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1. Introduction

A non-associative algebra A over an arbitrary field F is zeropotent if x2 = 0 for

all x ∈ A. If chrF, the characteristic of the field F, is different from two, we usually

use the term anti-commutative algebra.

There are four non-isomorphic types of zeropotent algebras of dimension less

than three. All of them are Lie algebras. In the two-dimensional case there exists

a basis {a, b} ⊂ A with

ab = σa, σ ∈ {0, 1}. (∗)

The classification of three-dimensional zeropotent algebras over an algebraically

closed field F with characteristic different from two was determined in [2] and of

those over the field of real numbers in [4]. In the thesis [1], there is a classification

of three-dimensional Lie algebras.

We shall generalize these results to algebras over an arbitrary field up to the

solvability of certain equations and conditions of quadratic character in this field.

For x, y, z ∈ A let

J(x, y, z) = (xy)z + (yz)x+ (zx)y

denote the Jacobian. A zeropotent algebra is Lie if J(x, y, z) = 0 for all x, y, z ∈ A,

and it is Maltsev if J(x, y, xz) = J(x, y, z)x for all x, y, z ∈ A. An algebra is binary-

Lie if any two of its elements generate a Lie subalgebra. Any Lie algebra is Maltsev

and any Maltsev algebra is binary-Lie.
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2. Preliminaries

Proposition 2.1 (Kuzmin, [3]). A three-dimensional binary-Lie algebra is Lie.

Proof. There is nothing to prove if there exist two elements which generate the

algebra.

Now suppose that any two linearly independent elements generate a two-dim-

ensional subalgebra. Considering (∗) choose a basis {a, b, c} with

ab = σa, ac = αa+ βc, bc = γb+ δc.

The examination of the products a(b − c), b(c − a) and c(a − b) gives β = 0,

δ = −σ and γ = α, respectively. Since the Jacobian of any three linearly dependent

elements in a zeropotent algebra is always 0, it is enough to check that J(a, b, c) =

0. �

A minor generalization of this proof would show that each binary-Lie algebra

with the property that any two linearly independent elements generate a two-

dimensional subalgebra is Lie.

Throughout the paper we shall use the following notation:

Given three vectors

x = (x1, x2, x3), y = (y1, y2, y3), z = (z1, z2, z3) ∈ F3,

define

D = det(x, y, z)

and its 2× 2 cofactors

A = y2z3 − y3z2, B = y3z1 − y1z3, C = y1z2 − y2z1,

K = x3z2 − x2z3, L = x1z3 − x3z1, M = x2z1 − x1z2,

U = x2y3 − x3y2, V = x3y1 − x1y3, W = x1y2 − x2y1.

The identities in the following lemma will be heavily used in solving large systems

of equations in the rest of the paper.

Lemma 2.2. The following relations hold:

y1A+ y2B + y3C = z1A+ z2B + z3C = 0,

x1K + x2L+ x3M = z1K + z2L+ z3M = 0,

x1U + x2V + x3W = y1U + y2V + y3W = 0;

D = x1A+ x2B + x3C = y1K + y2L+ y3M = z1U + z2V + z3W ;
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LW −MV = x1D, MU −KW = x2D, KV − LU = x3D,

CV −BW = y1D, AW − CU = y2D, BU −AV = y3D,

BM − CL = z1D, CK −AM = z2D, AL−BK = z3D.

3. The three classes

We shall divide all three-dimensional zeropotent algebras into three classes, ac-

cording to the properties of their subalgebras of dimension two:

(1) The first class: This class contains all algebras which contain at least one

two-dimensional subalgebra with zero multiplication.

(2) The second class: This class contains all algebras which contain two-dim-

ensional subalgebras, none of which has zero multiplication.

(3) The third class: This class contains algebras without two-dimensional sub-

algebras.

Note that any two algebras from different classes are non-isomorphic.

In the first class the vector space basis of an algebra A will consist of two linearly

independent elements from a two-dimensional subalgebra with zero multiplication,

and an additional element from its complement. In the second class the basis of A
will consist of two linearly independent elements a and b from a two-dimensional

subalgebra with ab = a (considering (∗)), and an additional element from its com-

plement. The basis of the algebras from the third class will consist of any two

linearly independent elements together with their product.

The multiplication table of a zeropotent algebra A is thus given by Table 1 with

(σ, τ) ∈ {(0, 0), (1, 0), (0, 1)} and πi, ρi ∈ F for i = 1, 2, 3.

· a b c

a 0 σa+ τc π1a+ π2b+ π3c

b −σa− τc 0 ρ1a+ ρ2b+ ρ3c

c −π1a− π2b− π3c −ρ1a− ρ2b− ρ3c 0

Table 1. The multiplication table of a zeropotent algebra A.

For f, g ∈ A let

f = x1a+ x2b+ x3c, g = y1a+ y2b+ y3c for some xi, yi ∈ F.

Note that f and g are linearly dependent if and only if U = V = W = 0.
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Then,

fg = (ρ1U − π1V + σW )a+ (ρ2U − π2V )b+ (ρ3U − π3V + τW )c.

The linear independence of the elements f , g and fg can be examined by calculating

the determinant det(f, g, fg) of the corresponding coefficients relative to the basis

{a, b, c}. It is equal to E(U, V,W ) where E is the homogeneous polynomial

E(x, y, z) = x2ρ1 − y2π2 + z2τ − yzπ3 + xz(ρ3 + σ) + xy(ρ2 − π1).

According to Table 1, the three classes of algebras can be alternatively described

by:

(1) The first class: (σ, τ) = (0, 0).

(2) The second class: (σ, τ) = (1, 0) and π2ρ3 6= π3ρ2.

(3) The third class: (σ, τ) = (0, 1) and E(x, y, z) 6= 0 if (x, y, z) 6= (0, 0, 0).

In the second class the product of any two linearly independent elements is not

zero, therefore the solution of the non-homogeneous system

ρ1U − π1V +W = ρ2U − π2V = ρ3U − π3V = 0

is trivial and the determinant of the last homogeneous subsystem π2ρ3 − π3ρ2 is

non-zero.

In the third class the condition det(f, g, fg) 6= 0 for all linearly independent f and

g implies that the underlying field F cannot be algebraically closed or even quasi-

algebraically closed. Also, by Chevalley-Warning’s theorem, the field F cannot be

finite.

Note that U , V and W can take arbitrary values. A triple (U = 0, V,W ) can

be obtained by choosing x1 = 1, x2 = x3 = y1 = 0, y2 = W , y3 = −V ; and a

triple (U 6= 0, V,W ) is for example a result of x1 = −V , x2 = y2 = U , x3 = 0,

y1 = −V −WU−1, y3 = 1.

To use less space we shall write Table 1 in a more compact form as

Algebra : σ τ π1 π2 π3 ρ1 ρ2 ρ3

Now suppose that the Φ: A → A′ is an isomorphism of two three-dimensional

zeropotent algebras with bases {a, b, c} and {a′, b′, c′} and that

â = Φ(a) = x1a
′+x2b

′+x3c
′, b̂ = Φ(b) = y1a

′+y2b
′+y3c

′, ĉ = Φ(c) = z1a
′+z2b

′+z3c
′.

Then, {â, b̂, ĉ} is also a basis of A′ and

D = det(â, b̂, ĉ) 6= 0.
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By σ̂, τ̂ , π̂1, π̂2, π̂3, ρ̂1, ρ̂2 and ρ̂3 denote the structure constants corresponding

to the multiplication in the basis {a′, b′, c′}.
Two algebras from different classes are not isomorphic, therefore

σ̂ = σ and τ̂ = τ.

Since Φ(ab) = Φ(a)Φ(b) = âb̂,

Uρ1 − V π1 +Wσ = x1σ + z1τ,

Uρ2 − V π2 = x2σ + z2τ,

Uρ3 − V π3 +Wτ = x3σ + z3τ.

The multiplication table shows that âb̂ = σ̂â+ τ̂ b̂ = σâ+ τ b̂, therefore

AUρ1 −BV π2 + CWτ − CV π3 + CUρ3 +AWσ +BUρ2 −AV π1 = Dσ,

KUρ1 − LV π2 +MV τ −MV π3 +MUρ3 +KWσ + LUρ2 −KV π1 = 0,

U2ρ1 − V 2π2 +W 2τ − VWπ3 + UW (ρ3 + σ) + UV (ρ2 − π1) = Dτ.

In the same way the coordinates of âĉ and b̂ĉ show that

π̂1 = −D−1
(
AKρ1 −BLπ2 + CMτ − CLπ3 + CKρ3 +AMσ +BKρ2 −ALπ1

)
,

π̂2 = −D−1
(
K2ρ1 − L2π2 +M2τ − LMπ3 +KM(ρ3 + σ) +KL(ρ2 − π1)

)
,

π̂3 = x1π3 + x2(ρ3 − σ)− x3(π1 + ρ2);

ρ̂1 = D−1
(
A2ρ1 −B2π2 + C2τ −BCπ3 +AC(ρ3 + σ) +AB(ρ2 − π1

)
,

ρ̂2 = D−1
(
AKρ1 −BLπ2 + CMτ −BMπ3 +AMρ3 + CKσ +ALρ2 −BKπ1

)
,

ρ̂3 = y1π3 + y2(ρ3 − σ)− y3(π1 + ρ2) + σ.

We shall often use some additional equations which will make our calculations

easier:

π̂1x1 + π̂2y1 = x1z3π1 − x1z1π3 −Kρ1 + x3z1ρ2 − x2z1ρ3 + x1z2σ,

π̂1x2 + π̂2y2 = x3z2π1 + Lπ2 − x1z2π3 + x2z3ρ2 − x2z2ρ3 + x2z2σ,

π̂1x3 + π̂2y3 = x3z3π1 − x3z1π3 + x3z3ρ2 − x3z2ρ3 + x2z3σ −Mτ ;

ρ̂1x1 + ρ̂2y1 = y1z3π1 − y1z1π3 +Aρ1 + y3z1ρ2 − y2z1ρ3 + (y1z2 − z1)σ,

ρ̂1x2 + ρ̂2y2 = y3z2π1 −Bπ2 − y1z2π3 + y2z3ρ2 − y2z2ρ3 + (y2z2 − z2)σ,

ρ̂1x3 + ρ̂2y3 = y3z3π1 − y3z1π3 + y3z3ρ2 − y3z2ρ3 + (y2 − 1)z3σ + Cτ ;

π̂1 + ρ̂2 = z3(π1 + ρ2)− z1π3 − z2(ρ3 − σ).



132 ANTON CEDILNIK AND MARJAN JERMAN

In the rest of this section we shall simplify the above equations by using special

properties of each class.

3.1. The first class (σ, τ) = (0, 0). If π3 6= 0, the change of basis

â = ρ3a− π3b, b̂ = a, ĉ = c,

results in π̂3 = 0. Therefore, we can assume that π3 = 0 is an invariant and that

the multiplication is given by Table 2.

· a b c

a 0 0 π1a+ π2b

b 0 0 ρ1a+ ρ2b+ ρ3c

c −π1a− π2b −ρ1a− ρ2b− ρ3c 0

Table 2. The first class: (σ, τ) = (0, 0).

The system of equations for the first class is reduced to

D = z1U + z2V + z3W 6= 0,

Uρ1 − V π1 = Uρ2 − V π2 = Uρ3 = 0,

x2ρ3 = x3(π1 + ρ2);

π̂1x1 + π̂2y1 = (x1z3 − x3z1)π1 + (x2z3 − x3z2)ρ1,

π̂1x2 + π̂2y2 = (x1z3 − x3z1)π2 + (x2z3 − x3z2)ρ2,

π̂1x3 + π̂2y3 = (x2z3 − x3z2)ρ3,

ρ̂1x1 + ρ̂2y1 = y1z3π1 + (y2z3 − y3z2)ρ1 + y3z1ρ2 − y2z1ρ3,

ρ̂1x2 + ρ̂2y2 = y3z2π1 + (y1z3 − y3z1)π2 + y2z3ρ2 − y2z2ρ3,

ρ̂1x3 = π̂1y3,

ρ̂3 = y2ρ3 − y3(π1 + ρ2),

ρ̂1 = D−1
(
A2ρ1 −B2π2 +ACρ3 +AB(ρ2 − π1)

)
,

ρ̂2 = D−1
(
AKρ1 −BLπ2 +AMρ3 +ALρ2 −BKπ1

)
,

π̂1 + ρ̂2 = z3(π1 + ρ2)− z2ρ3.
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3.2. The second class (σ, τ) = (1, 0). The transformation

â = a, b̂ = b, ĉ = −π1b+ c,

gives π̂1 = 0. Therefore, we can assume that π1 = 0. The multiplication in an

algebra from the second class is given by Table 3.

· a b c

a 0 a π2b+ π3c

b −a 0 ρ1a+ ρ2b+ ρ3c

c −π2b− π3c −ρ1a− ρ2b− ρ3c 0

Table 3. The second case: (σ, τ) = (1, 0), π2ρ3 6= π3ρ2.

The system of equations for the second class is reduced to:

D = z1U + z2V + z3W 6= 0,

Uρ1 +W = x1, Uρ2 − V π2 = x2, Uρ3 − V π3 = x3;

π̂2y1 = (x2z3 − x3z2)ρ1 + (x3z1 − x1z3)ρ2 + (x2z1 − z2x1)ρ3 + ρ̂2x1,

π̂2y2 = (x1z3 − x3z1)π2 + (x2z1 − x1z2)π3 + ρ̂2x2,

π̂2y3 = x2z3 − x3z2 + ρ̂2x3,

π̂3 = x1π3 + x2(ρ3 − 1)− x3ρ2;

ρ̂1x1 = (y2z3 − y3z2)ρ1 + (y3z1 − y1z3)ρ2 + (y1z2 − y2z1)ρ3 − z1,

ρ̂1x2 = (y1z3 − y3z1)π2 + (y2z1 − y1z2)π3 − z2,

ρ̂1x3 = y2z3 − y3z2 − z3,

ρ̂2 = −
(
z1π3 + z2(ρ3 − 1)− z3ρ2

)
,

ρ̂3 = 1 + y1π3 + y2(ρ3 − 1)− y3ρ2.

3.3. The third class (σ, τ) = (0, 1). The multiplication table for an algebra in

this class will be even simpler. First suppose that π3 6= 0. In the new basis

â = ρ3a− π3b, b̂ = a, ĉ = π3c,

we still have ĉ = âb̂ and det(â, b̂, ĉ) = π2
3 6= 0. The product âĉ is a linear combination

of â and b̂, hence we may assume in advance that π3 = 0.
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Now suppose that ρ3 6= 0. Let us show that the transformation

â = a, b̂ = (π1 + ρ2)b+ ρ3c, ĉ = π1ρ3a+ π2ρ3b+ (π1 + ρ2)c,

defines a new basis such that ĉ = âb̂.

If π2 were a square in F, E(0, 1,
√
π2) would equal 0 which contradicts the con-

dition that E(x, y, z) 6= 0 if (x, y, z) 6= (0, 0, 0). Therefore,

det(â, b̂, ĉ) = (π1 + ρ2)2 − π2ρ23 6= 0.

Because of

det(â, b̂, âĉ) = det(â, b̂, b̂ĉ) = 0,

we can further assume that ρ3 = 0.

The third transformation

â = a, b̂ = π1a+ π2b, ĉ = π2c,

is valid since det(â, b̂, ĉ) = π2
2 and E(0, 1, 0) = −π2 6= 0. This time âĉ = π2b̂,

therefore we can also assume that π1 = 0.

Finally, we may assume that ρ2 ∈ {0, 1}: in the case ρ2 6= 0 we can apply the

transformation

â = ρ−12 a, b̂ = b, ĉ = ρ−12 c,

after which ρ̂2 = 1.

In this class the multiplication is given by Table 4 with λ = −π2, µ = ρ1 and

ω = ρ2.

· a b c

a 0 c −λb
b −c 0 µa+ ωb

c λb −µa− ωb 0

Table 4. The third case: (σ, τ) = (0, 1), ω ∈ {0, 1}, x2µ+ y2λ+

z2 + xyω 6= 0 if (x, y, z) 6= (0, 0, 0).

The system of equations for the third class is as follows:

D = z1U + z2V + z3W 6= 0,

Uµ = z1, V λ = z2, W = z3,

x3ω = y3ω = (z3 − 1)ω = 0,

AKµ+BLλ+ CM + x2y1ω = 0;
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λ̂y1 = (x3z2 − x2z3)µ,

λ̂y2 = (x1z3 − x3z1)λ− x2ω,

λ̂y3 = x2z1 − x1z2,

µ̂x1 = (y2z3 − y3z2)µ− y1ω,

µ̂x2 = (y3z1 − y1z3)λ,

µ̂x3 = y1z2 − y2z1.

The equation J(a, b, c) = 0 determines which three-dimensional zeropotent alge-

bras are Lie:

Proposition 3.1. An algebra with the multiplication given by Table 1 is a Lie

algebra if and only if

π3ρ1 − π1ρ3 = ρ2σ, π2ρ3 − π3ρ2 = π2σ and π3σ = (π1 + ρ2)τ.

An algebra with the multiplication from Table 2 is Lie if and only if

π1ρ3 = π2ρ3 = 0.

An algebra with the multiplication from Table 3 is Lie if and only if

π2 6= 0, π3 = ρ2 = 0 and ρ3 = 1.

An algebra with the multiplication from Table 4 is Lie if and only if

ω = 0.

Remark 3.2. It is not difficult to prove that all algebras from the classes (1, 0)

and (0, 1) are simple, having no non-trivial ideals.

4. Classification within the first class (0, 0)

The dimension of the subalgebra lin(AA), the linear span of the set of all prod-

ucts ab, a, b ∈ A, is either 0, 1 or 2. These dimensions are invariant under isomor-

phisms.

The case dim lin(AA) = 0 corresponds to the zero algebra:

Algebra ZA1 : 0 0 0 0 0 0 0 0

Now let us examine the second possibility, dim lin(AA) = 1.

The products ac and bc in Table 2 are linearly dependent, i.e.,

π1ρ2 − π2ρ1 = π1ρ3 = π2ρ3 = 0.
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If ac 6= 0, then ρ3 = 0. The change of basis

â = xa+ b, b̂ = a, ĉ = c with xπ1 + ρ1 = xπ2 + ρ2 = 0,

results in âĉ = 0. Hence, we may assume that π1 = π2 = 0 and that bc 6= 0.

Now suppose that ρ3 6= 0. The transformation

â = a, b̂ = ρ2b+ ρ3c, ĉ = b

gives ρ̂3 = 0, therefore, ρ3 = 0 can be taken as a new invariant.

From the system of equations for the first class we can see that any choice of

ρ2 6= 0 implies ρ̂2 6= 0. The transformation

â = a, b̂ = ρ1a+ ρ2b, ĉ = ρ−12 c

fixes ρ̂2 = 1 and ρ̂1 = 0.

For a reason which will be clarified later, we change the basis once more to

â = b, b̂ = b− a, ĉ = c.

Thus we get the algebra

Algebra ZA2(0) : 0 0 1 0 0 1 0 0

The reason for the additional zero in ZA2(0) will also be explained later.

In the remaining case when ρ2 = 0, the transformation

â = a, b̂ = ρ−11 b, ĉ = c,

yields new invariants ρ̂1 = 1 and ρ̂2 = 0. The corresponding algebra is

Algebra ZA3 : 0 0 0 0 0 1 0 0

Now let dim lin(AA) = 2. The products ac and bc from Table 2 are linearly

independent. The conditions

Uρ1 − V π1 = Uρ2 − V π2 = Uρ3 = 0

from the system of equations for the first class are equivalent to Ubc = V ac, which

implies U = V = 0 and x3 = y3 = 0. Note thatW 6= 0 sinceD = z1U+z2V+z3W 6=
0.

If ρ3 6= 0, then x2 = 0 and x1y2z3 6= 0. The transformation

â = a, b̂ = ρ−13 b, ĉ = c,

gives ρ̂3 = 1. Thus, we can choose a new invariant ρ3 = 1.

If π2 6= 0, we can use the following formulation:

â = a, b̂ = π1π
−1
2 a+ b, ĉ = π−12 (π2

1π
−1
2 + ρ1)a+ π−12 (π1 + ρ2)b+ π−12 c,



CLASSIFICATION OF THREE-DIMENSIONAL ZEROPOTENT ALGEBRAS 137

while if π2 = 0, we can define

â = a, b̂ = b, ĉ = π−11 ρ1a+ π−11 ρ2b+ π−11 c,

thus obtaining the following algebras:

Algebra ZA4 : 0 0 0 1 0 0 0 1

Algebra ZA5 : 0 0 1 0 0 0 0 1

From now on we can suppose that ρ3 = 0, which implies ρ̂3 = 0 and π1ρ2 6= π2ρ1.

The system of equations determining the first class is thus significantly simplified:

z3(x1y2 − x2y1) 6= 0;

π̂1 = z3(x1y2 − x2y1)−1
(
y2(x1π1 + x2ρ1)− y1(x1π2 + x2ρ2)

)
,

π̂2 = z3(x1y2 − x2y1)−1
(
x1(x1π2 + x2ρ2)− x2(x1π1 + x2ρ1)

)
,

ρ̂1 = z3(x1y2 − x2y1)−1
(
y2(y1π1 + y2ρ1)− y1(y1π2 + y2ρ2)

)
,

ρ̂2 = z3(x1y2 − x2y1)−1
(
x1(y1π2 + y2ρ2)− x2(y1π1 + y2ρ1)

)
.

Now suppose that ρ2 6= 0 and that no change of the basis results in ρ̂2 = 0. Then,

for any choice of W 6= 0 the following system

x1y2 − x2y1 = W, x1(y1π2 + y2ρ2)− x2(y1π1 + y2ρ1) = 0

is not solvable. This happens precisely when it has a zero determinant

y21π2 + y1y2(ρ2 − π1)− y22ρ1 = 0

for all y1, y2 ∈ F. Therefore, π2 = ρ1 = ρ2 − π1 = 0. After the transformation

â = a, b̂ = b, ĉ = π−11 c

we get the algebra

Algebra ZA6 : 0 0 1 0 0 0 1 0

On the other hand, if there is a basis in which ρ2 = 0, we can take this ρ2 as a new

invariant. In the basis

â = ρ1a, b̂ = b, ĉ = c,

ρ̂1 = 1 and ρ1 = 1 can be also taken as an invariant. Since π̂1 = z3π1, the cases

π1 6= 0 and π1 = 0 define non-isomorphic algebras.

If π1 6= 0, we have π̂1 = 1 in the basis

â = a, b̂ = b, ĉ = π−11 c,
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and we can take another invariant π1 = 1. The simplified system of equations

for the first class shows that the algebras with different π2 are non-isomorphic.

Alternatively, we could use [2, Proposition 2.1] to show that for the matrices

A1 =


1 0 0

−1 −λ1 0

0 0 0

 and A2 =


1 0 0

−1 −λ2 0

0 0 0


there exists an invertible matrix X such that A2 det(X) = X>A1X if and only if

λ1 = λ2.

In this way we obtain a family of algebras which we denote as

Algebra ZA2(λ 6= 0) : 0 0 1 λ 0 1 0 0

since for λ = 0 the above formulation would give us the algebra which was previously

denoted as ZA2(0).

In the case when π1 = 0, the simplified system of equations implies that π̂2 =

z23π2 and the result depends on the quadratic character of π2. There exist two

alternatives, i.e.

Algebra ZA7 : 0 0 0 1 0 1 0 0

and

Algebra ZA8(λ) :

0 0 0 λ 0 1 0 0

λ is not a square in F
ZA8(λ1) ∼= ZA8(λ2)

⇐⇒ ∃z ∈ F : λ2 = z2λ1.

Again, the isomorphic pairs could be determined using [2, Proposition 2.1].

5. Classification within the second class (1, 0)

Firstly, we shall classify Lie algebras; these are the algebras with

π2 6= 0, π3 = ρ2 = 0, ρ3 = 1.

The transformation

â = a, b̂ = b, ĉ = π−12 c

results in π̂2 = 1 and we can take π2 = 1 as an invariant.

We shall rename the only remaining parameter ρ1 by λ.

If there is a basis in which λ = 0, we get the algebra

Algebra ZA9 : 1 0 0 1 0 0 0 1
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In the remaining cases λ 6= 0 and no transformation yields λ̂ = 0. Since the choice

of basis

â = a, b̂ = b, ĉ = λ
2a+ c if chrF 6= 2

results in λ̂ = 0, we conclude that chrF = 2. Another transformation

â = a, b̂ = ya+ b, ĉ = yb+ c, y ∈ F

shows that λ cannot be a square, therefore the field F is not finite. After some

routine work with the system of equations for the second class we get the following

description

Algebra ZA10(λ) :

1 0 0 1 0 λ 0 1

chrF = 2

λ is not a square in F
ZA10(λ1) ∼= ZA10(λ2)⇔
∃x, y ∈ F : λ22 = x2λ1 + y2

From now on we can suppose that the algebras are strictly non-Lie, i.e., at least

one of the conditions

π2 6= 0, π3 = ρ2 = 0, ρ3 = 1,

does not hold.

Before continuing our classification we shall investigate how many two-dimensional

subalgebras exist in such an algebra. Suppose that the pair

p = x1a+ x2b+ x3c, q = y1a+ y2b+ y3c

forms a basis of a subalgebra. At least one of the determinants U , V or W must

be non-zero. A necessary and sufficient condition for the span lin{p, q} to be a

subalgebra is that

det(p, q, pq) = 0 = E(U, V,W ) = U2ρ1 − V 2π2 − VWπ3 + UW (ρ3 + 1) + UV ρ2.

The span lin{a, b} is a subalgebra if x3 = y3 = 0. If this is not the case, we may

assume that

p = x1a+ x2b, q = y1a+ y2b+ c;

U = x2, V = −x1, W = x1y2 − x2y1; x1 6= 0 or x2 6= 0.

If x2 = 0, we may require that x1 = 1 and y1 = 0. With the new notation z = y2

we get

p = a, q = zb+ c, det(p, q, pq) = −π2 + zπ3.
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If x2 6= 0, we may take x2 = 1 and y2 = 0. In the new notation y = y1 and x = x1,

p = xa+ b, q = ya+ c;

det(p, q, pq) = ρ1 − x2π2 − xyπ3 − y(ρ3 + 1)− xρ2.

Therefore, if there is another two-dimensional subalgebra besides lin{a, b}, at least

one of the following equations is solvable:

zπ3 = π2, (ρ3 + 1 + xπ3)y = ρ1 − xρ2 − x2π2.

Since the existence of subalgebras is invariant under isomorphisms, we may follow

the classification by determining non-Lie algebras with only one two-dimensional

subalgebra. For such algebras the following conditions must hold:

(a) at least one of the conditions π2 6= 0, π3 = ρ2 = 0 or ρ3 = 1 is not true;

(b) π3 = 0 6= π2;

(c) ρ3 + 1 + xπ3 = 0 6= ρ1 − xρ2 − x2π2 for all x ∈ F.

These conditions imply that π3 = 0 and that ρ3 = −1. We shall take π3 and ρ3 for

new invariants.

Firstly, suppose that chrF = 2. By (a), ρ2 6= 0 and the transformation

â = π−12 ρ2a, b̂ = b, ĉ = ρ−12 c

yields new invariants π̂2 = ρ̂2 = 1. Solving the system of equations for the second

class gives

Algebra ZA11(λ) :

1 0 0 1 0 λ 1 1

chrF = 2

∀x ∈ F : λ+ x+ x2 6= 0

ZA11(λ1) ∼= ZA11(λ2)⇔
∃x ∈ F : λ2 = λ1 + x+ x2

It remains to examine the case chrF 6= 2. The change of basis

â = π−12 a, b̂ = − 1
2π
−1
2 ρ2a+ b, ĉ = − 1

2ρ2b+ c,

results in π̂2 = 1 and ρ̂2 = 0, hence we may assume that π2 = 1 and that ρ2 = 0.

A straightforward calculations yield the algebras

Algebra ZA12(λ) :

1 0 0 1 0 λ 0 −1

chrF 6= 2

λ is not a square in F
ZA12(λ1) ∼= ZA12(λ2)⇔
∃x ∈ F : λ2 = x2λ1
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From now on we shall investigate non-Lie algebras with more than one subalge-

bra. In this setting:

(d) at least one of the conditions π2 6= 0, π3 = ρ2 = 0 or ρ3 = 1 is false;

(e) at least one of the equations

zπ3 = π2, (ρ3 + 1 + xπ3)y = ρ1 − xρ2 − x2π2

is solvable.

Suppose first that π2 6= 0 and that π̂2 6= 0 regardless of the choice of a basis. The

transformation

â = a, b̂ = b, ĉ = π2π3
−1a+ π2b+ π3c

gives π̂2 = 0, hence π3 = 0 (and π2ρ3 6= 0) is true in an arbitrary basis. Another

transformation

â = ρ1a+ (ρ3 + 1)c, b̂ = ρ2(π2ρ3)−1a− ρ−13 b, ĉ = ρ1(ρ3 + 1)−1ρ3a+ ρ2b+ ρ3c

yields π̂2 = 0. Since

det(â, b̂, ĉ) = ρ22(ρ3 + 1)(π2ρ3)−1,

this implies that ρ2(ρ3 + 1) = 0 and ρ̂2(ρ̂3 + 1) = 0 for all changes of the basis.

The following transformation

â = a, b̂ = a+ b, ĉ = π2b+ c

makes ρ̂2(ρ̂3 + 1) = π2(1 − ρ23). Thus, ρ23 = 1. By (d), ρ2 = 0 implies ρ3 6= 1,

therefore ρ3 = −1 and chrF 6= 2. The conclusion ρ3 = −1 also follows from ρ2 6= 0.

Thus, we got π3 = 0 and ρ3 = −1, together with the following two demands:

(f) at least one of the conditions ρ2 = 0 or ρ3 = 1 is false;

(g) the equation ρ1−xρ2−x2π2 = 0 is solvable, i.e., there is a ϕ ∈ F such that

ρ1 − ϕρ2 − ϕ2π2 = 0.

If chrF = 2, the condition (f) implies that ρ2 6= 0. In this case the transformation

â = (ρ2 + ϕπ2)b+ c, b̂ = ϕa+ b, ĉ = a

results in π̂3 = ρ2 6= 0, which is not true. Hence chrF 6= 2. The transformation

â = (ρ2 + ϕπ2)b− c, b̂ = ϕa+ b,

ĉ = −π−12 (π2ρ2ϕ+ 2π2ρ1 + ρ22)a+ π2ϕb+ c

defines a new basis if det(â, b̂, ĉ) = −π−12 (4π2ρ1 + ρ22) 6= 0. In this basis π̂2 = 0,

therefore 4π2ρ1 + ρ22 = 0.
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A straightforward calculation using the system of equations for the second class

shows that no other transformation of the basis gives π̂2 = 0.

To further simplify the multiplication table, use

â = a, b̂ = −ρ2(2π2)−1a+ b, ĉ = −ρ2(2π2)−1b+ π−12 c

to get π̂2 = 1 and ρ̂1 = ρ̂2 = 0 and the new algebra

Algebra ZA13 :
1 0 0 1 0 0 0 −1

chrF 6= 2

It remains to investigate the case of non-Lie algebras with more than one sub-

algebra and with π2 = 0 in a suitable basis. In this case π2 will be considered an

invariant. Conditions (d) and (e) are automatically fulfilled. Also, we should not

forget that 0 = π2ρ3 6= π3ρ2.

The transformation

â = π−13 a, b̂ = ρ1ρ
−1
2 a+ b, ĉ = ρ−12 c

yields another three invariants π3 = ρ2 = 1 and ρ1 = 0. We shall rename the only

remaining parameter ρ3 as λ.

The system of equations for the second class shows that the multiplication table

is preserved by the following transformation:

â = (1 + x2 + x3 − x2λ)a+ x2b+ x3c,

b̂ = (x3 − x2λ)a+ (1 + x2 + x3)b+ (x3λ− x2)c,

ĉ = x2a− x3b+ (1 + x2 + x3 − x3λ)c,

with x22 + x3 − x2x3λ+ x2x3 + x23 + x2 = 0.

Any such transformation yields λ̂ = λ, hence all these algebras are non-isomorphic.

Thus we obtained

Algebra ZA14(λ) : 1 0 0 0 1 0 1 λ
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6. Classification within the third class (0, 1)

Firstly suppose that we are dealing with the non-Lie case ω = 1. A simple

calculation using the system of equations for the third class yields the algebras

Algebra ZA15(λ, µ) :

0 1 0 − λ 0 µ 1 0

x2µ+ y2λ+ z2 + xy 6= 0

if (x, y, z) 6= (0, 0, 0)

ZA15(λ1, µ1) ∼= ZA15(λ2, µ2)⇔
∃x, y ∈ F : λ2 = ∆, µ2 = λ1µ1∆−1;

∆ = x2λ1 + y2µ1 − xy 6= 0

In the Lie case with ω = 0, we obtain the algebras

Algebra ZA16(λ, µ) :

0 1 0 − λ 0 µ 0 0

x2µ+ y2λ+ z2 + xy 6= 0 if (x, y, z) 6= (0, 0, 0)

ZA16(λ1, µ1) ∼= ZA16(λ2, µ2)⇔
∃x1, x2, x3, y1, y2, y3 ∈ F :

λ2 = x21λ1 + x22µ1 + x23λ1µ1,

µ2 = y21λ1 + y22µ1 + y23λ1µ1;

x1y1λ1 + x2y2µ1 + x3y3λ1µ1 = 0,

(x2y3 − x3y2, x3y1 − x1y3, x1y2 − x2y1) 6= (0, 0, 0)

7. Special cases

As a consequence of our classification, we may formulate some results of inde-

pendent interest.

Theorem 7.1. Each three-dimensional Lie algebra is isomorphic to one of the

following algebras:

ZA1, ZA2(λ), ZA3, ZA6, ZA7, ZA8(λ), ZA9, ZA10(λ), ZA16(λ, µ).

Observation 7.2. The complete list of three-dimensional zeropotent algebras over

an arbitrary field is as follows:

ZA1, ZA2(λ), ZA3, ZA4, ZA5, ZA6, ZA7, ZA9, ZA14(λ).

The algebras over special fields are:

ZA8(λ), ZA10(λ), ZA11(λ), ZA12(λ), ZA13,ZA15(λ, µ), ZA16(λ, µ).

There is only one algebra of the type ZA8(λ) and only one of the type ZA12(λ)

over a field with characteristic different from two since the quotient of two non-

square elements is a square. In characteristic 2 every element is a square, hence
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there are no algebras of the type ZA10(λ). The same holds for the algebras of the

type ZA12(λ).

The trace of an element λ ∈ F is

tr(λ) = λ+ λ2 + . . .+ λ2
n−1

.

If x2 + x + λ = 0 for some x ∈ F, then tr(λ) = 0, otherwise tr(λ) = 1. If

ZA11(λ1) and ZA11(λ2) are two different algebras, then tr(λ1) = tr(λ2) = 1 and

tr(λ1 + λ2) = 0 due to additivity of the trace. Hence, there exists an x ∈ F such

that x2 +x+λ1 +λ2 = 0 and the algebras ZA11(λ1) and ZA11(λ2) are isomorphic.

ZA13 is one algebra over a field with characteristic different from 2. As already

said, there are no algebras in the third class (0, 1).

Since the number of the algebras which exist over any finite field F = GF(pn) is

2pn + 7, we can make the following conclusion.

Theorem 7.3. The number of zeropotent algebras over a finite field GF(pn) is

2n+1 + 8 if p = 2 and 2pn + 10 otherwise.

If the underlying field is algebraically closed, there are no algebras in the third

class (0, 1) which implies:

Theorem 7.4. The complete list of three-dimensional zeropotent algebras over an

algebraically closed field:

ZA1, ZA2(λ), ZA3, ZA4, ZA5, ZA6, ZA7, ZA9, ZA13, ZA14(λ).

The algebra ZA13 is included only if chrF 6= 2.

As expected, this result agrees with [2, Theorem 8.1]. Our simplified notation

Algebra ZA : σ τ π1 π2 π3 ρ1 ρ2 ρ3

corresponds to the matrix

A =


ρ1 ρ2 ρ3

−π1 −π2 −π3
σ 0 τ


(called the structure matrix in [2]) which determines a multiplication in the algebra

with the same name A.
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Using [2, Corollary 2.3] we find the following correspondence:

A in [2] A0 A1 A2 A3 A4(0) A4(a 6= 0)

ZA here ZA1 ZA3 ZA2(0) ZA6 ZA7 ZA2(λ 6= 0)

A in [2] A5 A6 A7(0) A7(a 6= 0) A8 A9

ZA here ZA4 ZA5 ZA9 ZA14(λ 6= 3) ZA13 ZA14(3)

In the case of real numbers it is obvious that the only algebras in the classes

(0, 0) and (0, 1) there are the algebras ZA8(−1), ZA12(−1) and ZA13.

Sylvester’s criterion shows that x2µ+ y2λ+ z2 + xyω 6= 0 for (x, y, z) 6= (0, 0, 0)

exactly when λ > 0, µ > 0 and 4λµ > ω.

The multiplication tables for the algebras ZA15(λ, µ) and ZA16(λ, µ) can be

simplified by the following transformation:

â = λ−1/2a, b̂ = yb, ĉ = yλ−1/2c,

where y 6= 0 and (y − λ1/2))ω = 0. This results in λ̂ = 1 and µ̂ = y2µ.

If ω = 1, we get a one-parameter family of non-isomorphic algebras ZA15(1, µ >
1
4 ). In the case ω = 0, we can choose y = µ−1/2 in order to get µ̂ = 1 and thus

obtain the usual algebra of geometric three-dimensional vectors equipped with the

cross product, i.e., A16(1, 1).

Theorem 7.5. A three-dimensional zeropotent algebra over the field of real num-

bers is isomorphic to one of the following algebras:

ZA1, ZA2(λ),ZA3, ZA4, ZA5, ZA6, ZA7, ZA8(−1), ZA9,

ZA12(−1), ZA13,ZA14(λ), ZA15(1, µ > 1
4 ),ZA16(1, 1).

The result agrees with [4, Theorem 6.1]. The correspondence is as follows:

A in [4] A0 A1 A2 A3 A5 A6 A8 A9

ZA here ZA1 ZA3 ZA2(0) ZA6 ZA4 ZA5 ZA13 ZA14(3)

A in [4] Aα4 (0) Aα4 (a > 0) Aβ4 (0) Aβ4 (a > 0)

ZA here ZA8(−1) ZA2(−a−2) ZA7 ZA2(a−2)

A in [4] Aα7 (0) Aα7 (0 < a < 2) Aα7 (2) Aα7 (a > 2)

ZA here ZA16 ZA15(1, a−2) ZA12(−1) ZA14(3− a2)

A in [4] Aβ7 (0) Aβ7 (a > 0) Aγ7(0 < a ≤ 2)

ZA here ZA9 ZA14(3 + a2) ZA14(3− a2)
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