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Abstract. Let T be a tilting module. In this paper, Gorenstein π[T ]-projective

modules are introduced and some of their basic properties are studied. More-

over, some characterizations of rings over which all modules are Gorenstein

π[T ]-projective are given. For instance, on the T -cocoherent rings, it is proved

that the Gorenstein π[T ]-projectivity of all R-modules is equivalent to the

π[T ]-projectivity of σ[T ]-injective as a module.

Mathematics Subject Classification (2010): 13D07, 16D40, 18G25

Keywords: Cocoherent ring, dimension, Gorenstein module, tilting module

1. Introduction

Throughout this paper, R is an associative ring with non-zero identity, all mod-

ules are unitary left R-modules. First we recall some known notions and facts

needed in the sequel. Let R be a ring and T an R-module. Then

(1) We denote by ProdT (resp. F.ProdT ), the class of modules isomorphic to

direct summands of direct product of copies (resp. finitely many copies) of

T .

(2) We denote by AddT (resp. F.AddT ), the class of modules isomorphic to

direct summands of direct sum of copies (resp. finitely many copies) of T .

(3) Following [3], a module T is called tilting (1-tilting) if it satisfies the fol-

lowing conditions:

(a) pd(T ) ≤ 1, where pd(T ) denotes the projective dimension of T .

(b) Exti(T, T (λ)) = 0, for each i > 0 and for every cardinal λ.

(c) There exists the exact sequence 0 → R → T0 → T1 → 0, where

T0, T1 ∈ AddT .

(4) By CopresnT (resp. F.CopresnT ) and Copres∞T (resp. F.Copres∞T ),

we denote the set of all modules M such that there exists exact sequences

0 −→M −→ T0 −→ T1 −→ · · · −→ Tn−1 −→ Tn
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and

0 −→M −→ T0 −→ T1 −→ · · · −→ Tn−1 −→ Tn −→ · · · ,

respectively, where Ti ∈ ProdT (resp. Ti ∈ F.ProdT ), for every i ≥ 0.

(5) A module M is said to be cogenerated, by T , denoted by M ∈ CogenT ,

(resp. generated, denoted M ∈ GenT ) by T if there exists an exact sequence

0→M → Tn (resp. T (n) →M → 0), for some positive integer n.

(6) Let C be a class of modules and M be a module. A right (resp. left) C-

resolution of M is a long exact sequence 0 → M → C0 → C1 → · · · (resp.

· · · → C1 → C0 → M → 0), where Ci ∈ C, for all i ≥ 0. It is said that

a module M has right C-dimension n (briefly, C.dim(M) = n) if n is the

least non-negative integer such that there exists a long exact sequence

0 −→M −→ C0 −→ C1 −→ · · · −→ Cn−1 −→ Cn −→ 0

with Ci ∈ C, for each i ≥ 0. In particular, the ProdT -dimension of M is

called T -injective dimension of M and is denoted by T.i.dim(M). Note

that for any tilting module M , if M ∈ CogenT , then [6, Proposition 2.1]

implies that CogenT = Copres∞T . This shows that any module cogener-

ated by T has an ProdT -resolution. The ProdT -resolutions and the relative

homological dimension were studied by Nikmehr and Shaveisi in [6].

(7) For any homomorphism f , we denote by kerf and imf , the kernel and

image of f , respectively. Let A and M ∈ CogenT be two modules. We

define the functor

EnT (A,M) :=
kerδn∗

imδn−1∗
,

where

δ0 δ1 δn
0 −→ M −→ T0 −→ · · · −→ Tn −→ · · ·

ProdT -resolution of M and δn∗ = Hom(idB , δn), for every i ≥ 0. See [6,9]

for more details.

(8) Let M ∈ CogenT and N be two modules. A similar proof to that of [7,

Lemma 2.11] shows that E0T (N,M) ∼= Hom(N,M). Moreover, E1T (−,M) =

0 implies that M ∈ ProdT , and if M ∈ GenT , then E1T (M,−) = 0 implies

that M ∈ AddT . It is clear that T.i.dim(M) = n if and only if n is the

least non-negative integer such that En+1
T (A,M) = 0, for any module A,

see [6, Remark 2.2] for more details. So, T.i.dim(M) = n if and only if

En+iT (A,M) = 0 for every module A and every i ≥ 1. A module with zero

T -injective dimension (resp. T -projective dimension) is called T -injective
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(resp. T -projective). A similar proof to that of [7, Proposition 2.3] shows

that the definition of EnT (C,M) is independent from the choice of ProdT -

resolutions. For unexplained concepts and notations, we refer the reader to

[2,6,8].

(9) For a module T , we denote by π[T ], the full subcategory of modules whose

objects are of the form B
A ≤

T I

A , for some cardinal I and some modules

A ≤ B ≤ T I . Also, the full subcategory σ[T ] of modules subgenerated by

a given module T (see [10]).

(10) G is called Gorenstein σ[T ]-injective if there exists an exact sequence of

σ[T ]-injective modules

A = · · · −→ A1 −→ A0 −→ A0 −→ A1 −→ · · ·

with G = ker(A0 → A1) such that Hom(U,−) leaves this sequence exact

whenever U ∈ Pres1T with T.p.dim(U) <∞ (see [9]).

(11) M is said to be finitely cogenerated [2] if for every family {Vk}J of submod-

ules of M with
⋂
JVk = 0, there is a finite subset I ⊂ J with

⋂
IVk = 0.

(12) M is said to be finitely copresented if there is an exact sequence of R-

modules 0 → M → E0 → E1, where each Ei is a finitely cogenerated

injective module, see [1,11,12].

Let T be a tilting module. In this paper, we introduce the π[T ]-projective modules,

the π[T ]-projective dimension and Gorenstein π[T ]-projective modules.

Let M ∈ GenT . Then, M is called π[T ]-projective if the functor E1T (M,−)

vanishes on π[T ]. Also, the π[T ]-projective dimension of M is defined to be

π[T ].pd(M) = inf{n : En+1
T (M,N) = 0 for every N ∈ π[T ]}.

We define a module G to be Gorenstein π[T ]-projective ( GT -projective for short),

if there exists an exact sequence of π[T ]-projective modules

B = · · · −→ B1 −→ B0 −→ B0 −→ B1 −→ · · ·

with G = ker(B0 → B1) such that Hom(−, U) leaves this sequence exact whenever

U ∈ F.Copres1T with T.i.dim(U) <∞. In this paper, the GT -projective dimension

of a module G is denoted by GT -pd(G).

In Section 2, we study some basic properties of the Gorenstein π[T ]-projective

modules. Recall that a ring R is said to be cocoherent if every finitely cogenerated

module is finitely copresented. So, R is a cocoherent ring if and only if Copres0R =

Copres1R. For more information about the cocoherent rings, we refer the reader
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to [5]. As a cogeneralization of this concept, we call a ring R to be T -cocoherent if

F.Copres0T = F.Copres1T .

Section 3 is devoted to some characterizations of T -cocoherent rings over which

all modules are Gorenstein π[T ]-projective. For instance, it is proved that every

module is Gorenstein π[T ]-projective if and only if every T -injective module is π[T ]-

projective if and only if every σ[T ]-injective module is Gorenstein π[T ]-projective.

Finally, we give a sufficient condition under which every Gorenstein π[T ]-projective

module is π[T ]-projective.

2. Gorenstein π[T ]-projectivity

We start with the following definition.

Definition 2.1. Let T be a tilting module. Then

(1) M is called π[T ]-projective if E1T (M,N) = 0, for every N ∈ π[T ].

(2) Let G ∈ GenT . Then, G is called Gorenstein π[T ]-projective if there exists

an exact sequence of π[T ]-projective modules

B = · · · −→ B1 −→ B0 −→ B0 −→ B1 −→ · · ·

with G = ker(B0 → B1) such that Hom(−, U) leaves this sequence exact

whenever U ∈ F.Copres1T with T.i.dim(U) <∞.

Remark 2.2. Let T be a tilting module. Then

(1) E1T (N,M) = 0 for any π[T ]-projective module N and any M ∈ Copres0T .

(2) If A ∈ AddT , then A is π[T ]-projective.

Lemma 2.3. Let 0→ A
f→ B

g→ C → 0 be an exact sequence. Then

(1) If A is T -injective and A,B,C ∈ CogenT , then B = A⊕ C.

(2) If A ∈ F.CopresnT and C ∈ F.CopresnT , then B ∈ F.CopresnT.

(3) If C ∈ F.CopresnT and B ∈ F.Copresn+1T , then A ∈ F.Copresn+1T.

(4) If B ∈ F.CopresnT and A ∈ F.Copresn+1T , then C ∈ F.CopresnT.

Proof. (1) If A is T -injective and A,B,C ∈ CogenT , then we deduce that the

sequence

0 −→ Hom(C,A)
g∗−→ Hom(B,A)

f∗−→ Hom(A,A) −→ E1T (C,A) = 0

is exact. So, there exists h : B → A such that hf = 1A.
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(2) We prove the assertion by induction on n. If n = 0, then the commutative

diagram with exact rows

0 0 0

↓ ↓ ↓

o −→ A
f−→ B

g−→ C −→ 0

↓ h′

0 ↓ h0 ↓ h′′

0

0 −→ T
′

0

ı0−→ T
′

0 ⊕ T
′′

0

π0−→ T
′′

0 −→ 0

↓ ↓ ↓

exists, where T ′0, T
′′
0 ∈ F.ProdT , i0 is the inclusion map, π0 is a canonical epi-

morphism and h0 = i0h
′
0 is endomorphism, by Five Lemma. Let K ′1 = coker(h′0),

K1 = coker(h0) and K ′′1 = coker(h′′0). It is clear that (T
′

0 ⊕ T
′′
) ∈ F.ProdT and

K ′1,K
′′
1 ∈ F.Copresn−1T ; so, the induction implies that K1 ∈ F.Copresn−1T . Hence

B ∈ F.CopresnT .

(3) Let B ∈ F.Presn+1T and C ∈ F.PresnT , then the following commutative

diagram with exact rows:

0 0

↓ ↓
0 −→ A ==A

↓ ↓
0 −→ B −→ T0 −→ L −→ 0

↓ ↓ ‖
0 −→ C −→ D −→ L −→ 0

↓ ↓
0 0

where T0 ∈ F.ProdT and L ∈ F.CopresnT . By (2), D ∈ F.CopresnT . So, we

deduce that A ∈ F.Copresn+1T .

(4) Let A ∈ F.Presn+1T and B ∈ F.PresnT , then the following commutative

diagram with exact rows:
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0 0

↓ ↓
0 −→ A −→ T

′

0 −→ L
′ −→ 0

↓ ↓
0 −→ B −→ T0 −→ L −→ 0

↓ ↓ ‖
0 −→ C −→ D −→ L −→ 0

↓ ↓
0 0

where T0, T
′

0 ∈ F.ProdT and L ∈ F.Copresn−1T . Since T
′

0 is T -injective, we have

that T0 = T
′

0 ⊕D By (1), and D ∈ CogenT . Thus for any N ∈ CogenT , we have

E1T (T0, N) = E1T (T
′

0 ⊕D,N) = E1T (T
′

0, N)⊕ E1T (D,N) = 0.

Hence D ∈ F.ProdT . On the other hand, L ∈ F.Copresn−1T . Therefore, we

conclude that C ∈ F.CopresnT. �

In the following theorem, we show that in the case of T -cocoherent rings, the

existence of π[T ]-projective complex of a module is sufficient to be Gorenstein π[T ]-

projective.

Theorem 2.4. Let R be a T -cocoherent ring and G ∈ GenT be a module. Then G

is Gorenstein π[T ]-projective if and only if there is an exact sequence

B = · · · −→ B1 −→ B0 −→ B0 −→ B1 −→ · · ·

of π[T ]-projective modules such that G = ker(B0 → B1).

Proof. (⇒) : This is a direct consequence of definition.

(⇐) : By definition, it suffices to show that Hom(B, U) is exact for every module

U ∈ F.Copres1T with T.i.dim(U) = m < ∞. To prove this, we use the induction

on m. The case m = 0 is clear. Assume that m ≥ 1. Since U ∈ F.Copres1T ,

there exists an exact sequence 0 → U → T0 → I → 0 with T0 ∈ F.ProdT ⊆
F.Copres0T . Now, from the T -cocoherence of R and Lemma 2.3, we deduce that

I, T0 ∈ F.Copres1T . Also, T.i.dim(I) ≤ m − 1 and T.i.dim(T0) = 0. Thus by

Remark 2.2, the following short exact sequence of complexes exists:
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...
...

...

↓ ↓ ↓
0 −→ Hom(B1, U) −→ Hom(B1, T0) −→ Hom(B1, I) −→ 0

↓ ↓ ↓
0 −→ Hom(B0, U) −→ Hom(B0, T0) −→ Hom(B0, I) −→ 0

↓ ↓ ↓
0 −→ Hom(B0, U) −→ Hom(B0, T0) −→ Hom(B0, I) −→ 0

↓ ↓ ↓
0 −→ Hom(B1, U) −→ Hom(B1, T0) −→ Hom(B1, I) −→ 0

↓ ↓ ↓
...

...
...

‖ ‖ ‖
0 −→ Hom(B, U) −→ Hom(B, T0) −→ Hom(B, I) −→ 0.

By induction, Hom(B, T0) and Hom(B, I) are exact, hence Hom(B, U) is exact by

[8, Theorem 6.10]. Therefore, G is Gorenstein π[T ]-projective. �

It is worthy to mention that the notion of T -injectivity (T -projectivity) is dif-

ferent from the notion of an M -injective (M -projective) module in [2].

Corollary 2.5. Let R be a T -cocoherent ring and G ∈ GenT be a module. Then

the following assertions are equivalent:

(1) G is Gorenstein π[T ]-projective;

(2) There is an exact sequence 0 → G → B0 → B1 → · · · of modules, where

every Bi is π[T ]-projective;

(3) There is a short exact sequence 0 → G → M → I → 0 of modules, where

M is π[T ]-projective and I is Gorenstein π[T ]-projective.

Proof. (1)⇒ (2) and (1)⇒ (3) follow from definition.

(2) ⇒ (1) For module G ∈ GenT , [6, Proposition 2.1] implies that GenT =

Pres∞T . So, there is an exact sequence

· · · −→ T1 −→ T0 −→ G −→ 0

where any Ti is π[T ]-projective by Remark 2.2. Thus, the exact sequence

· · · −→ T1 −→ T0 −→ B0 −→ B1 −→ · · ·

of π[T ]-projective modules exists, where G = ker(B0 → B1). Therefore, G is

Gorenstein π[T ]-projective, by Theorem 2.4.
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(3)⇒ (2) Assume that the exact sequence

0 −→ G −→M −→ I −→ 0 (1)

exists, where M is π[T ]-projective and I is Gorenstein π[T ]-projective. Since I is

Gorenstein π[T ]-projective, there is an exact sequence

0→ I → C0 → C1 → · · · (2)

where every Ci is π[T ]-projective. Assembling the sequences (1) and (2), we get

the exact sequence

0→ G→M → C0 → C1 → · · · ,

where M and every Ci are π[T ]-projective, as desired. �

Proposition 2.6. For any module G ∈ GenT , the following statements hold.

(1) If G is Gorenstein π[T ]-projective, then E iT (G,U) = 0 for all i > 0 and

every module U ∈ F.Copres1T with T.i.dim(U) <∞.

(2) If 0 → N → Gn−1 → · · · → G0 → G → 0 is an exact sequence of mod-

ules where every Gi is a Gorenstein π[T ]-projective and Gi ∈ GenT , then

E iT (N,U) = En+iT (G,U) for any i > 0 and any module U ∈ F.Copres1T

with T.i.dim(U) <∞.

Proof. (1) Let G be a Gorenstein π[T ]-projective module, and T.i.dim(U) = m <

∞. Then by hypothesis, the following π[T ]-projective resolution of G exists:

0→ G→ B0 → · · · → Bm−1 → N → 0.

By Remark 2.2, E iT (Bj , U) = 0 for every i > 0 and every 0 ≤ j ≤ m − 1. Since

T.i.dim(U) = m, we deduce that E iT (G,U) ∼= Em+i
T (N,U) = 0.

(2) Setting Gn = N and Kj = ker(Gj → Gj−1), for every 0 ≤ j ≤ n, the short

exact sequence 0→ Kj → Gj → Kj−1 → 0 exists. Thus by (1), the induced exact

sequences

0 = ErT (Gj , U)→ ErT (Kj , U)→ Er+1
T (Kj−1, U)→ Er+1

T (Gj , U) = 0

exists and so ErT (Kj , U) ∼= Er+1
T (Kj−1, U), for every r ≥ 0. Since Kn−1 = N , we

have

En+iT (G,U) ∼= En+i−1T (K0, U) ∼= · · · ∼= E iT (N,U),

as desired. �

Next, we study the Gorenstein π[T ]-projectivity of modules on T -cocoherent

rings, in short exact sequences.
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Proposition 2.7. Let R be T -cocoherent and consider the exact sequence 0 →
N → B → G→ 0, where B is π[T ]-projective. Then GT-pd(G) ≤ GT-pd(N) + 1.

In particular, if G is Gorenstein π[T ]-projective, so is N .

Proof. We shall show that GT-pd(G) ≤ GT-pd(N) + 1. In fact, we may assume

that GT-pd(N) = n < ∞. Then, by definition, N admits a Gorenstein π[T ]-

projective resolution:

0→ Bn → Bn−1 → · · · → B0 → N → 0.

Assembling this sequence and the short exact sequence 0→ N → B → G→ 0, the

following commutative diagram is obtained:

0 −→ Bn −→ · · · −→ B1 −→ B0 −→ B −→ G −→ 0

↓ ↑
N ==== N

↓ ↑
0 0

which shows that GT-pd(G) ≤ n + 1. The particular case follows from Corollary

2.5. �

Proposition 2.8. Let R be a T -cocoherent ring and 0→ N → G→ B → 0 be an

exact sequence, where N,B ∈ GenT . If N is Gorenstein π[T ]-projective and B is

π[T ]-projective, then G is Gorenstein π[T ]-projective.

Proof. Since N is Gorenstein π[T ]-projective, by Corollary 2.5, there exists an

exact sequence of 0 → N → B
′ → K → 0, where B

′
is π[T ]-projective and K is

Gorenstein π[T ]-projective. Now, we consider the following diagram:

0 0

↓ ↓
0 −→ N −→ G −→ B −→ 0

↓ ↓ ‖
0 −→ B′ −→ D −→ B −→ 0

↓ ↓
K == K

↓ ↓
0 0

The exactness of the middle horizontal sequence with B and B
′
, π[T ]-projective,

implies that D is π[T ]-projective. Hence from the middle vertical sequence and

Corollary 2.5, we deduce that G is Gorenstein π[T ]-projective. �
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3. Gorensetein π[T ]-projective modules on T -cocoherent rings

This section is devoted to T -cocoherent rings over which every module is Goren-

stein π[T ]-projective.

Lemma 3.1. Let T be a tilting module and G ∈ GenT . Then, G ∈ CogenT .

Proof. Let G ∈ GenT . Then, the short exact sequence 0 → K → T (I) → G → 0

exists. We have K ⊆ T (I) ⊆ T I . So, K ∈ CogenT . By [6, Proposition 2.1],

CogenT = Copres∞T , since T is tilting. Thus by Lemma 2.3, G ∈ CopresmT , and

hence G ∈ CogenT . �

Proposition 3.2. Let R be a ring. The following assertions are equivalent:

(1) Every module belong GenT , is Gorenstein π[T ]-projective;

(2) The ring satisfies the following two conditions:

(i) Every T -injective module is π[T ]-projective.

(ii) E1T (N,U) = 0 for any N ∈ GenT and any U ∈ F.CopresnT with

T.i.dim(U) <∞.

Proof. (1) ⇒ (2) The condition (i) follows from this fact that every T -injective

module M is Gorenstein π[T ]-projective. So, the following π[T ]-projective resolu-

tion of M exists:

0→M → B0 → B1 → · · · .

Since M is T -injective, M is π[T ]-projective as a direct summand of B0. Also,

Proposition 2.6(1) and (1) imply that E1T (N,U) = 0 for any module N ∈ GenT and

any module U ∈ F.Copres1T with finite T -injective dimension. So the condition

(ii) follows.

(2) ⇒ (1) Let G ∈ GenT . Then by Lemma 3.1, G ∈ CogenT . So, a AddT -

resolution · · · → T1 → T0 → G→ 0 and a ProdT - resolution 0→ G→ T 0 → T 1 →
· · · of G exists. By Remark 2.2, any Ti is π[T ]-projective and any T i is T -injective.

Hence by (2), every T i is π[T ]-projective. Assembling these resolutions, we get the

following exact sequence of π[T ]-projective modules:

B = · · · → T1 → T0 → T 0 → T 1 → · · · ,

where G = ker(T 0 → T 1). So by (2)(ii), Hom(B, U) is exact for any module

U ∈ F.Copres1T with finite T -injective dimension. Hence G is Gorenstein π[T ]-

projective. �

The next theorem shows that if R is a T -cocoherent ring and every σ[T ]-injective

module is Gorenstein π[T ]-projective, then every module is Gorenstein π[T ]-projective.
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Theorem 3.3. Let R be a T -cocoherent ring. Then the following are equivalent:

(1) Every module is Gorenstein π[T ]-projective;

(2) Every Gorenstein σ[T ]-injective module is Gorenstein π[T ]-projective;

(3) Every σ[T ]-injective module is Gorenstein π[T ]-projective;

(4) Every T -injective module is π[T ]-projective.

Proof. (1)⇒ (2) This is clear.

(2) ⇒ (3) Let G be a σ[T ]-injective module. Every σ[T ]-injective module is

Gorenstein σ[T ]-injective (see,[9]). Since G is Gorenstein σ[T ]-injective, we deduce

that G is Gorenstein π[T ]-projective by hypothesis.

(3)⇒ (4) Let G be a T -injective module. Then G is σ[T ]-injective, and so G is

Gorenstein π[T ]-projective by hypothesis. By Corollary 2.5, there exists an exact

sequence 0 → G → B → N → 0, where B is π[T ]-projective. Thus the sequence

splits. Hence G is π[T ]-projective as a direct summand of B.

(4)⇒ (1) Let G ∈ GenT . Then by Lemma 3.1, there is an exact sequence

0 −→ G −→ T 0 −→ T 1 −→ · · · ,

where any T i is T -injective. Then by (5), every T i is π[T ]-projective. Hence

Corollary 2.5 completes the proof. �

We denote the right π[T ]-projective dimension of any module M by π[T ].pd(M),

and π[T ].pd(M) = inf{n : En+1
T (M,N) = 0 for every N ∈ π[T ]}.

Example 3.4. Let R be a 1-Gorenstein ring and 0 → R → E0 → E1 → 0 be the

minimal injective resolution of R. Then, π[T ].pd(E0) = π[T ].pd(E1) = 0. Since by

[4], T = E0 ⊕ E1 is a tilting module. So, any Ei is π[T ]-projective and hence, any

Ei is Gorenstein π[T ]-projective for i = 0, 1.

Definition 3.5. We define the global π[T ]-projective dimension of any ring R to

be:

gl.π[T ].pd(R) = sup{π[T ].pd(M)| M is a module}.

Clearly, every π[T ]-projective module is Gorenstein π[T ]-projective. But the

converse is not true in general. We finish this paper with the following theorem

which determines a sufficient condition under which the converse holds.

Theorem 3.6. If gl.π[T ].pd(R) <∞, then every Gorenstein π[T ]-projective module

is π[T ]-projective.
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Proof. Suppose that gl.π[T ].pd(R) = m < ∞, and G is a Gorenstein π[T ]-

projective module. If m = 0, then E1T (M,N) = 0 for any N ∈ π[T ] , and hence G

is π[T ]-projective. For m ≥ 1, since G is Gorenstein π[T ]-projective, there exists

an exact sequence 0 → G → B0 → B1 → · · · with each Bi is π[T ]-projective. Let

L = coker(Bm−2 → Bm−1) . Then

0 −→ G −→ B0 −→ B1 −→ · · · −→ Bm−2 −→ Bm−1 −→ L −→ 0

is exact, and hence G is π[T ]-projective since π[T ].pd(L) ≤ m. �
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