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Abstract. Here we introduce and study the concept of relative superfluous

injectivity, which is a generalization of relative injectivity. We show some of

the properties that hold true for relative injectivity still hold for relative su-

perfluous injectivity. We also introduce and characterize the new concept of

superfluous extending modules. Finally, we make use of relative superfluous

injectivity to study direct sums of superfluous extending modules.
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1. Introduction

Throughout all modules are unital right R-modules over an arbitrary associative

ring R with unity. The generalization of relative injectivity for module was studied

by many authors, and this has been by adding extra condition on the homomor-

phism in the defining diagram (cf. E. Mermut, C. Santa-Clara and P. F. Smith [6],

H. Q. Dinh [3] and M. F. Yousif and Y. Zhou [8]). Here we introduce the concept of

N being M -superfluous-injective, which is a generalization of N being M -injective

for modules (Definition 2.3). We define in Definition 2.10, Definition 2.11 what is

meant by Con-S-complement and Con-S-closed submodule of a module. In The-

orem 2.16 we give an equivalent condition of the diagram in Definition 2.3 by a

property on a decomposition form, in fact we prove that M2 is M1-superfluous-

injective if and only if M = C⊕M2 holds for every Con-S-complement C of M2 in

M , whenever M = M1⊕M2; M1 has the condition (S∗). This is analogue with the

known fact about relative injectivity [2]. In Section 3, we introduce a generalization

of extending modules. This has been done by relaxing the defining condition of such

modules. In fact we concentrate on Con-S-closed submodules, and examine for be-

ing direct summands. We show in the case of S-extending modules in contrary of

extending modules, that the class of summands does not coincide with the class of

Con-S-closed submodules. In Remark 3.3, we mention when such classes coincide.
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In [4], it was shown that a direct sum of extending modules M1 and M2 is extend-

ing if and only if every closed submodule with zero intersection with M1 or with

M2 is a direct summand (Lemma 7.9). Here in Section 4, we prove that a direct

sum of S-extending modules M1 and M2, with 0 6= Rad(C) E C, for every proper

Con-S-closed submodule C of M , with C ∩Mi 6= 0, i = 1, 2 is S-extending if and

only if every Con-S-closed submodule with zero intersection with M1 or with M2

is a direct summand and also we prove that a direct sum of S-extending modules

M1 and M2, with SIC-property, is S-extending if and only if every Con-S-closed

submodule with zero intersection with M1 or with M2 is a direct summand. Finally

in Theorem 4.9 and Theorem 4.10, we make use relatively superfluous injectivity

to prove that a finite direct sum of S-extending modules is S-extending. We use

L ≤M , N �M and K EM to denote that L is a submodule, N is a superfluous

submodule, and K is a large submodule of M , respectively, for more details see [1].

2. Relative superfluous injective modules

In this section we study and analyze the properties of the concept of superfluous

injectivity.

Definition 2.1. Let N be a submodule of a module M . N is called a Con-S-

submodule in M relative to L (denoted by Con-SL-submodule in M) if there exists

a non-zero superfluous submodule K of L, with K ≤ N . If L = M , then we just

say that N is a Con-S-submodule of M .

Definition 2.2. A monomorphism f : N → M is called a Con-S-monomorphism

if f(N) is a Con-S-submodule of M .

Definition 2.3. Let M be an R-module. A module N is said to be M -superfluous-

injective if for every Con-S-monomorphism f : L→M , any homomorphism

ϕ : L→ N , there exists a homomorphism ψ : M → N such that ψf = ϕ.

Lemma 2.4. The following are equivalent for modules N and M :

(1) N is M -superfluous-injective,

(2) For every Con-S-submodule L of M , any homomorphism ϕ : L → N can

be extended to a homomorphism ψ : M → N .

Proof. (2)⇒ (1): Let f : L→M be a Con-S-monomorphism, and ϕ : L→ N be

a homomorphism. It follows that f(L) is a Con-S-submodule of M . Hence, by (2),

there is a homomorphism ψ : M → N such that ψ extends ϕf−1 |f(L). Therefore

ψf = ϕ; and hence we have (1).

(1)⇒ (2): It is clear. �



104 M. E. TABARAK, M. A. KAMAL, M. H. ELBAROUDY AND S. E. D. S. HUSSIEN

Remark 2.5. (a) Let M be an R-module, with no non-trivial superfluous submod-

ules. Then every R-module N is M -superfluous-injective module. For examples:

(1) Every Z-module N is a Z-superfluous-injective module.

(2) If M is a semisimple R-module, then every R-module N is M -superfluous-

injective module.

(3) IfM is a semiprimitiveR-module, then everyR-moduleN isM -superfluous-

injective module.

(b) Let M be an R-module, with 0 6= Rad(M) E M . Then M -superfluous-

injectivity and M -injectivity are equivalent.

The examples, which are given above, show that there are many M -superfluous-

injective, which are not M -injective modules.

Proposition 2.6. Let N and M be R-modules. Then the following are equivalent:

(1) N is M -superfluous-injective.

(2) N is M1-superfluous-injective, for each submodule M1 of M .

(3) N is M/L-superfluous-injective, for each superfluous submodule L of M .

Proof. (1) ⇒ (2): Let M1 be a submodule of M , and ϕ : L → N a homomor-

phism, for some Con-S-submodule L of M1. It is easy to show that L is Con-S-

submodule ofM , and hence, by (1), ϕ : L→ N can be extended to a homomorphism

ψ : M → N . Therefore ψ restricted to M1 extends ϕ.

(2) ⇒ (3): Let L be a superfluous submodule of M . We show that N is M/L-

superfluous-injective. To this end, let ϕ : M1/L → N be a homomorphism, for

some Con-S-submodule M1/L of M/L. Hence M1/L contains a nonzero superflu-

ous submodule K/L in M/L. It is clear that K is superfluous in M ; and hence M1

is a Con-S-submodule of M . Let π : M → M/L be the natural epimorphism. As

N is M -superfluous-injective, we have that ϕπ |M1 can be extended to a homomor-

phism ψ : M → N ; i.e. ψ(m1) = ϕ(m1 + L), for all m1 ∈ M1. Since ψ(l) = 0, for

all l ∈ L, we have that ψ : M → N defines a homomorphism α : M/L → N by

α(m + L) = ψ(m), for all m + L ∈ M/L. It is easy to show that α : M/L → N

extends ϕ : M1/L→ N .

(3)⇒ (1): It is clear by taking L = 0. �

Proposition 2.7. Let N and M be R-modules. Then the following are equivalent:

(1) N is M -superfluous-injective.

(2) L is M -superfluous-injective, for each direct summand L of N .

(3) N
′

is M -superfluous-injective, for each isomorphic copy N
′

of N .

(4) N is M
′
-superfluous-injective, for each isomorphic copy M

′
of M .
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Proof. (1) ⇒ (2): Let N = L ⊕ L′
, and ϕ : M1 → L be a homomorphism, for

some Con-S-submodule M1 of M . As N is M -superfluous-injective module, there

is an extension homomorphism ψ : M → N of ϕ. It follows that πLψ extends ϕ,

where πL : N → L is the projection of N onto L.

(2)⇒ (1): It is clear by taking L = N .

(1)⇔ (3): The proof is clear.

(1) ⇒ (4): Let L be a Con-S-submodule of M
′
, then there exists a superfluous

submodule K of M
′

in L and let ϕ : L→ N be a homomorphism and f : M
′ →M

ba an isomorphism. Thus f(K) � M and f(K) ≤ f(L). Then f(L) is a Con-S-

submodule of M . Since N is M -superfluous-injective, then there exists g : M → N

such that g(x) = ϕf−1(x), for all x ∈ f(L). Therefore gf(l) = ϕf−1(f(l)) = ϕ(l)

for all l ∈ L. Thus gf extends ϕ.

By the similar way we can prove that (4)⇒ (1). �

Proposition 2.8. Let M be an R-module and {Ni : i ∈ I} be a family of R-

modules. Then ΠiεINi is M -superfluous-injective if and only if Ni is M -superfluous-

injective, for each iεI.

Proof. It is clear. �

Corollary 2.9. Let M be an R-module and {Ni : i = 1, . . . , n} be a family of R-

modules. Then ⊕ni=1Ni is M -superfluous-injective if Ni is M -superfluous-injective,

for each i = 1, . . . , n.

Definition 2.10. A submodule L of a module M is called a Con-S-complement of

a submodule K in M , if it is a Con-S-submodule of M , and maximal with respect

to L ∩K = 0.

Definition 2.11. A submodule L of a module M is called a Con-S-closed sub-

module of M , if it is a Con-S-submodule of M , and has no proper large extension

submodules of M .

Remark 2.12. Let M be a module, we have the following:

(1) Every maximal large extension of a Con-S-submodule of a module M is

Con-S-closed in M .

(2) Let N be a Con-S-submodule, and K be a submodule of a module M ;

with N ∩K = 0. Then N is a Con-S-complement of K if and only if N is

Con-S-closed, and N ⊕K is large in M .

Definition 2.13. A module M is said to have the condition (S∗), if for every

superfluous submodule K of M and K ≤ N EM , we have that K � N .
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Example 2.14. Any semiprimitive module and any semisimple module has (S∗).

Lemma 2.15. Let M = M1 ⊕M2 be a module where M1 has (S∗), N be a Con-

S-submodule of M1, and f : N →M2 be a homomorphism. Let N ≤ X ≤M1, and

ϕ : X → M2 be a maximal extension of f . Then the submodule X∗ = {x + ϕ(x) :

x ∈ X} of M is a Con-S-complement of M2 in M .

Proof. It is clear that X∗ ∩M2 = 0. Let πi : M → Mi, i = 1, 2, be the natural

projections. Since N is a Con-S-submodule of M1, then there exists 0 6= K ≤ N ,

with K �M1. Hence K∗ = {k + ϕ(k) : k ∈ K} ≤ π1(K∗) + π2(K∗) = K + ϕ(K).

Since K � M1, K ≤ N ≤ X E M1 and M1 has (S∗), then K � X and since

homomorphic images of superfluous submodules are superfluous, then ϕ(K)�M2

and so, ϕ(K)�M . As finite sums of superfluous submodules are superfluous, thus

K + ϕ(K) � M , hence K∗ � M and K∗ ≤ X∗; i.e. X∗ is a Con-S-submodule

of M . Now let X∗ ≤ D, with D ∩M2 = 0. Clearly π1|D is monomorphism and

X = π1(X∗) ≤ π1(D), define ψ : π1(D) → M2 by ψ(π1(d)) = π2(d) for all d ∈ D.

Then ψ extends ϕ : X → N . Thus X = π1(D) by maximality of ϕ, and hence

X∗ = D. Which shows that X∗ is a Con-S-complement of M2. �

Theorem 2.16. Let M = M1 ⊕M2 where M1 has (S∗). Then the following are

equivalent:

(1) M2 is M1-superfluous-injective.

(2) If N is a Con-S-submodule of M , with N ∩M2 = 0, then M = C ⊕M2,

for some submodule C containing N .

(3) M = C ⊕M2, for each Con-S-complement C of M2 in M .

Proof. (1) ⇒ (2): Let N be a Con-S-submodule of M with N ∩M2 = 0. As N

is a Con-S-submodule of M ; i.e. N contains a non-zero submodule K superfluous

in M , it follows that π1(K) is superfluous in M1, where π1 : M → M1 is the pro-

jection onto M1. Hence by (1), there exists a homomorphism ϕ : M1 → M2 such

that ϕπ1 |N = π2 |N , where π2 : M → M2 is the projection onto M2. Hence, for

all n ∈ N , we have n = π1(n) + π2(n) = π1(n) + ϕπ1(n) ∈ M∗
1 = {m1 + ϕ(m1) :

m1 ∈M1}, where M = M∗
1 ⊕M2.

(2) ⇒ (3): Let C be a Con-S-complement of M2 in M . Then C ∩M2 = 0, so by

(2) there exists L ≥ C such that M = L⊕M2. Hence C = L (due to L∩M2 = 0).

(3) ⇒ (1): Let N be a Con-S-submodule of M1, and f : N → M2 be a homo-

morphism. Let ϕ : N ≤ X → M2 be a maximal extension of f . By Lemma 2.15,

we have that X∗ = {x + ϕ(x) : x ∈ X} is a Con-S-complement of M2. Hence,
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by (3), M = X∗ ⊕ M2. It is easy to show that X = M1, and therefore M2 is

M1-superfluous-injective. �

3. Superfluous extending modules

In this section we study simultaneously the dual concepts of superfluousness

and largeness on modules, namely the condition that each Con-S-submodule of

a module M is large in a direct summand of M . Such modules will be called

S-extending modules.

Definition 3.1. A module M is called a superfluous extending (for short S-

extending) module, if every Con-S-submodule of M is large in a direct summand

of M .

Theorem 3.2. The following are equivalent for a module M :

(1) M is S-extending.

(2) Every S-closed submodule of M is a direct summand.

(3) For every Con-S-submodule A of M , there exists a decomposition

M = M1 ⊕M2 such that M1 contains A, and A⊕M2 is large in M .

(4) If A is a closed submodule of M and B a direct summand of M ; with A∩B
Con-S-closed submodule in B, then A ∩B is a direct summand of M .

Proof. (1)⇒ (2): Follows from definition of Con-S-closed submodule.

(2)⇒ (3): Let A be a Con-S-submodule of M , it follows from Remark 2.12 that a

maximal large extension C of A in M is Con-S-closed. Hence, by (2), C is a direct

summand of M ; and therefore M = C ⊕M2, with A⊕M2 is large in M , for some

submodule M2 of M .

(3)⇒ (4): Let A be a closed submodule of M , and B be a direct summand of M ;

with A∩B Con-S-closed submodule of B, then A∩B is a Con-S-closed submodule

of M . To avoid triviality, we may consider A,B 6= M . Now, by (3), there is a

decomposition M = M1 ⊕M2 such that M1 contains A ∩ B, and A ∩ B ⊕M2 is

large in M . As A ∩B is a closed submodule in M , we have that A ∩B = M1.

(4)⇒ (1): Let A be a Con-S-submodule ofM . Hence, from Remark 2.12, a maximal

large extension of A in M is Con-S-closed in M . Then apply (4) with B = M , we

have (1). �

Remark 3.3. It is clear that if a module M has large radical, then Con-S-

submodules and submodules of M are the same, i.e. M being extending and M

being S-extending are equivalent.
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In the following we give simple examples of modules M which are S-extending

modules, while they are not extending:

(1) The Z-module M = C(p)⊕Z, for a prime number p is S-extending (due to

M with no Con-S-submodules), while M is not extending (due to C(p) is

not injective as it is shown in [5, Corollary 2]).

(2) A more general than the example in (1), is that the Z-module M = C(pn)⊕
Z, for a prime number p, n ∈ Z+ is S-extending (due to any Con-S-closed

submodule A of M must contain C(pn), and hence either A = C(pn), or

A = M), while M is not extending, for the same reason as in the example

in (1).

In the following we show that the S-extending condition on a module is inherited

by a direct summand.

Lemma 3.4. Let M be a module, and N be a direct summand of M . If M is

S-extending, then so is N .

Proof. Let A be a Con-S-closed submodule of N . It is clear that A is a Con-S-

closed submodule of M . As M is an S-extending module, it follows that A is a

direct summand of M and hence of N . �

In the following we show that isomorphic copy of an S-extending module is

S-extending.

Lemma 3.5. Let M be an S-extending module, and let f : M → N be an isomor-

phism. Then N is an S-extending module.

Proof. Let C be a Con-S-closed submodule of N . It is easy to show that f−1(C)

is a Con-S-closed submodule of M , and hence M = f−1(C) ⊕M1. Thus N =

C ⊕ f(M1). �

Proposition 3.6. Let M be an S-extending module, with 0 6= Rad(M) not large

in M . Then M has a decomposition M = M1 ⊕M2, where Rad(M2) = 0 and M1

is extending and M2-superfluous-injective.

Proof. Let M1 be a maximal large extension of Rad(M) in M . As M is an S-

extending module, we have that M = M1⊕M2, where Rad(M2) = 0, and hence, by

Remark 2.5, M1 is M2-superfluous-injective. It is clear that Rad(M1) = Rad(M) E

M1. By Lemma 3.4, M1 is S-extending. By Remark 3.3, M1 is extending. �

Lemma 3.7. ([7, Theorem 4]) A ring R is right noetherian if and only if every

extending right R-module is a direct sum of uniform submodules.
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Theorem 3.8. Let M be a module over a right noetherian ring R, and let

0 6= Rad(M) not large in M . If M is S-extending, then M = M1 ⊕M2, where

Rad(M2) = 0; and M1 is extending and a direct sum of uniform submodules.

Proof. The proof follows from Proposition 3.6 and Lemma 3.7. �

4. Relative superfluous injective and S-extending modules

In this section we study direct sums of S-extending modules which are, in pairs,

relatively superfluous injective, and give the necessary and sufficient conditions for

such direct sums to be S-extending.

Lemma 4.1. Let M = A + B, A,B and S be submodules of a module M , and

A ∩B �M . If S �M , then A ∩ (B + S)�M .

Proof. Let A ∩ (B + S) + C = M for some submodule C in M . Then by the

modular law A = A ∩M = A ∩ (B + S) + (C ∩A), hence

M = A+B = A ∩ (B + S) + (C ∩A) +B.

Since A ∩ (B + S) + B ⊆ B + S, then M ⊆ B + S + (C ∩ A) ⊆ M , hence

M = B+S+ (C ∩A). Since S �M , then M = B+ (C ∩A). By the modular law,

we have that A = (B∩A)+(C∩A), and A∩(B+S) = (B∩A)+((C∩A)∩(B+S)).

It follows that

M = A ∩ (B + S) + C = (B ∩A) + ((C ∩A) ∩ (B + S)) + C = (B ∩A) + C.

Since A ∩B �M , then C = M . Therefore A ∩ (B + S)�M . �

Lemma 4.2. Let M = A ⊕ B be a module where A has (S∗). Then the following

are equivalent:

(1) B is A-superfluous-injective, and A is S-extending.

(2) If C is a Con-S-closed submodule of M , with C ∩ B = 0, then M =

C ⊕A8 ⊕B, for some A8 ≤ A.

Proof. (1)⇒ (2): Let C be a Con-S-closed submodule of M , with C ∩B = 0. Let

0 6= K ≤ C, with K � M . By Lemma 4.1 we have that (K ⊕ B) ∩ A� A. Since

0 6= (K⊕B)∩A ≤ (C⊕B)∩A, it follows that (C⊕B)∩A is a Con-S-submodule

of A. Since A is S-extending, then A = A1⊕A8 such that (C⊕B)∩A E A1. Hence

[(C ⊕B)∩A]⊕B E A1⊕B. As C ⊕B = (C ⊕B)∩ (A⊕B) = [(C ⊕B)∩A)]⊕B,

we have that (C ⊕ B) E A1 ⊕ B, and that C is closed in A1 ⊕ B. Thus, by

Remark 2.12, it follows that C is a Con-S-complement of B in A1 ⊕ B. Since B
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is A-superfluous-injective, it follows, by Proposition 2.6, that B is A1-superfluous-

injective. Then, by Theorem 2.16, we have that A1 ⊕ B = C ⊕ B. Therefore

M = A⊕B = A1 ⊕A8 ⊕B = A8 ⊕ C ⊕B.

(2)⇒ (1): First we show that A is S-extending. To this end let C be a Con-S-closed

submodule of A. As A is a direct summand of M , it follows that C is a Con-S-closed

submodule of M , with C ∩B = 0. By (2), C is a direct summand of M , and hence

is a direct summand of A. Now we show that B is A-superfluous-injective. Let

D be a Con-S-complement of B in M , hence, by Remark 2.12, D is Con-S-closed

submodule of M ; with D∩B = 0. By (2), we have that M = A8⊕D⊕B, for some

submodule A8 of A. As D is a Con-S-complement of B in M , and (D⊕A8)∩B = 0,

we have that D = D ⊕ A8; i.e. M = D ⊕ B. Therefore, by Theorem 2.16, B is

A-superfluous-injective. �

Theorem 4.3. Let M = M1 ⊕ M2 be a module where M1 has (S∗). Then the

following are equivalent:

(1) Mi is Mj-superfluous-injective (i 6= j = 1, 2), and Mi is S-extending

(i = 1, 2).

(2) If C is a Con-S-closed submodule of M , with C ∩Mi = 0 (i = 1 or 2), then

M = C ⊕M 8
j ⊕Mi, for some M 8

j ≤Mj, j 6= i.

Proof. The proof follows from Lemma 4.2. �

Corollary 4.4. Let M = M1⊕M2 be a module, with Mi (i = 1, 2) uniform. If Mi

is Mj-superfluous-injective (i 6= j = 1, 2), then M is S-extending.

Proof. The proof follows from Theorem 4.3, and from the fact that every Con-S-

closed submodule C of M , different from M , is uniform; and hence C ∩Mi = 0 for

some i = 1, 2. �

Remark 4.5. As an application of Corollary 4.4, we have the following examples:

(1) Direct sums of two S-extending modules need not, in general, be S-extending

modules; for the Z-module C(p) ⊕ C(p3), for a prime number p, is not S-

extending (due to C(p) not a C(p3)-superfluous-injective).

(2) The Z-module C(pn)⊕Z, where n ∈ Z+ and p is a prime number, is an S-

extending Z-module (due to C(pn) and Z relatively superfluous-injective),

which is not extending as we have mentioned and given the reason before.

Definition 4.6. Let M = M1⊕M2 be a module. M is said to satisfy the superflu-

ous closed intersection property (for short M satisfy the SIC property), if for any
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0 6= K �M , with K ∩Mi = 0, for some i = 1, 2, then C ∩Mi = 0 for each proper

closed submodule C of M containing K.

It is clear that if M and K, the same as in Definition 4.6, with K ∩Mi = 0, then

C ∩Mi = 0 for each maximal large extension C of K in M .

Proposition 4.7. Let M = M1⊕M2 be a module, which satisfies the SIC property.

Then the following are equivalent:

(1) M is an S-extending module.

(2) Every Con-S-closed submodule C of M , with C ∩Mi = 0, for some i =

1 or 2, is a direct summand of M .

Proof. (1)⇒ (2): It is clear.

(2) ⇒ (1): It is clear that each Con-S-closed submodule C in Mi is a Con-S-

closed submodule of M , with C ∩Mj = 0, i 6= j. Hence Mi (i = 1, 2) is an S-

extending module. Now let C be a Con-S-closed submodule of M , with C∩Mi 6= 0,

i = 1, 2. As C is a Con-S-submodule of M , there exists a submodule K in C with

0 6= K �M . Since M satisfies the SIC Property, and since C ∩M1 6= 0, we have

that 0 6= K ∩M1 ≤ C ∩M1 is a Con-S-submodule of M . Let C 8 be a maximal

large extension of C ∩M1 in C. It is clear that C 8 is a Con-S-closed submodule

of M , with C 8 ∩M2 = 0. Hence, by (2), M = C 8 ⊕ H, for some submodule H

of M . It follows that C = C
′ ⊕ C

′′
, where C

′′
= C ∩ H. Let π : M → H be

the projection onto H. Again, since M satisfies the SIC Property, we have that

0 6= K ∩M2 �M . As (K ∩M2)∩C 8 = 0, we have that 0 6= π(K ∩M2) ≤ C 88, with

π(K∩M2)�M . Hence C 88 is a Con-S-closed submodule of M , with C 88∩M1 = 0.

Thus, by (2), C 88 is a direct summand of M , and therefore C is a direct summand

of M . �

Lemma 4.8. Let M = M1 ⊕M2 be a module, with 0 6= Rad(C) E C, for every

proper Con-S-closed submodule C of M , with C ∩Mi 6= 0, i = 1, 2. Then the

following are equivalent:

(1) M is an S-extending module.

(2) Every Con-S-closed submodule C of M , with C ∩Mi = 0, for some

i = 1 or 2, is a direct summand of M .

Proof. (1)⇒ (2): It is clear.

(2)⇒ (1): It is clear that each Con-S-closed submodule C in Mi is a Con-S-closed

submodule of M , with C ∩Mj = 0, i 6= j. Hence Mi (i = 1, 2) is an S-extending

module. Now let C be a proper Con-S-closed submodule of M , with C ∩Mi 6= 0,
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(i = 1, 2), and with 0 6= Rad(C) E C. It follows that C∩M1 is a Con-S-submodule

of M ; and hence M = C 8 ⊕L, where C 8 is a maximal large extension of C ∩M1 in

C, and L is a submodule of M . It follows that C = C 8 ⊕ (L ∩ C). If L ∩ C = 0,

then we have done. On the other hand, if C ∩L 6= 0, then C ∩L is a Con-S-closed

submodule of M , with (C ∩ L) ∩M1 = 0 (due to Rad(C) E C). Again, by (2),

C ∩ L is a direct summand of M , and therefore C is a direct summand of M . �

Theorem 4.9. Let M = M1 ⊕M2 be a module, with 0 6= Rad(C) E C, for every

proper Con-S-closed submodule C of M , with C ∩Mi 6= 0, (i = 1, 2). Let Mi be

Mj-superfluous-injective, (i 6= j = 1, 2). Then the following are equivalent:

(1) M is an S-extending module.

(2) M1 and M2 both are S-extending modules.

Proof. (1)⇒ (2): Follows from Lemma 3.4.

(2)⇒ (1): By Lemma 4.8, it is enough to show that every Con-S-closed submodule

C of M , with C ∩Mi = 0 for some i = 1 or 2, is a direct summand of M . To

this end, let C be a Con-S-closed submodule of M , with C ∩M1 = 0. Since M1

is M2-superfluous-injective and M2 is S-extending, we have, by Lemma 4.2, that

M = C ⊕M 8
2 ⊕M1, for some M 8

2 ≤M2. �

Theorem 4.10. Let M = M1 ⊕M2 be a module, which satisfies the SIC prop-

erty. Let Mi be Mj-superfluous-injective, (i 6= j = 1, 2). Then the following are

equivalent:

(1) M is an S-extending module.

(2) M1 and M2 both are S-extending modules.

Proof. The proof follows from Lemma 3.4, Proposition 4.7 and Lemma 4.2. �

Corollary 4.11. Let M = ⊕ni=1Mi be a module, 0 6= Rad(C) E C, for every proper

Con-S-closed submodule C of M , with C ∩Mi 6= 0, (i = 1, 2, . . . , n). Let Mi be

Mj-superfluous-injective, (i 6= j = 1, 2, . . . , n). Then the following are equivalent:

(1) M is an S-extending module.

(2) Mi is S-extending modules, for each i = 1, 2, . . . , n.

Proof. The proof follows by Theorem 4.9, and induction on n. �

Acknowledgement. The authors would like to thank the referee for the valuable

suggestions and comments.



ON S-EXTENDING MODULES 113

References

[1] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Second

edition, Graduate Texts in Mathematics, 13, Springer-Verlag, New York, 1992.

[2] W. D. Burgess and R. Raphael, On modules with the absolute direct summand

property, Ring Theory (Granville, OH, 1992), World Sci. Publ., River Edge,

NJ, (1993), 137-148.

[3] H. Q. Dinh, A note on pseudo injective modules, Comm. Algebra, 33(2) (2005),

361-369.

[4] N. V. Dung, D. V. Huynh, P. F. Smith and R. Wisbaur, Extending Modules,

with the collaboration of John Clark and N. Vanaja, Pitman Research Notes in

Mathematics Series, 313, Longman Scientific & Technical, Harlow; copublished

in the United States with John Wiley & Sons, Inc., New York, 1994.

[5] M. A. Kamal and B. J. Müller, Extending modules over commutative domains,

Osaka J. Math., 25(3) (1988), 531-538.

[6] E. Mermut, C. Santa-Clara and P. F. Smith, Injectivity relative to closed sub-

modules, J. Algebra, 321(2) (2009), 548-557.

[7] M. Okado, On the decomposition of extending modules, Math. Japon., 29(6)

(1984), 939-941.

[8] M. F. Yousif and Y. Zhou, FP-injective, simple-injective, and quasi-Frobenius

rings, Comm. Algebra, 32(6) (2004), 2273-2285.

Manar E. Tabarak (Corresponding Author) and Salah El Din S. Hussien

Department of Mathematics

Faculty of Sciences

Ain Shams University

Cairo, Egypt

e-mails: manarelbadry@sci.asu.edu.eg (M. E. Tabarak)

mynsalah@hotmail.com (S. E. D. S. Hussien)

M. A. Kamal and M. H. Elbaroudy

Department of Mathematics

Faculty of Education

Ain Shams University

Roxy, Cairo, Egypt

e-mails: mahmoudkamaleldeen@edu.asu.edu.eg (M. A. Kamal)

mahaelbarode@edu.asu.edu.eg (M. H. Elbaroudy)


