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ABSTRACT. A ring R is called EM-Hermite if for each a,b € R, there exist
a1,b1,d € R such that a = a1d,b = bid and the ideal (ai,b1) is regular.
We give several characterizations of EM-Hermite rings analogue to those for
K-Hermite rings, for example, R is an EM-Hermite ring if and only if any
matrix in Mp,m(R) can be written as a product of a lower triangular matrix
and a regular m X m matrix. We relate EM-Hermite rings to Armendariz
rings, rings with a.c. condition, rings with property A, EM-rings, generalized
morphic rings, and PP-rings. We show that for an EM-Hermite ring, the poly-
nomial ring and localizations are also EM-Hermite rings, and show that any
regular row can be extended to regular matrix. We relate EM-Hermite rings
to weakly semi-Steinitz rings, and characterize the case at which every finitely

generated R-module with finite free resolution of length 1 is free.
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1. Introduction

All rings are assumed to be commutative with unity 1. For any ring R, let
Z(R) be the set of all zero-divisors, and reg(R) = R\ Z(R) be the set of all
regular elements, and let U(R) be the set of all units in R. Recall that if R is a
commutative ring with unity, then the total quotient ring of R is the localization
T(R) = (reg(R)) "' R. Let M,, ,»(R) be the ring of all nxm matrices defined on R. It
is well known that A € U(M,, ,(R)) if and only if det(A) € U(R), A € reg(M,, »(R))
if and only if det(A) € reg(R), and A is left zero-divisor if and only if it is right
zero-divisor, see [3]. The row { ar as -+ an } is called unimodular if the ideal
(a1,a2, -+ ,a,) = R, and it is called regular if the ideal (a1,az, -+ ,a,) € Z(R), in
this case the ideal (ay,as,- - ,a,) is called a regular ideal. Similar definitions are

for columns.
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A ring R is called a K-Hermite ring if for each a,b € R, there exist a;,b;,d € R
such that ¢ = a1d,b = b1d and the ideal (a1,b1) = R, see [6] and [8]. It is clear
that if R is a K-Hermite ring, then it is a Bézout ring (every finitely generated
ideal is principal). A ring R is called Hermite if any unimodular row over R can be
completed to an invertible matrix by adding a suitable number of new rows. Any
K-Hermite is Hermite, but the converse is not true, see [10].

We generalize the concept of K-Hermite rings in the following sense: we call
a ring R EM-Hermite, if for each a,b € R, there exist a1,b1,d € R such that
a = a1d,b = byd and the ideal (a1,b1) is regular. We find that this ring has some
nice properties; it is preserved by the direct products and localizations, and unlike
the case of K-Hermite rings, if R is EM-Hermite, then so is R[z]. We give several
characterizations of EM-Hermite rings analogue to those for K-Hermite rings, for
example, R is an EM-Hermite ring if and only if any matrix in M, ,,(R) can be
written as a product of a lower triangular matrix and a regular m X m matrix.
We also show that any regular row can be extended to a regular matrix by adding
a suitable number of rows. We prove that EM-Hermite rings are non-comparable
with Bézout rings, nor Hermite rings, but R is K-Hermite if and only if it is Bézout
EM-Hermite. We also relate EM-Hermite rings to Armendariz rings, rings with a.c.
condition, rings with property A, PP-rings, weakly semi-Steinitz rings, EM-rings,
and generalized morphic rings. Finally, we characterize when an R-module with

finite free resolution of length 1 is free.

2. EM-Hermite rings

In this section, we define EM-Hermite rings, and give several characterizations

for it, and study some cases at which an EM-Hermite ring is K-Hermite.

Definition 2.1. A ring R is called EM-Hermite if for each a,b € R, there exist
a1,b1,d € R such that a = a1d,b = b;d and the ideal (aq,b1) is regular.

We now give some examples of EM-Hermite rings.

Example 2.2. (1) Since any principal ideal ring is K-Hermite, see [10], it is also
EM-Hermite.

(2) Tt is clear that any integral domain is an EM-Hermite ring, and so, Z[x] is
an EM-Hermite ring that is not K-Hermite, being non-Bézout.

(3) Consider the idealization Z4(+)Z4, and consider the two elements (2,0) and
(0,1). Assume (2,0) = (a,b)(c,d) and (0,1) = (a,b)(x,y).

If x # 0, then we must have a = 2 = z, and so we have 1 = 2y + 2b, and hence

2 =0, a contradiction.
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So, we must have x = 0, and hence, 1 = ay, i.e. a is a unit in Z4. Thus we have
c = 2. Now,
(2,d)(0,2) = (0,0),

(0,9)(0,2) = (0,0).
Hence Ann((2,d),(0,y)) # {(0,0)}, and Z4(+)Z4 is not an EM-Hermite ring. Since
any finite ring is Hermite, then Z,(+)Z4 is Hermite that is not EM-Hermite.
(4) Let R = Z[x1,x2,23,Y1,Y2,Y3) /(x1y1 + X2y2 + z3ys —1). Then R is an

integral domain, and hence EM-Hermite that is not a Hermite ring, see [12].

We now give equivalent characterizations of EM-Hermite rings, parallel to those
for K-Hermite, see [10].

Theorem 2.3. The following statements are equivalent for a ring R.
(1) R is an EM-Hermite ring.
(2) For any finite set {a1,az,...,a,} C R, there exists {by,ba,...,by,d} C R
such that a; = b;d, for each i, and the ideal (b1, ba,...,b,) is reqular.
(3) For any finite set {a1,as,...,a,} C R, there exist d € R and a regular
matriz Q € M, ,(R) such that [a1 as ... a,] =[d 00 ... 0]Q.
(4) For any matriz B € My, »,(R), there exists a regular matriz Q € M, ,(R)

such that B = LQ, with L a lower triangular matriz.

Proof. (1) = (2) Assume R is an EM-Hermite ring, and let a,b,c € R. Then
there exist a1,b1,d € R such that a = a1d,b = bid and ry = ajay + f1by €
(a1,b1) Nreg(R). Also there exist as,ba, k € R such that d = ask,c = bk and
Ty = Qag + Paby € (az,b2) Nreg(R).

But a = a1d = a1az2k and b = b1d = byazk. Also we have r1ry = (a12)(araz2) +
(aaf1)(azb1) + (a1 Baar + B152b1)(b2) € (ba, aras, azby) Nreg(R). So, the condition
can be applied to any finite subset of R.

(2) = (3) Let {a1,a2,...,a,} C R. Then there exits {b,_1,bn,d1} C R such
that a; = bydy, for i € {n,n — 1}, and r1 = ap_1by—1 + @by € (bp_1,b,) Nreg(R).
So we have

[a1 as ... CLn] = [a1 ag ... Ap_—2 d1 O]Ql,

bn— bn
—CQp  Op_1

and note that det(Q1) =1 € reg(R).
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There exists {bn_3,bn_2,d2} C R such that a,,_5 = bn_gdg,dl = b,,_3dy and
re = p_2bp—2 + @p_3bn_3 € (bp—2,b,_3)RNreg(R). So we have

[a1 as ... _CLn,Q d1 0} = [a1 az ... Ap—-3 dg 0 O]QQ,_
Iys 0
where = ;
Q2 bn—2 bn—3 0
0 —Qp_3 Qp_2 0
0 0 1

and note that det(Q2) = r2 € reg(R).

In this case we have [a1 a2 ... a,] = [a1 az ... ap—3 do 0 0]Q20Q1, and
det(Q2Q1) = rar1 € reg(R).

Continue to get [a1 az ... a,] =[d 00 ... 0]Q, and det(Q) = r € reg(R).

(3) = (4) Let B € My, n(R). We will proceed by induction on m. By (3) the
result is true when m = 1. So assume it is true for all k < m, and let B = [b;;]mxn.
It follows by (3) that [b11 b12 ... bin] = [d 00 ... 0]Q1, where @, is a regular
matrix. So, [b11 b12 ... bipladj(Q1) = det(@1)[d 0 0 ... 0]. Thus, B adj(Q1) =

d 0
det(Q1) lo D] . By induction hypothesis we have D = L1Q2, where L; is a lower

triangular matrix and Qs is regular matrix in M, 1) (n—1)(R). Substituting we get

0 d 01 0
B adj(Q1) = det(Q1) = det(Qn) ;
C L1Q2 C Ll 0 QQ
and so,
d 0|1 O
B = Q1.
C Li]| [0 Q2
0 1 0 . .
Now, let L = ,and Q = Q1. Then L is lower triangular, det(Q) =
Ly 0 Q2

det(Q2) det(Q1) € reg(R), and B = LQ.
(4) = (1) Let a, b € R, Then there exist d € R, and a regular matrix @ € M3 2(R)
such that [a b] = [d 0 ]Q.

So, a = dqi1,b = dqi2, and det(Q) = q11922 — q12921 € (q11,q12) NTeg(R). Thus,
R is an EM-Hermite ring. ([

If we extend our work to non-commutative rings, we will have:

Corollary 2.4. If R is an EM-Hermite ring, then M, ,,(R) is also EM-Hermite.



92 EMAD ABUOSBA AND MANAL GHANEM

Proof. Assume R is an EM-Hermite ring, and let A, B € M,, ,(R). Then there
exist lower triangular matrix L € M, 2,(R) and a regular matrix Q € Ma,, 2, (R)

such that

4 8 -s0-[r o[ &

So it follows by (3) in Theorem 2.3 that M, ,,(R) is EM-Hermite. O

We can follow the proof of [10] to show that the following statements are equiv-

alent.

Proposition 2.5. The following statements are equivalent for a ring R.

(1) For any matriz B € My, ,(R), there exists a regular matriz Q € M, ,,(R)
such that BQ = L a lower triangular matriz.

(2) For any vector [a1 az ... an] € My n(R), there exists a regular matriz
Q€ M, ,(R) and d € R such that [a1 az ... a,]Q=[d00 ... 0].

(3) For any a,b € R, there exists a regular matriz Q € Ms2(R) and d € R such
that [a1 as]@Q =1d 0 ].

(4) For any a,b € R, there exist x,y € R such that ax + by =0 and (z,y) is a

reqular ideal in R.

Assume that R is an EM-Hermite ring, and let a,b,d,—z,y € R such that
a=dy,b=d(—z) and f(—z)+ay =r € reg(R). Then azx + by = 0. So, R satisfies

condition (4) in Proposition 2.5, and hence it satisfies all the conditions. Moreover
o v]=la o]l "
-8«
o x
[ a b } = [ dr 0 } ;
By
Y

with det l 5 ;x ] = det [ g :; ] =r €reg(R).

we have:

To give a more general result, let B € M,, ,(R). There exists a regular ma-
trix Q € M, ,(R) such that B = L@ with L a lower triangular matrix. Then
B adj(Q) = det(Q)L. Moreover, det(Q)L is a lower triangular matrix and
det(adj(Q)) = (det(Q))"~ € reg(R).

Although EM-Hermite rings are in general not K-Hermite, the following Theorem

shows that for some rings they are equivalent.

Theorem 2.6. If every regular element in R is a unit, then R is a K-Hermite ring

if and only if it is an EM-Hermite ring.
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The condition in the above Theorem is not necessary, since Z has regular elements

that are not units, but it is K-Hermite.

Corollary 2.7. If R is a finite ring, then R is K-Hermite ring if and only if it is
an EM-Hermite ring.

Corollary 2.8. For any ring R, T(R) is K-Hermite ring if and only if it is an
EM-Hermite ring.

We now continue the investigation started in [7], [8] and [11] for the cases at

which a Bézout ring is K-Hermite.

Theorem 2.9. A ring R is K-Hermite if and only if it is a Bézout EM-Hermite

ring.

Proof. If R is K-Hermite, then clearly it is a Bézout EM-Hermite ring. So assume
that R is a Bézout EM-Hermite ring, and let a,b € R. Then there exist a1,b1,d € R
such that a = a;d,b = b1d and (d;) = (a1,b1) is a regular ideal in R, and so
dy € reg(R). Thus we have:

dy = a1z + bry,
ap = O(dl,
by = Bdy.

Hence we get
di = di(az + By),
and since dy € reg(R), we would have
1 =azx+ By.

Therefore, a = a(di1d),b = f(d1d ) and (o, ) = R, i.e. R is K-Hermite. O

3. Relations with other rings

In this section, we relate EM-Hermite rings to Armendariz rings, rings with
a.c. condition, rings with property A, EM-rings, generalized morphic rings, and
PP-rings.

A ring R is said to be Armendariz if the product of two polynomials in R[x] is

zero if and only if the product of their coefficients is zero.

Theorem 3.1. If R is an EM-Hermite ring, then it is Armendariz.
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n )
Proof. Let f(z) = 5. fiz*. Then it follows by Theorem 2.3 that f; = k;h for each
i=0

i and Ann(k,...,k,) = {0}. So it follows by McCoy’s Theorem that 3 k;z° is
i=0
not a zero-divisor in R[z], and f(z) =h Y k2t If g(x) = Y iz’ = k Y l;2" with
i=0 i=0 i=0
>" 1;2% is not a zero-divisor in R[z]. Then f(x)g(z) = 0 if and only if hk = 0. Thus

=0

we have f;g; = (hk)(k;l;) = 0 for each ¢ and j. Hence R is Armendariz. O

A ring R is said to have a.c. condition, if for any a,b € R there exists ¢ € R
such that Ann(a,b) = Ann(c).

Theorem 3.2. If R is an EM-Hermite ring, then it has a.c. condition.

Proof. Let a,b € R. Then there exist d, x,y such that a = dx,b = dy and the ideal
(z,y) is regular. Thus we have Ann(z,y) = {0} and so, Ann(a,b) = Ann(d). O

A ring R is said to have property A, if any finitely generated ideal contained in
Z(R) has nonzero annihilator. It was shown in [9] that any Noetherian ring has

property A, see Theorem 82.
Theorem 3.3. If R is an EM-Hermite ring, then it has property A.

Proof. Let a,b € R such that Ann(a,b) = {0}. Then there exist d, z,y such that
a = dx,b = dy and the ideal (z,y) is regular. Let r = az + Sy € reg(R). But
d € reg(R) since Ann(d) = Ann(a,b) = {0}. Thus we have

ac + bB = dza + dyf = dr € (a,b) Nreg(R).
Therefore, (a,b) ¢ Z(R). O

Let R be aring, and let f(z) € Z(R[z]) such that f(z) = ¢y fi(x), where ¢y € R
and fi(x) € reg(R[z]). Then ¢y is called an annihilating content for f(z). It is clear
that deg(f) < deg(f1). If every zero-divisor polynomial in R[z] has an annihilating
content, R is called an EM-ring. A ring R is called generalized morphic ring if
Ann(a) is a principal ideal for each a € R, see [1]. Using Theorem 2.3, one can see
easily that any EM-Hermite ring is an EM-ring. But the following Theorem shows
that the two properties are equivalent if the ring was Noetherian. But first we need

the following important lemma.

Lemma 3.4 ([1, Lemma 3.25]). Assume that R is a Noetherian ring, and bR is a
prime principal ideal with b € Z(R). If a € bR\ {0}, then a = b"s for some n € N
and s € R\ bR.
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Theorem 3.5. Assume that R is a Noetherian ring. Then the following are equiv-
alent:

(1) R is an EM-ring.

(2) R is a generalized morphic ring.

(3) R is an EM-Hermite ring.

Proof. For the equivalence of (1) and (2), see [1].

(2) = (3) Recall first that since R is a Noetherian ring, then Ann(ai,az) # {0}
if and only if the ideal (a1,a2) C Z(R).

Let ay,as € R. If Ann(ay,az) = {0}, then a; = a;.1,a2 = as.1, and Ann(ay, az) =
{0}. If 0 # m € Ann(aq,az), then (a1,a2) C Ann(m) C My = ¢c;R C Z(R), where
M; is a maximal ideal in Z(R), and so it is prime, see [9, Theorem 6]. Hence,
using Lemma 3.4, a; = oziclfi with a; ¢ 1R, and k; > 1 for each i = 1,2. Let
k11 = Min{k;}, b; = aic’fﬁk“. Then a; = c]f“bi and (a1,a2) C (b1,b2). Then
repeat the work to write b; = c;mdi and (a1, az2) C (by,b2) C (dy,ds). Continue to
get an ascending chain in the Noetherian ring R, and thus it must terminate. Hence
there exits f; € R and a; = c’f11c§22c§33 oK £ = cf, with Ann(f1, f2) = {0}.

(3) = (1) Clear. O

It was shown in [5] that if X = SRT —R™, then C(X) is a K-Hermite, and hence
EM-Hermite ring, and since X is connected, C(X) is not generalized morphic ring.
Also it was shown in [5] that if X = [—1,1] x [0,00), then C(SX — X) is a Bézout
ring that is not K-Hermite, then it follows by Theorem 2.9 that C(8X — X) is not
an EM-Hermite ring. Also it follows by [1] that C(8X — X) is an EM-ring.

We note that the Bézout property and the EM-Hermite property are
non-comparable, but adding them together would give the K-Hermite property,
unlike the case of Hermite property and the EM-Hermite property, they are non-
comparable, and adding them together need not be K-Hermite as in the case of
Z[z).

Recall that a ring R is called a PP-ring if every principal ideal in R is a projective
R-module. While any von Neumann regular ring is K-Hermite, Z[x] is a PP-ring
that is not K-Hermite.

Theorem 3.6. If R is a PP-ring, then it is an EM-Hermite ring.

Proof. Let aj,as € R. Then a; = u;e;, where u; € reg(R) and e; is an idempotent
for each i, see [4, Lemma 2]. Let e = e;+e3—eqea. Then e is also an idempotent and
eie =e; for i =1,2. Thus a; = eu;(e;+1—e), and since 1 = (e; +1—e€)+(e2+1—
e)—(e1+1—e)(ea+1—e), we have uyug = (ui(e1 + 1 —e)) ug+(ua(ea +1 —e€)) u; —
ui(er +1—e)uz(ea+1—e) € (ur(ex +1—e),uz(e2 +1—e€)) Nreg(R). O
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The converse of this theorem needs not be true, since Zg is an EM-Hermite ring

which is not a PP-ring, being non-reduced.

4. Some properties of EM-Hermite rings

In this section, we study some properties of EM-Hermite rings, such as polyno-
mial rings and localizations of EM-Hermite rings, and extending regular rows to
regular matrices.

The ring Z is K-Hermite, but Z[z] is not, and it is conjectured that if R is
Hermite, then R[z] is Hermite. We now show that if R is an EM-Hermite ring,
then R[x] is EM-Hermite.

Theorem 4.1. If R is an EM-Hermite ring, then R[] is an EM-Hermite ring.

Proof. Let f(z) = Z fiz, g(x) = E giz® € R[z]. Then it follows by Theorem
2.3 that f; = k;h, gl = l h, for eachz and the 1dea1 (ko, - kn,lo, .. lm) € Z(R)

Thus, f()—thx,g()—th:E Ithx EAnn(kale)then
=0 =0
since Rls Armendarlz hi € Ann(ko,... Enyloy .o ylm) = {0} for each i, and so,

Ann(z ki, Z l;z%) = {0}, and since R[] has property A for any ring R, see [9],
i=0 i=0

we have (3> ki, go L) Rlz] ¢ Z(R[z)). 0

i=0
Corollary 4.2. Let R be an EM-Hermite ring. Then R[x1,x2,...,2,] is an EM-

Hermite ring.

Theorem 4.3. Let R be an EM-Hermite ring, and let S be a multiplicatively closed
subset of R. Then S™'R is an EM-Hermite ring.

Proof. Let a,b € S~'R. Then there exist ¢, s € S such that ta,sb € R. Since R
is an EM-Hermite ring, there exist d,a;,b; € R such that ta = da; and sb = db;
and (a1,by) is a regular ideal in R. There exist x,y € R such that r = za; + yby €
reg(R). Thus we have a = d(%) and b = d(2).

Now, 241 ¥ b1 = = ¢ (21 0y reg(STIR). O

t’? s

Corollary 4.4. Let R be an EM-Hermite ring. Then T(R) is K-Hermite.

The converse of this Corollary is not in general true as illustrated in the following

example.

Example 4.5. It was shown in [1] that if R = Zg[x,y] /(zy), then T(R) is a von
Neumann regular ring, and hence it is K-Hermite. But R is not an EM-Hermite
ring, since x,3 € R, and if x = ah, 3 = bh with Ann(a,b) = {0}, then 0 = a(2yh) =
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b(2yh), which implies that 0 = 2yh, and so, (h) C Ann(2y) = (3,2) C (h), and so,

(h) = (3,z), a contradiction.

Theorem 4.6. If R is an EM-Hermite ring, then any regular row can be completed

to a regular square matriz by adding a suitable number of rows.

Proof. We will proceed by induction on n, and make some modifications on the
proof of [10, page 28].

If n = 2, and {al as ] is regular, then a1t + ass = r € reg(R), and

det [ als 612 1 = r € reg(R). So, assume that the result is true for all m < n,
and consider the regular row [ a; az - an } Since R is an EM-Hermite
ring, a; = de;, 1 < i < n, and (c1,¢2,-++ ,¢p1) € Z(R), and so, the regular row
{ €1 Cy ot Cp—q ] can be extended to an (n — 1) X (n — 1) regular matrix C.
Again, since R is an EM-Hermite ring, a,, = ko, d = kS, with at+8s = r € reg(R).
Note that if wk = 0, then w € Ann(ay,as, - ,a,) = {0}, and hence we have
k € reg(R). Thus ant + ds = kat + kfBs = kr € reg(R). Now consider the matrix,

d 0 an
B = 0 I, O
—t 0 s

Then det(B) = kr € reg(R), and the n x n matrix
(G]
0 1

is regular and has first row { a; as - Gn |- ]

A=B

Corollary 4.7. If R is an EM-Hermite ring, then any regular column can be com-

pleted to a reqular square matrix by adding a suitable number of columns.

Proof. Just take transpose, and the result follows immediately by the previous
Theorem. (]

Corollary 4.8. If R is an EM-Hermite ring, then any unimodular row can be

completed to a reqular square matriz by adding a suitable number of rows.

Note that in the ring Z4(+)Z4 any regular row is extendable to a regular matrix,

being a finite Hermite ring, although it is not an EM-Hermite ring.
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5. Applications to finitely presented modules

In this section, we relate EM-Hermite rings to weakly semi-Steinitz rings, and
characterize the case at which every finitely generated R-module with finite free
resolution of length 1 is free.

An R-module M satisfies property P if any two maximal independent subsets of
M have the same cardinality. It was shown in [2] that every free R-module satisfies
property P if and only if whenever aq,...,a, € R such that Anng(aq,...,a,) =
{0}, then the row [ ar as -+ ap ] can be completed to a square regular matrix.

A ring R is called a weakly semi-Steinitz ring if every finite independent subset
of a finitely generated free R-module can be extended to a basis. The following two

propositions characterize weakly semi-Steinitz rings, see [2] and [12].

Proposition 5.1. The following statements are equivalent:

(1) R is a weakly semi-Steinitz ring.

(2) R is Hermite and every finitely generated proper ideal of R has non-zero
annihilator.

(3) Ewery finitely generated proper ideal of R has non-zero annihilator and any
finitely generated stably free R-module is a direct sum of cyclic modules.

(4) For each n > 1, every linearly independent element of R™ can be extended
to a basis of R™.

(5) reg(R) = U(R) and every free R-module satisfies property P.

Proposition 5.2. Let R be a Noetherian ring. Then R is a weakly semi-Steinitz
ring if and only if reg(R) = U(R). If in addition, R is reduced, then R is a weakly
semi-Steinitz ring if and only if R is a finite direct product of fields.

We now give extra two characterizations of weakly semi-Steinitz rings.

Theorem 5.3. R is a weakly semi-Steinitz ring if and only if whenever aq, ..., a, €
R such that Anng(ay,...,a,) = {0}, then the row [ ay ay -+ a, | can be

completed to a square invertible matriz.

Proof. Assume R is a weakly semi-Steinitz ring and assume that ai,...,a, €
R such that Anng(aq,...,a,) = {0}. Then T; = (a1,...,a,) € R"™ is linearly

T
independent, and so R"™ has a basis {Z1,...,Tn}. Let A = | : |. There exist

Tn

n
cij € R such that )" ¢;;7; = & for i = 1,2,...,n, where {€,...,€,} is the
j=1
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standard basis for R". Let C' = [¢;;]. Then CA = I,,. Thus, A is a regular matrix,
with the ideal (det(A)) is non-proper. Thus A is invertible.

Conversely, it is clear that R is Hermite. Assume that aj,...,a, € R such
that Anng(ai,...,a,) ={0}. Let T=| a; as --- a, |- Then there exists an
T
invertible n x n matrix A= | : |. But det(4) € En: a;R N U(R). Thus, the ideal
. =1
(ai,...,ay) is non-proper, and R is a weakly semi-Steinitz ring. (]

Recall that a finitely generated R-module P is said to have finite free resolution
of length 1 if we have the short exact sequence

[e3%

0— R™ — R"— P —0.
If the sequence splits, then P is a finitely generated stably free module.

Theorem 5.4. R is a weakly semi-Steinitz ring if and only if every finitely gener-

ated R-module with finite free resolution of length 1 is free.

Proof. Assume that R is a weakly semi-Steinitz ring, and consider the short exact
sequence

[e3%

00— R" — R"— P —0.

If {@;};”, is a basis for R™, then {a(a;)}]", is a linear independent subset of
the weakly semi-Steinitz ring R" and so it can be extended to a basis {a(a;)};~, U
{b;}7=™. Now, define the R-module homomorphism 7' : R* — R™ such that
T(a(a@;)) = @i, and T(b;) = 0. Then T o a = Idgrm, and so, the exact sequence
splits. Thus P is a finitely generated stably free R-module, and hence it is free,
since R is Hermite.

Conversely, it is clear that R is Hermite. Assume ai,...,a, € R such that
Anng(aq,...,an) = {0}. Then T = (a1,...,a,) € R" is linearly independent, and
so a: R — R" defined by «a(r) = rT is an injective R-homomorphism. Thus the
sequence

0— R R"— R"/Ima — 0

is short exact, and so, R" /Im « is a free R-module. Thus there exists an R-
homomorphism 8 : R® — R such that 8o« = Idg, and so, 5o «(l) = 1, and

hence

L= MEME@M) =B - B | 1| O,

an
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where M(B)and M(«) are the corresponding matrices for 8 and « respectively.
Therefore, the ideal (aq,...,a,) is non-proper.

Thus R is a weakly semi-Steinitz ring. (I

It follows by Theorem 4.6 that if R is an EM-Hermite ring, then every free

R-module satisfies property P. Thus we have the following result:

Theorem 5.5. If R is an EM-Hermite ring, then T(R) is a weakly semi-Steinitz

ring.

It is clear that Z4(+)Z4 is a weakly semi-Steinitz ring that is not EM-Hermite,
while Z is a K-Hermite ring that has Z-modules of finite resolution that are not

free.
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