

INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA Volume 27 (2020) 77-87 DOI: 10.24330/ieja.662963

ψ -SECONDARY SUBMODULES OF A MODULE

F. Farshadifar and H. Ansari-Toroghy

Received: 11 January 2019; Revised: 25 September 2019; Accepted: 23 October 2019 Communicated by Roger A. Wiegand

ABSTRACT. Let R be a commutative ring with identity and M be an R-module. Let $\psi : S(M) \to S(M) \cup \{\emptyset\}$ be a function, where S(M) denote the set of all submodules of M. The main purpose of this paper is to introduce and investigate the notion of ψ -secondary submodules of an R-module M as a generalization of secondary submodules of M.

Mathematics Subject Classification (2010): 13C05

Keywords: Secondary submodule, ϕ -prime ideal, weak secondary submodule, ψ -secondary submodule

1. Introduction

Throughout this paper, R will denote a commutative ring with identity, \mathbb{Z} and \mathbb{N} will denote the ring of integers and the set of positive integers, respectively. We will denote the set of ideals of R by S(R) and the set of all submodules of M by S(M), where M is an R-module.

Let M be an R-module. A proper submodule P of M is said to be *prime* if for any $r \in R$ and $m \in M$ with $rm \in P$, we have $m \in P$ or $r \in (P :_R M)$ [5]. A non-zero R-module M is said to be *secondary* if for each $a \in R$ the endomorphism of M given by multiplication by a is either surjective or nilpotent [8]. A non-zero submodule N of M is said to be *second* if for each $a \in R$, the endomorphism of Ngiven by multiplication by a is either surjective or zero [9].

Anderson and Bataineh in [1] defined the notation of ϕ -prime ideals as follows: let $\phi : S(R) \to S(R) \cup \{\emptyset\}$ be a function. Then, a proper ideal P of R is ϕ -prime if for $r, s \in R, rs \in P \setminus \phi(P)$ implies that $r \in P$ or $s \in P$ [1]. A proper ideal I of R is said to be ϕ -primary if for $a, b \in R$ with $ab \in I \setminus \phi(I)$, then either $a \in I$ or $b \in \sqrt{I}$ [1].

Zamani in [10] extended this concept to prime submodule. For a function ϕ : $S(M) \to S(M) \cup \{\emptyset\}$, a proper submodule N of M is called ϕ -prime if whenever $r \in R$ and $x \in M$ with $rx \in N \setminus \phi(N)$, then $r \in (N :_R M)$ or $x \in N$. Bataineh and Kuhail in [4] generalized the concept of ϕ -prime submodules to ϕ -primary submodules. For a function $\phi : S(M) \to S(M) \cup \{\emptyset\}$, a proper submodule N of M is called ϕ -primary if whenever $r \in R$ and $x \in M$ with $rx \in N \setminus \phi(N)$, then $x \in N$ or $r^n \in (N :_R M)$ for some $n \in \mathbb{N}$.

Let $\psi : S(M) \to S(M) \cup \{\emptyset\}$ be a function. Farshadifar and Ansari-Toroghy in [6], defined the notation of ψ -second submodules of M as a dual notion of ϕ prime submodules of M. A non-zero submodule N of M is said to be a ψ -second submodule of M if $r \in R$, K a submodule of M, $rN \subseteq K$, and $r\psi(N) \not\subseteq K$, then $N \subseteq K$ or rN = 0.

The main purpose of this paper is to introduce and study the concept of ψ secondary submodules of M as a generalization of the notion of secondary submodules of M. Also, the notion of ψ -secondary submodules of M can be regarded as a generalization of the notion of ψ -second submodules of M. We say that a non-zero submodule N of M is a ψ -secondary submodule of M if $r \in R$, K a submodule of $M, rN \subseteq K$, and $r\psi(N) \not\subseteq K$, then $N \subseteq K$ or $r^n N = 0$ for some $n \in \mathbb{N}$. In fact the notion of ψ -secondary submodules is a dual notion of ϕ -primary submodules. There are some works about ϕ -primary submodules. It is natural to ask the following question: To what extent does the dual of these results hold for ψ -secondary submodules of an *R*-module? The aim of this paper is to provide some information in this case. Among the other results, we have shown that if N is a ψ -secondary submodule of M such that $Ann_R(N)\psi(N) \not\subseteq N$, then N is a secondary submodule of M (see Theorem 2.5). Also, we have proved that if H is a submodule of M such that far all ideals I and J of R, $(H:_M I) \subseteq (H:_M J)$ implies that $J \subseteq I$, then H is a secondary submodule of M if and only if H is a ψ_1 -secondary submodule of M (see Corollary 2.9). In Theorem 2.10, it is shown that for a submodule S of M, we have

- (a) If S is a ψ -secondary submodule of M such that $Ann_R(\psi(S)) \subseteq \phi(Ann_R(S))$, then $Ann_R(S)$ is a ϕ -primary ideal of R.
- (b) If $\psi(S) = (0 :_M \phi(Ann_R(S)), M$ is a comultiplication *R*-module and $Ann_R(S)$ is a ϕ -primary ideal of *R*, then *S* is a ψ -secondary submodule of *M*.

The Example 2.11 shows that the condition "M is a comultiplication R-module" in Theorem 2.10 (b) can not be omitted. Also, it is shown that if a is an element of R such that $(0:_M a) \subseteq a(0:_M aAnn_R((0:_M a)))$ and $(0:_M a)$ is a ψ_1 -secondary submodule of M, then $(0:_M a)$ is a secondary submodule of M (see Theorem 2.17). Finally, in Theorem 2.18, we characterize ψ -secondary submodules of M.

2. Main results

Definition 2.1. Let M be an R-module. We say that a non-zero submodule N of M is a weak secondary submodule of M if $r \in R$, K a submodule of M, $rN \subseteq K$, and $rM \not\subseteq K$, then $N \subseteq K$ or $r^n N = 0$ for some $n \in \mathbb{N}$.

Clearly, every secondary submodule of an R-module M is a weak secondary submodule of M. But the converse is not true in general, as we see in the following example.

Example 2.2. Due to the fact that in logic if P is false, then $P \Rightarrow Q$ is true, every R-module is a weak secondary submodule of itself but not every R-module is a secondary R-module. For example, the \mathbb{Z} -module \mathbb{Z} is weak secondary which is not secondary.

Definition 2.3. Let M be an R-module, S(M) be the set of all submodules of M, and let $\psi : S(M) \to S(M) \cup \{\emptyset\}$ be a function. We say that a non-zero submodule N of M is a ψ -secondary submodule of M if $r \in R$, K a submodule of M, $rN \subseteq K$, and $r\psi(N) \not\subseteq K$, then $N \subseteq K$ or $r^n N = 0$ for some $n \in \mathbb{N}$.

In Definition 2.3, since $r\psi(N) \not\subseteq K$ implies that $r(\psi(N) + N) \not\subseteq K$, there is no loss of generality in assuming that $N \subseteq \psi(N)$ in the rest of this paper. Let M be an R-module. We use the following functions $\psi: S(M) \to S(M) \cup \{\emptyset\}$.

$$\begin{split} \psi_i(N) &= (N :_M Ann_R^i(N)), \; \forall N \in S(M), \; \forall i \in \mathbb{N}, \\ \psi_\sigma(N) &= \sum_{i=1}^\infty \psi_i(N), \; \forall N \in S(M). \\ \psi_M(N) &= M, \; \forall N \in S(M). \end{split}$$

Then it is clear that the set of all ψ_M -secondary submodules is exactly the set of all weakly secondary submodules. Clearly, for any submodule and every positive integer n, we have the following implications:

 $secondary \Rightarrow \psi_{n-1} - secondary \Rightarrow \psi_n - secondary \Rightarrow \psi_\sigma - secondary.$

For functions $\psi, \theta : S(M) \to S(M) \cup \{\emptyset\}$, we write $\psi \leq \theta$ if $\psi(N) \subseteq \theta(N)$ for each $N \in S(M)$. So whenever $\psi \leq \theta$, any ψ -secondary submodule is θ -secondary.

Theorem 2.4. [3, 2.8]. For a submodule S of an R-module M the following statements are equivalent.

(a) S is a secondary submodule of M.

(b) $S \neq 0$ and $rS \subseteq K$, where $r \in R$ and K is a submodule of M, implies either $r^n S = 0$ for some $n \in \mathbb{N}$ or $S \subseteq K$.

Theorem 2.5. Let M be an R-module and $\psi : S(M) \to S(M) \cup \{\emptyset\}$ be a function. Let N be a ψ -secondary submodule of M such that $Ann_R(N)\psi(N) \not\subseteq N$. Then N is a secondary submodule of M.

Proof. Let $a \in R$ and K be a submodule of M such that $aN \subseteq K$. If $a\psi(N) \not\subseteq K$, then we are done because N is a ψ -secondary submodule of M. Thus suppose that $a\psi(N) \subseteq K$. If $a\psi(N) \not\subseteq N$, then $a\psi(N) \not\subseteq N \cap K$. Hence $aN \subseteq N \cap K$ implies that $N \subseteq N \cap K \subseteq K$ or $a^nN = 0$ for some $n \in \mathbb{N}$, as required. So let $a\psi(N) \subseteq N$. If $Ann_R(N)\psi(N) \not\subseteq K$, then $(a + Ann_R(N))\psi(N) \not\subseteq K$. Hence, there exists $x \in Ann_R(N)$ such that $(a + x)\psi(N) \not\subseteq K$. Thus $(a + x)N \subseteq K$ implies that $N \subseteq K$ or $a^nN = (a^n + x^n)N \subseteq (a + x)^nN = 0$ for some $n \in \mathbb{N}$, since N is a ψ -secondary submodule of M. So suppose that $Ann_R(N)\psi(N) \subseteq K$. Since by assumption, $Ann_R(N)\psi(N) \not\subseteq N$, there exists $b \in Ann_R(N)$ such that $b\psi(N) \not\subseteq N$. Hence $b\psi(N) \not\subseteq N \cap K$. This in turn implies that $(a + b)\psi(N) \not\subseteq N \cap K$. Thus $(a+b)N \subseteq N \cap K$ implies that $N \subseteq N \cap K \subseteq K$ or $a^nN = (a^n + b^n)N \subseteq (a+b)^nN = 0$ for some $n \in \mathbb{N}$, as desired.

Corollary 2.6. Let N be a weak secondary submodule of an R-module M such that $Ann_R(N)M \not\subseteq N$. Then N is a secondary submodule of M.

Proof. In Theorem 2.5 set $\psi = \psi_M$.

Corollary 2.7. Let M be an R-module and $\psi : S(M) \to S(M) \cup \{\emptyset\}$ be a function. If N is a ψ -secondary submodule of M such that $(N :_M Ann_R^2(N)) \subseteq \psi(N)$, then N is a ψ_{σ} -secondary submodule of M.

Proof. If N is a secondary submodule of M, then the result is clear. So suppose that N is not a secondary submodule of M. Then by Theorem 2.5, we have $Ann_R(N)\psi(N) \subseteq N$. Therefore, by assumption,

$$(N:_M Ann_R^2(N)) \subseteq \psi(N) \subseteq (N:_M Ann_R(N)).$$

This implies that $\psi(N) = (N :_M Ann_R^2(N)) = (N :_M Ann_R(N))$ because always $(N :_M Ann_R(N)) \subseteq (N :_M Ann_R^2(N))$. Now

$$(N:_{M} Ann_{R}^{3}(N)) = ((N:_{M} Ann_{R}^{2}(N)):_{M} Ann_{R}(N)) =$$

 $((N:_M Ann_R(N)):_M Ann_R(N)) = (N:_M Ann_R^2(N)) = \psi(N).$

By continuing, we get that $\psi(N) = (N :_M Ann_R^i(N))$ for all $i \ge 1$. Therefore, $\psi(N) = \psi_{\sigma}(N)$ as needed.

80

Theorem 2.8. Let M be an R-module and $\psi : S(M) \to S(M) \cup \{\emptyset\}$ be a function. Let H be a submodule of M such that far all ideals I and J of R, $(H :_M I) \subseteq (H :_M J)$ implies that $J \subseteq I$. If H is not a secondary submodule of M, then H is not a ψ_1 -secondary submodule of M.

Proof. As H is not a secondary submodule of M, there exists $r \in R$ and a submodule K of M such that $r^n H \neq 0$ for each $n \in \mathbb{N}$ and $H \not\subseteq K$, but $rH \subseteq K$ by Theorem 2.4. We have $H \not\subseteq K \cap H$ and $rH \subseteq K \cap H$. If $r(H :_M Ann_R(H)) \not\subseteq$ $K \cap H$, then by our definition H is not a ψ_1 -secondary submodule of M. So let $r(H :_M Ann_R(H)) \subseteq K \cap H$. Then $r(H :_M Ann_R(H)) \subseteq K \cap H \subseteq H$. Thus $(H :_M Ann_R(H)) \subseteq (H :_M r)$ and so by assumption, $r \in Ann_R(H)$. This is a contradiction.

Corollary 2.9. Let M be an R-module and $\psi : S(M) \to S(M) \cup \{\emptyset\}$ be a function. Let H be a submodule of M such that far all ideals I and J of R, $(H :_M I) \subseteq (H :_M J)$ implies that $J \subseteq I$. Then H is a secondary submodule of M if and only if H is a ψ_1 -secondary submodule of M.

An *R*-module *M* is said to be a *comultiplication module* if for every submodule *N* of *M*, there exists an ideal *I* of *R* such that $N = (0 :_M I)$ [2]. It is easy to see that *M* is a comultiplication module if and only if $N = (0 :_M Ann_R(N))$ for each submodule *N* of *M*.

Theorem 2.10. Let M be an R-module, $\phi : S(R) \to S(R) \cup \{\emptyset\}$, and $\psi : S(M) \to S(M) \cup \{\emptyset\}$ be functions.

- (a) If S is a ψ -secondary submodule of M such that $Ann_R(\psi(S)) \subseteq \phi(Ann_R(S))$, then $Ann_R(S)$ is a ϕ -primary ideal of R.
- (b) If ψ(S) = (0 :_M φ(Ann_R(S)), M is a comultiplication R-module and Ann_R(S) is a φ-primary ideal of R, then S is a ψ-secondary submodule of M.

Proof. (a) Let $ab \in Ann_R(S) \setminus \phi(Ann_R(S))$ for some $a, b \in R$. Then $ab\psi(S) \neq 0$ by assumption. If $a\psi(S) \subseteq (0 :_M b)$, then $ab\psi(S) = 0$, a contradiction. Thus $a\psi(S) \not\subseteq (0 :_M b)$. Therefore, $S \subseteq (0 :_M b)$ or $a^n S = 0$ for some $n \in \mathbb{N}$ because S is a ψ -secondary submodule of M.

(b) Let $a \in R$ and K be a submodule of M such that $aS \subseteq K$ and $a\psi(S) \not\subseteq K$. As $aS \subseteq K$, we have $S \subseteq (K:_M a)$. It follows that

$$S \subseteq ((0:_M Ann_R(K)):_M a) = (0:_M aAnn_R(K)).$$

This implies that $aAnn_R(K) \subseteq Ann_R((0 :_M aAnn_R(K))) \subseteq Ann_R(S)$. Hence, $aAnn_R(K) \subseteq Ann_R(S)$. If $aAnn_R(K) \subseteq \phi(Ann_R(S))$, then $\psi(S) = (0 :_M \phi(Ann_R(S))) \subseteq ((0 :_M Ann_R(K) :_M a)$. As M is a comultiplication R-module, we have $a\psi(S) \subseteq K$, a contradiction. Thus $aAnn_R(K) \not\subseteq \phi(Ann_R(S))$ and so as $Ann_R(S)$ is a ϕ -primary ideal of R, we conclude that $a^n S = 0$ for some $n \in \mathbb{N}$ or

$$S = (0:_M Ann_R(S)) \subseteq (0:_M Ann_R(K)) = K,$$

as needed.

The following example shows that the condition "M is a comultiplication R-module" in Theorem 2.10 (b) can not be omitted.

Example 2.11. Let $R = \mathbb{Z}$, $M = \mathbb{Z} \oplus \mathbb{Z}$, and $S = 2\mathbb{Z} \oplus 2\mathbb{Z}$. Clearly, M is not a comultiplication R-module. Suppose that $\phi : S(R) \to S(R) \cup \{\emptyset\}$ and $\psi : S(M) \to S(M) \cup \{\emptyset\}$ be functions such that $\phi(I) = I$ for each ideal I of R and $\psi(S) = M$. Then clearly, $Ann_R(S) = 0$ is a ϕ -primary ideal of R and $\psi(S) = M = (0 :_M \phi(Ann_R(S)))$. But as $3S \subseteq 6\mathbb{Z} \oplus 6\mathbb{Z}$, $S \not\subseteq 6\mathbb{Z} \oplus 6\mathbb{Z}$, and $3^n S \neq 0$ for each $n \in \mathbb{N}$, we have that S is not a ψ -secondary submodule of M.

The following lemma is known, but we write it here for the sake of reference.

Lemma 2.12. Let M be an R-module, S a multiplicatively closed subset of R, and N be a finitely generated submodule of M. If $S^{-1}N \subseteq S^{-1}K$ for a submodule K of M, then there exists an $s \in S$ such that $sN \subseteq K$.

Proof. This is straightforward.

Proposition 2.13. Let M be an R-module, $\psi : S(M) \to S(M) \cup \{\emptyset\}$ be a function, and N be a ψ -secondary submodule of M. Then we have the following statements.

- (a) If K is a submodule of M with K ⊂ N and ψ_K : S(M/K) → S(M/K)∪{Ø} is a function such that ψ_K(N/K) = ψ(N)/K, then N/K is a ψ_K-secondary submodule of M/K.
- (b) If N is a finitely generated submodule of M, S is a multiplicatively closed subset of R with Ann_R(N)∩S = Ø, and S⁻¹ψ : S(S⁻¹M) → S(S⁻¹M)∪{Ø} is a function such that (S⁻¹ψ)(S⁻¹N) = S⁻¹ψ(N), then S⁻¹N is a S⁻¹ψ-secondary submodule of S⁻¹M.

Proof. (a) This is straightforward.

(b) As N is a ψ -secondary submodule of M, we have $N \neq 0$. This implies that $S^{-1}N \neq 0$ since N is finitely generated and $Ann_R(N) \cap S = \emptyset$ by using Lemma 2.12.

Let $a/s \in S^{-1}R$ and $S^{-1}K$ be a submodule of $S^{-1}M$ such that $(a/s)S^{-1}N \subseteq S^{-1}K$ and $(a/s)S^{-1}(\psi(S^{-1}N)) \not\subseteq S^{-1}K$. It follows that $(a/s)S^{-1}(\psi(N)) \not\subseteq S^{-1}K$. Now the result follows from the fact that N is a ψ -secondary submodule of M and Lemma 2.12.

Proposition 2.14. Let M and \hat{M} be R-modules and $f : M \to \hat{M}$ be an Rmonomorphism. Let $\psi : S(M) \to S(M) \cup \{\emptyset\}$ and $\hat{\psi} : S(\hat{M}) \to S(\hat{M}) \cup \{\emptyset\}$ be functions such that $\psi(f^{-1}(\hat{N})) = f^{-1}(\hat{\psi}(\hat{N}))$, for each submodule \hat{N} of \hat{M} . If \hat{N} is a $\hat{\psi}$ -secondary submodule of \hat{M} such that $\hat{N} \subseteq Im(f)$, then $f^{-1}(\hat{N})$ is a ψ -secondary submodule of M.

Proof. As $\hat{N} \neq 0$ and $\hat{N} \subseteq Im(f)$, we have $f^{-1}(\hat{N}) \neq 0$. Let $a \in R$ and K be a submodule of M such that $af^{-1}(\hat{N}) \subseteq K$ and $a\psi(f^{-1}(\hat{N})) \not\subseteq K$. Then by using assumptions, $a\hat{N} \subseteq f(K)$ and $a\psi(\hat{N}) \not\subseteq f(K)$. Thus $a^n \hat{N} = 0$ for some $n \in \mathbb{N}$ or $\hat{N} \subseteq f(K)$ since \hat{N} is a ψ -secondary submodule of \hat{M} . This implies that $a^n f^{-1}(\hat{N}) = 0$ or $f^{-1}(\hat{N}) \subseteq K$, as needed.

A proper submodule N of an R-module M is said to be *completely irreducible* if $N = \bigcap_{i \in I} N_i$, where $\{N_i\}_{i \in I}$ is a family of submodules of M, implies that $N = N_i$ for some $i \in I$. It is easy to see that every submodule of M is an intersection of completely irreducible submodules of M [7].

Remark 2.15. Let N and K be two submodules of an R-module M. To prove $N \subseteq K$, it is enough to show that if L is a completely irreducible submodule of M such that $K \subseteq L$, then $N \subseteq L$.

Proposition 2.16. Let M be an R-module, $\psi : S(M) \to S(M) \cup \{\emptyset\}$ be a function, and let N be a ψ_1 -secondary submodule of M. Then we have the following statements.

- (a) If for $a \in R$, $aN \neq N$, then $(N :_M \sqrt{Ann_R(N)}) \subseteq (N :_M a)$.
- (b) If J is an ideal of R such that $\sqrt{Ann_R(N)} \subseteq J$ and $JN \neq N$, then $(N:_M \sqrt{Ann_R(N)}) = (N:_M J)$.

Proof. (a) Let $a \in R$ such that $aN \neq N$. If $a^n N = 0$ for some $n \in \mathbb{N}$, then clearly $(N :_M \sqrt{Ann_R(N)}) \subseteq (N :_M a)$. So let $a^n N \neq 0$ for each $n \in \mathbb{N}$. Now let \hat{L} be a completely irreducible submodule of M such that $N \subseteq \hat{L}$. Then $N \not\subseteq \hat{L} \cap aN$ and $aN \subseteq \hat{L} \cap aN$. Hence as N is a ψ_1 -secondary submodule of M, we have $a(N :_M Ann_R(N)) \subseteq \hat{L} \cap aN \subseteq \hat{L}$. Therefore, $a(N :_M Ann_R(N)) \subseteq N$ by Remark 2.15. Hence, $a(N :_M \sqrt{Ann_R(N)}) \subseteq a(N :_M Ann_R(N))$ implies that $a(N :_M \sqrt{Ann_R(N)}) \subseteq N$. Thus $(N :_M \sqrt{Ann_R(N)}) \subseteq (N :_M a)$.

(b) As $JN \neq N$, we have $aN \neq N$ for each $a \in J$. Thus by part (a), for each $a \in J$, $(N :_M \sqrt{Ann_R(N)}) \subseteq (N :_M a)$. This implies that

$$(N:_M J) = \bigcap_{a \in J} (N:_M a) \supseteq (N:_M \sqrt{Ann_R(N)}).$$

The inverse inclusion follows from the fact that $\sqrt{Ann_R(N)} \subseteq J$.

Theorem 2.17. Let M be an R-module, $\psi : S(M) \to S(M) \cup \{\emptyset\}$ be a function, and let a be an element of R such that $(0 :_M a) \subseteq a(0 :_M aAnn_R((0 :_M a)))$. If $(0 :_M a)$ is a ψ_1 -secondary submodule of M, then $(0 :_M a)$ is a secondary submodule of M.

Proof. Let $N := (0 :_M a)$ be a ψ_1 -secondary submodule of M. Then $(0 :_M a) \neq 0$. Now let $t \in R$ and K be a submodule of M such that $t(0 :_M a) \subseteq K$. If $t(N :_M Ann_R(N)) \not\subseteq K$, then $t^n(0 :_M a) = 0$ for some $n \in \mathbb{N}$ or $(0 :_M a) \subseteq K$ since $(0 :_M a)$ is a ψ_1 -secondary submodule of M. So suppose that $t(N :_M Ann_R(N)) \subseteq K$. Now we have $(t + a)(0 :_M a) \subseteq K$. If $(t + a)(N :_M Ann_R(N)) \not\subseteq K$, then as $(0 :_M a)$ is a ψ_1 -secondary submodule of M,

$$t^{n}(0:_{M} a) = (t^{n} + a^{n})(0:_{M} a) \subseteq (t+a)^{n}(0:_{M} a) = 0$$

for some $n \in \mathbb{N}$ or $(0:_M a) \subseteq K$, and we are done. So assume that $(t+a)(N:_M Ann_R(N)) \subseteq K$. Then $t(N:_M Ann_R(N)) \subseteq K$ gives that $a(N:_M Ann_R(N)) \subseteq K$. Hence by assumption, $(0:_M a) \subseteq K$ and the result follows from Theorem 2.4. \Box

Theorem 2.18. Let N be a non-zero submodule of an R-module M and let ψ : $S(M) \rightarrow S(M) \cup \{\emptyset\}$ be a function. Then the following are equivalent:

- (a) N is a ψ -secondary submodule of M;
- (b) for a submodule K of M with $N \not\subseteq K$, we have

$$\overline{/(K:_R N)} = \sqrt{Ann_R(N)} \cup \sqrt{(K:_R \psi(N))};$$

- (c) for a submodule K of M with $N \not\subseteq K$, we have $\sqrt{(K:_R N)} = \sqrt{Ann_R(N)}$ or $\sqrt{(K:_R N)} = \sqrt{(K:_R \psi(N))};$
- (d) for any ideal I of R and any submodule K of M, if $IN \subseteq K$ and $I \not\subseteq \sqrt{(K:_R \psi(N))}$, then IN = 0 or $N \subseteq K$;
- (e) for each a ∈ R with aψ(N) ⊈ aN, we have aN = N or aⁿN = 0 for some n ∈ N.

Proof. (a) \Rightarrow (b) Let for a submodule K of M with $N \not\subseteq K$, we have $a \in \sqrt{(K:_R N)} \setminus \sqrt{(K:_R \psi(N))}$. Then $a^n N \subseteq K$ for some $n \in \mathbb{N}$ and $a^n \psi(N) \not\subseteq K$. Since N is a ψ -secondary submodule of M, we have $a \in \sqrt{Ann_R(N)}$. As we may assume that $N \subseteq \psi(N)$, the other inclusion always holds. (b) \Rightarrow (c) This follows from the fact that if a subgroup is a union of two subgroups, it is equal to one of them.

(c) \Rightarrow (d) Let I be an ideal of R and K be a submodule of M such that $IN \subseteq K$ and $I \not\subseteq \sqrt{(K:_R \psi(N))}$. Suppose $I \not\subseteq \sqrt{Ann_R(N)}$ and $N \not\subseteq K$. We show that $I \subseteq \sqrt{(K:_R \psi(N))}$. Let $a \in I$ and first let $a \notin \sqrt{Ann_R(N)}$. Then, since $aN \subseteq K$, we have $\sqrt{(K:_R N)} \neq \sqrt{Ann_R(N)}$. Hence by our assumption $\sqrt{(K:_R N)} = \sqrt{(K:_R \psi(N))}$. So $a \in \sqrt{(K:_R \psi(N))}$. Now assume that $a \in I \cap \sqrt{Ann_R(N)}$. Let $u \in I \setminus \sqrt{Ann_R(N)}$. Then $a + u \in I \setminus \sqrt{Ann_R(N)}$. So by the first case, we have $u \in \sqrt{(K:_R \psi(N))}$ and $u + a \in \sqrt{(K:_R \psi(N))}$. This gives that $a \in \sqrt{(K:_R \psi(N))}$. Thus in any case $a \in \sqrt{(K:_R \psi(N))}$. Therefore, $I \subseteq \sqrt{(K:_R \psi(N))}$, as desired.

(d) \Rightarrow (a) This is clear.

(a) \Rightarrow (e) Let $a \in R$ such that $a\psi(N) \not\subseteq aN$. Then $aN \subseteq aN$ implies that $N \subseteq aN$ or $a^nN = 0$ for some $n \in \mathbb{N}$ by part (a). Thus N = aN or $a^nN = 0$ for some $n \in \mathbb{N}$, as requested.

(e) \Rightarrow (a) Let $a \in R$ and K be a submodule of M such that $aN \subseteq K$ and $a\psi(N) \not\subseteq K$. If $a\psi(N) \subseteq aN$, then $aN \subseteq K$ implies that $a\psi(N) \subseteq K$, a contradiction. Thus by part (e), aN = N or $a^nN = 0$ for some $n \in \mathbb{N}$. Therefore, $N \subseteq K$ or $a^nN = 0$ for some $n \in \mathbb{N}$, as needed.

Example 2.19. Let N be a non-zero submodule of an R-module M and let ψ : $S(M) \to S(M) \cup \{\emptyset\}$ be a function. If $\psi(N) = N$, then N is a ψ -secondary submodule of M by Theorem 2.18 $(e) \Rightarrow (a)$.

Let M be an R-module and let $\psi : S(M) \to S(M) \cup \{\emptyset\}$ be a function. The following example shows that if N_1 and N_2 are two ψ -secondary submodules of M, then $N_1 + N_2$ and $N_1 \cap N_2$ are not ψ -secondary submodules of M in general.

- **Example 2.20.** (a) Let p, q be two prime numbers, $N = \langle 1/p + \mathbb{Z} \rangle$, and $K = \langle 1/q + \mathbb{Z} \rangle$. Then clearly, $N \oplus 0$ and $0 \oplus K$ are weak secondary submodules of the \mathbb{Z} -module $\mathbb{Z}_{p^{\infty}} \oplus \mathbb{Z}_{q^{\infty}}$ but as $p(N+K) \subseteq K$, $p(\mathbb{Z}_{p^{\infty}} \oplus \mathbb{Z}_{q^{\infty}}) \not\subseteq K$, $N + K \not\subseteq K$, and $p^n(N+K) \neq 0$ for each $n \in \mathbb{N}$ we have that N + K is not a weak secondary submodule of the \mathbb{Z} -module $\mathbb{Z}_{p^{\infty}} \oplus \mathbb{Z}_{q^{\infty}}$.
 - (b) Clearly, the submodules $\overline{2}\mathbb{Z}_6$ and $\overline{3}\mathbb{Z}_6$ are ψ -secondary submodules of \mathbb{Z}_6 , where $\psi : S(\mathbb{Z}_6) \to S(\mathbb{Z}_6) \cup \{\emptyset\}$ is a function. But $\overline{2}\mathbb{Z}_6 \cap \overline{3}\mathbb{Z}_6 = 0$ is not a ψ -secondary submodule of \mathbb{Z}_6 .

Proposition 2.21. Let M be an R-module and let N_1 and N_2 be weak secondary submodules of M such that $N_1 \cap N_2 \neq 0$ and $r(N_1 \cap N_2) = rN_1 \cap rN_2$ for each $r \in R$, then $N_1 \cap N_2$ is a weak secondary submodule of M.

Proof. Let $a \in R$ with $aM \not\subseteq a(N_1 \cap N_2)$. If $aM \subseteq aN_1$ and $aM \subseteq aN_2$, then $aM \subseteq a(N_1 \cap N_2)$, a contradiction. If $aM \not\subseteq aN_1$ and $aM \not\subseteq aN_2$, then by Theorem 2.18 $(a) \Rightarrow (e)$, $aN_1 = N_1$ or $a^nN_1 = 0$ for some $n \in \mathbb{N}$ and $aN_2 = N_2$ or $a^mN_2 = 0$ for some $m \in \mathbb{N}$. If $a^mN_2 = 0$ or $a^nN_1 = 0$, then $a^t(N_1 \cap N_2) = 0$ for some $t \in \mathbb{N}$ and we are done. So suppose that $aN_1 = N_1$ and $aN_2 = N_2$. Then $a(N_1 \cap N_2) = N_1 \cap N_2$. Finally if $aM \not\subseteq aN_1$, $aM \subseteq aN_2$, and $aN_1 = N_1$, then $aN_1 \subseteq aM \subseteq aN_2$. Hence, $N_1 \cap N_2 \subseteq N_1 = aN_1 = aN_1 \cap aN_2 = a(N_1 \cap N_2)$. It follows that $a(N_1 \cap N_2) = N_1 \cap N_2$, as needed.

Let R_1 and R_2 be two commutative rings with identity. Let M_1 and M_2 be R_1 and R_2 -module, respectively and put $R = R_1 \times R_2$. Then $M = M_1 \times M_2$ is an Rmodule and each submodule of M is of the form $N = N_1 \times N_2$ for some submodules N_1 of M_1 and N_2 of M_2 . Suppose that $\psi^i : S(M_i) \to S(M_i) \cup \{\emptyset\}$ be a function for i = 1, 2. One can see that the $R = R_1 \times R_2$ -module $S_1 \times 0$ and $0 \times S_2$, where S_1 is a secondary submodule of M_1 and S_2 is a secondary submodule of M_2 , are secondary submodules of M. The following example, shows that this is not true for correspondence $\psi^1 \times \psi^2$ -secondary submodules in general.

Example 2.22. Let $R_1 = R_2 = M_1 = M_2 = S_1 = \mathbb{Z}_6$. Then clearly, S_1 is a weak secondary submodule of M_1 . However, $(\bar{2}, \bar{1})(\mathbb{Z}_6 \times 0) \subseteq \bar{2}\mathbb{Z}_6 \times \bar{3}\mathbb{Z}_6$ and $(\bar{2}, \bar{1})(\mathbb{Z}_6 \times \mathbb{Z}_6) \not\subseteq \bar{2}\mathbb{Z}_6 \times \bar{3}\mathbb{Z}_6$. But $(\bar{2}, \bar{1})^n(\mathbb{Z}_6 \times 0) = \bar{2}\mathbb{Z}_6 \times 0 \neq 0 \times 0$ for each $n \in \mathbb{N}$, and $\mathbb{Z}_6 \times 0 \not\subseteq \bar{2}\mathbb{Z}_6 \times \bar{3}\mathbb{Z}_6$. Therefore, $S_1 \times 0$ is not a weak secondary submodule of $M_1 \times M_2$.

Theorem 2.23. Let $R = R_1 \times R_2$ be a ring and $M = M_1 \times M_2$ be an R-module, where M_1 is an R_1 -module and M_2 is an R_2 -module. Suppose that $\psi^i : S(M_i) \rightarrow S(M_i) \cup \{\emptyset\}$ be a function for i = 1, 2. Then $S_1 \times 0$ is a $\psi^1 \times \psi^2$ -secondary submodule of M, where S_1 is a ψ^1 -secondary submodule of M_1 and $\psi^2(0) = 0$.

Proof. Let $(r_1, r_2) \in R$ and $K_1 \times K_2$ be a submodule of M such that $(r_1, r_2)(S_1 \times 0) \subseteq K_1 \times K_2$ and

$$(r_1, r_2)((\psi^1 \times \psi^2)(S_1 \times 0)) = r_1 \psi^1(S_1) \times r_2 \psi^2(0) = r_1 \psi^1(S_1) \times 0 \not\subseteq K_1 \times K_2$$

Then $r_1S_1 \subseteq K_1$ and $r_1\psi^1(S_1) \not\subseteq K_1$. Hence, $(r_1)^nS_1 = 0$ for some $n \in \mathbb{N}$ or $S_1 \subseteq K_1$ since S_1 is a ψ^1 -secondary submodule of M_1 . Therefore, $(r_1, r_2)^n(S_1 \times 0) = 0 \times 0$ or $S_1 \times 0 \subseteq K_1 \times K_2$, as requested.

Acknowledgement. The authors would like to thank the referee for careful reading our manuscript and his/her valuable comments which improved this work.

References

- D. D. Anderson and M. Bataineh, *Generalizations of prime ideals*, Comm. Algebra, 36(2) (2008), 686-696.
- [2] H. Ansari-Toroghy and F. Farshadifar, The dual notion of multiplication modules, Taiwanese J. Math., 11(4) (2007), 1189-1201.
- [3] H. Ansari-Toroghy, F. Farshadifar, S. S. Pourmortazavi and F. Khaliphe, On secondary modules, Int. J. Algebra, 6(16) (2012), 769-774.
- M. Bataineh and S. Kuhail, Generalizations of primary ideals and submodules, Int. J. Contemp. Math. Sci., 6(17) (2011), 811-824.
- [5] J. Dauns, Prime modules, J. Reine Angew. Math., 298 (1978), 156-181.
- [6] F. Farshadifar and H. Ansari-Toroghy, ψ-second submodules of a module, submitted.
- [7] L. Fuchs, W. Heinzer and B. Olberding, Commutative ideal theory without finiteness conditions: Irreducibility in the quotient filed, in: Abelian Groups, Rings, Modules, and Homological Algebra, Lect. Notes Pure Appl. Math., Chapman & Hall/CRC, Boca Raton, FL, 249 (2006), 121-145.
- [8] I. G. Macdonald, Secondary representation of modules over a commutative ring, Symposia Mathematica (Convegno di Algebra Commutativa, INDAM, Rome, 1971), Academic Press, London, XI (1973), 23-43.
- [9] S. Yassemi, The dual notion of prime submodules, Arch. Math. (Brno), 37(4) (2001), 273-278.
- [10] N. Zamani, ϕ -prime submodules, Glasg. Math. J., 52(2) (2010), 253-259.

F. Farshadifar (Corresponding Author)
Department of Mathematics
Farhangian University
Tehran, Iran
e-mail: f.farshadifar@cfu.ac.ir

H. Ansari-Toroghy

Department of Pure Mathematics Faculty of Mathematical Sciences University of Guilan P. O. Box 41335-19141, Rasht, Iran e-mail: ansari@guilan.ac.ir