
(K :R N) =√

(K :R ψ(N)). So a ∈
√

(K :R ψ(N). Now assume that a ∈ I ∩
√
AnnR(N). Let

u ∈ I \
√
AnnR(N). Then a + u ∈ I \

√
AnnR(N). So by the first case, we have

u ∈
√

(K :R ψ(N) and u+ a ∈
√

(K :R ψ(N). This gives that a ∈
√

(K :R ψ(N).

Thus in any case a ∈
√

(K :R ψ(N). Therefore, I ⊆
√

(K :R ψ(N), as desired.

(d) ⇒ (a) This is clear.

(a) ⇒ (e) Let a ∈ R such that aψ(N) 6⊆ aN . Then aN ⊆ aN implies that

N ⊆ aN or anN = 0 for some n ∈ N by part (a). Thus N = aN or anN = 0 for

some n ∈ N, as requested.

(e)⇒ (a) Let a ∈ R andK be a submodule ofM such that aN ⊆ K and aψ(N) 6⊆
K. If aψ(N) ⊆ aN , then aN ⊆ K implies that aψ(N) ⊆ K, a contradiction. Thus

by part (e), aN = N or anN = 0 for some n ∈ N. Therefore, N ⊆ K or anN = 0

for some n ∈ N, as needed. �

Example 2.19. Let N be a non-zero submodule of an R-module M and let ψ :

S(M) → S(M) ∪ {∅} be a function. If ψ(N) = N , then N is a ψ-secondary

submodule of M by Theorem 2.18 (e)⇒ (a).

Let M be an R-module and let ψ : S(M) → S(M) ∪ {∅} be a function. The

following example shows that if N1 and N2 are two ψ-secondary submodules of M ,

then N1 +N2 and N1 ∩N2 are not ψ-secondary submodules of M in general.

Example 2.20. (a) Let p, q be two prime numbers, N =< 1/p + Z >, and

K =< 1/q + Z >. Then clearly, N ⊕ 0 and 0 ⊕ K are weak secondary

submodules of the Z-module Zp∞ ⊕ Zq∞ but as p(N + K) ⊆ K, p(Zp∞ ⊕
Zq∞) 6⊆ K, N +K 6⊆ K, and pn(N +K) 6= 0 for each n ∈ N we have that

N +K is not a weak secondary submodule of the Z-module Zp∞ ⊕ Zq∞ .

(b) Clearly, the submodules 2̄Z6 and 3̄Z6 are ψ-secondary submodules of Z6,

where ψ : S(Z6) → S(Z6) ∪ {∅} is a function. But 2̄Z6 ∩ 3̄Z6 = 0 is not a

ψ-secondary submodule of Z6.

Proposition 2.21. Let M be an R-module and let N1 and N2 be weak secondary

submodules of M such that N1 ∩ N2 6= 0 and r(N1 ∩ N2) = rN1 ∩ rN2 for each

r ∈ R, then N1 ∩N2 is a weak secondary submodule of M .
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Proof. Let a ∈ R with aM 6⊆ a(N1 ∩ N2). If aM ⊆ aN1 and aM ⊆ aN2, then

aM ⊆ a(N1 ∩ N2), a contradiction. If aM 6⊆ aN1 and aM 6⊆ aN2, then by

Theorem 2.18 (a) ⇒ (e), aN1 = N1 or anN1 = 0 for some n ∈ N and aN2 = N2

or amN2 = 0 for some m ∈ N. If amN2 = 0 or anN1 = 0, then at(N1 ∩ N2) = 0

for some t ∈ N and we are done. So suppose that aN1 = N1 and aN2 = N2. Then

a(N1 ∩ N2) = N1 ∩ N2. Finally if aM 6⊆ aN1, aM ⊆ aN2, and aN1 = N1, then

aN1 ⊆ aM ⊆ aN2. Hence, N1 ∩ N2 ⊆ N1 = aN1 = aN1 ∩ aN2 = a(N1 ∩ N2). It

follows that a(N1 ∩N2) = N1 ∩N2, as needed. �

Let R1 and R2 be two commutative rings with identity. Let M1 and M2 be R1

and R2-module, respectively and put R = R1 ×R2. Then M = M1 ×M2 is an R-

module and each submodule of M is of the form N = N1×N2 for some submodules

N1 of M1 and N2 of M2. Suppose that ψi : S(Mi) → S(Mi) ∪ {∅} be a function

for i = 1, 2. One can see that the R = R1 × R2-module S1 × 0 and 0 × S2, where

S1 is a secondary submodule of M1 and S2 is a secondary submodule of M2, are

secondary submodules of M . The following example, shows that this is not true for

correspondence ψ1 × ψ2-secondary submodules in general.

Example 2.22. Let R1 = R2 = M1 = M2 = S1 = Z6. Then clearly, S1 is

a weak secondary submodule of M1. However, (2̄, 1̄)(Z6 × 0) ⊆ 2̄Z6 × 3̄Z6 and

(2̄, 1̄)(Z6×Z6) 6⊆ 2̄Z6× 3̄Z6. But (2̄, 1̄)n(Z6× 0) = 2̄Z6× 0 6= 0× 0 for each n ∈ N,

and Z6 × 0 6⊆ 2̄Z6 × 3̄Z6. Therefore, S1 × 0 is not a weak secondary submodule of

M1 ×M2.

Theorem 2.23. Let R = R1 × R2 be a ring and M = M1 ×M2 be an R-module,

where M1 is an R1-module and M2 is an R2-module. Suppose that ψi : S(Mi) →
S(Mi)∪{∅} be a function for i = 1, 2. Then S1×0 is a ψ1×ψ2-secondary submodule

of M , where S1 is a ψ1-secondary submodule of M1 and ψ2(0) = 0.

Proof. Let (r1, r2) ∈ R and K1×K2 be a submodule of M such that (r1, r2)(S1×
0) ⊆ K1 ×K2 and

(r1, r2)((ψ1 × ψ2)(S1 × 0)) = r1ψ
1(S1)× r2ψ2(0) = r1ψ

1(S1)× 0 6⊆ K1 ×K2.

Then r1S1 ⊆ K1 and r1ψ
1(S1) 6⊆ K1. Hence, (r1)nS1 = 0 for some n ∈ N or S1 ⊆

K1 since S1 is a ψ1-secondary submodule of M1. Therefore, (r1, r2)n(S1×0) = 0×0

or S1 × 0 ⊆ K1 ×K2, as requested. �
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