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Abstract. Concrete categories of functorial coalgebras are derived from given

concrete categories under a certain commutativity condition satisfied by the

underlying forgetful functor and endofunctors of its domain and codomain.

When the base category is topological, so is that of functorial coalgebras when

in addition to the commutativity condition the endofunctor of its domain pre-

serves initial sources. We investigate the connection between fibres of objects

in the topological category of coalgebras and those of the topological base cat-

egory as well as some generalizations of the coalgebraic topological functor.
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1. Introduction

Categories of structures with which general topology concerns itself are categories

C together with an underlying functor T : C→ X which is a forgetful functor, where

X is usually the category of sets or some other algebraic category. The common and

characteristic feature of all these categories is that C admits initial structures with

respect to T . The category C is then concrete over X, since in this case T is faithful

(see [2,4,5,6,7,8,9,10]) and the pair (C, T ) is then called a topological category over

X, as well as the functor T . When C is taken to be the category Alg(Σ) of algebras

over a given signature Σ and X is that of sets and mappings, the forgetful functor

to sets does not have this property unless Σ = ∅ [2, Example 21.20]. Therefore,

generally the forgetful functor from a category of algebras of an endofunctor of a

given category to itself is not topological. This is the reason why in this paper we

find conditions under which a category of coalgebras over a topological category is

topological too.

Intuitively topological functors are relativised complete preorders. This can be

seen in many places throughout the literature: for example, in the various com-

pletion processes by which a faithful functor may be turned into a topological one

[8], which corresponds to the constructions by which a poset may be turned into a

complete lattice, and indeed reduce to these constructions when X = 1 [6]. From a
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topological functor one can obtain many others. For instance, when T is topological

and J is a category, then so is the induced functor T J : CJ → XJ [14]. Moreover,

in [18], it is shown that one of the conditions under which the category C inherits

from a category X the property that all descent morphisms in X are effective is that

C be regular, X have coequalizers and there exists a topological functor C → X.

Moreover, topological functors are faithful, amnestic, transportable and have left

and right adjoints [2,5]. In this paper some of the results that we obtain are based

on Strong Mono-topological categories (in the coalgebraic setting), where Strong

Mono denotes the conglomerate of all strong mono-sources. Monotopological cat-

egories were introduced by Nel in [15] as initially structured categories, as a gen-

eralization of topological categories in order to include other important categories,

such as the category Haus of Hausdorff spaces (and continuous maps). Using results

of Herrlich from [7], Schwarz has shown in [17] that a category is monotopologi-

cal if and only if it is (concretely isomorphic to) an epi-reflective subcategory of

some topological category [16]. M-topological functors are well-known examples

of so-called topologically algebraic functors which were introduced by Y.H. Hong

[10,11] as a generalization of topological functors and which aimed at the study

of topological algebras [5]. The results that we obtain here concerning categories

of coalgebras, for instance the main one showing that provided that a topological

functor and endofunctors of both its domain and its codomain satisfy some reason-

able conditions the functor induced between corresponding categories of coalgebras

is also topological, yield new tools for future investigations in the framework of

topological categories.

The paper is organized as follows. Section 2 is devoted to preliminaries. Here,

we give basic concepts and results that will be needed throughout our work and

deal with factorization structures in categories of coalgebras. We show that in

case C is an (Epi, Strong Mono)-category and F : C → C is a functor which

preserves strong mono-sources, then so is the category CF of F -coalgebras and

homomorphisms between them. In Section 3, we investigate topological functors,

topological categories and give some basic definitions and results. In particular,

we show that every topological functor preserves strong mono-sources, and hence

strong monos. A functor T : C → X and endofunctors F and G of C and X,

respectively, are said to satisfy the global commutativity if G ◦ T = T ◦ F . We

investigate endofunctors that preserve intiality as well as properties of concrete

categories of coalgebras, most of which are related to the global commutativity, and

we find and build examples of such endofunctors. These are the major conditions

needed to obtain topological categories of coalgebras. Section 4 is the bare-bone of
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the paper. Here we show that if T : C→ X is a topological functor and F and G are

endofunctors of C and X, respectively, satisfying the global commutativity and such

that F preserves T -initial sources, then the functor TF,G : CF → XG that associates

ϕ : (A,α) → (B, β) with T (ϕ) : (T (A), T (α)) → (T (B), T (β)) is also topological.

We also discuss the transfer of completeness from underlying topological categories

to those of coalgebras and investigate the connection between fibres of objects in the

topological category of coalgebras and those of the topological base category. To

end this section and the paper as well, we find conditions under which the functor

TF,G is Strong Mono-topological.

2. Preliminaries

All categories in this paper are to be considered in the sense of [2]. Here and

throughout the paper, C is a category and F : C→ C a functor. In this section we

recall some definitions and a few things that we need to refer to.

A coalgebra (of type F ) is a pair A = (A,α : A → F (A)). α (resp. A) is called

the cooperation, structure morphism or dynamics (resp. carrier) of (A,α). An

F -morphism (or a morphism) from (A,α) to (B, β) is a morphism ϕ : A → B

such that F (ϕ) ◦ α = β ◦ ϕ. With morphisms between them, coalgebras form a

category [1,3]. Denote it by CF and by UF : CF → C the coalgebraic forgetful

functor sending ϕ : (A,α)→ (B, β) to ϕ : A→ B. CF has all colimits that exist in

C and all limits that are preserved by F , all of which are created by UF . Thus in

particular epis (isos) in the former are carried by epis (isos) in the latter [1]. When

UF has a right adjoint (or, equivalently, F generates a cofree comonad, or, UF is

comonadic (see e.g. [12])), F is called a covarietor, see e.g. [1,3].

Given a category X, a concrete category over X is a pair (C,T), where T : C→ X

is a faithful functor. Sometimes T is called the forgetful (or underlying) functor

of the concrete category and X is called the base category for (C,T). In case X =

Set, (C, T ) is called a construct. In the sequel, the results about concrete categories

in the abstract setting and all the definitions can be found, for instance, in [2,5,9].

Examples of concrete categories abound in [2, Examples 5.2] and [5]. Because of the

faithfulness of T , for all morphism f : A → B in C, the morphism T (f) : T (A) →
T (B) will also be denoted by f . An object A in C is called discrete whenever, for

each object B, every morphism T (A) → T (B) is a morphism in C. Likewise, A is

called indiscrete whenever, for each object B, every morphism T (B) → T (A) is a

morphism in C.

The fibre of an object X in X is the preordered class consisting of all objects

A in C with T (A) = X ordered by: A ≤ B if and only if idX : T (A) → T (B) is
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a morphism in C. Objects A and B in C are said to be equivalent provided that

A ≤ B and B ≤ A.

Recalling that a partially ordered class (L,≤) is called a large complete lattice

provided that every subclass of L has a meet and a join, (C, T ) is said to be fibre-

complete provided that its fibres are (possibly large) complete lattices. It is called

fibre-small provided that each of its fibres is small, i.e., a preordered set, and it is

said to be fibre-discrete provided that its fibres are ordered by equality.

A functor T : C→ X is said to reflect identities provided that for every object A

and every morphism k in C, if T (k) is an identity in X, then k must be an identity

in C and T (resp. (C, T ) for T faithful) is called amnestic provided that if k is an iso

in C and T (k) is an identity in X, then k must be an identity in C (resp. the fibres

of T are partially ordered classes; i.e., no two different objects in C are equivalent).

Likewise, (C, T ) is said to be (uniquely)transportable provided T is so; i.e., for every

object A in C and every iso k : T (A)→ X in X, there exists a (unique) object B in

C with T (B) = X such that k : A→ B is an iso in C. For example, the skeleton of

the category Vec (of real vectors spaces and homomorphisms between them) formed

by all spaces Rm is a construct which is amnestic but not transportable, see [2] from

which the following can be extracted:

Proposition 2.1. A concrete category (C, T ) over X is fibre-discrete if and only if

T reflects identities. Moreover, a concrete category is uniquely transportable if and

only if it is transportable and amnestic.

It is clear that a functor that reflects identities is amnestic. Thus for a concrete

category, fibre-discrete implies amnestic. The following is immediately checked:

Example 2.2. The concrete category (CF , UF ) over C is fibre-discrete, hence

amnestic. Also, UF reflects both isos and identities and is transportable, hence

it is uniquely transportable by Proposition 2.1. Moreover, for any object A in C,

there exists a bijective correspondence between the underlying class of the fibre of

A and the set Hom(A,F (A)). Hence (CF , UF ) is fibre-small. It is fibre-complete

just in case each fibre has one element, i.e., |Hom(A,F (A))| = 1 for each object A

in C.

Let T : C→ X be a functor and X ∈ X.

A T -structured arrow with domain X is a pair (f, C) consisting of an object C ∈ C

and a morphism f : X → T (C). A T -structured source is a pair (X, (fi, Ci)i∈I) that

consists of an object X ∈ X and a family of T -structured arrows fi : X → T (Ci)

with domain X, indexed by some class I. A source S = (fi : C → Ci)i∈I in C is
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called T -initial provided that for each source T = (gi : A → Ci)i∈I in C and each

morphism h : T (A)→ T (C) with T (T ) = T (S) ◦ h there exists a unique morphism

h̄ : A→ C in C with T = S ◦ h and h = T (h).

A

h
��

gi

  
C

fi

// Ci

T (A)

T (h)=h

��

T (gi)

##
T (C)

T (fi)

// T (Ci)

By a T -initial morphism in C is meant a 1-source f : A→ B in C that is T -initial.

The dual notions are those of T -costructured arrow, T -costructured sink, T -final

sink and T -final morphism.

Remark 2.3. ([2, Examples 10.58]) (1) If (C, T ) is a concrete category over X,

then T -initial sources in C are precisely initial sources in (C, T ).

(2) Let 1 denote the category consisting of one object and one morphism. Then for

the unique functor T : C→ 1, T -initial sources are precisely the products in C.

Let T : C → X be a functor, E a class of T -structured arrows and M a con-

glomerate (i.e. a collection) of sources in C both closed under composition with

isomorphisms. The notions of factorization structure (E ,M) for T and equiva-

lently of T being an (E ,M)-functor are to be considered in the sense of [2,5,9].

Thus each T -structured source decomposes into an E-morphism followed by a T -

structured M-source, and T has the unique (E ,M)-diagonalization property ; i.e.,

whenever f : X → T (A) and e : X → T (B) are T -structured arrows with e ∈ E
and (mi : A → Ai)i∈I ∈ M and (fi : B → Ai)i∈I are sources in C, such that

((T (mi) ◦ f) = (T (fi)) ◦ e for each i ∈ I, then there exists a unique diagonal, i.e.,

a morphism d : B → A with f = (T (d)) ◦ e and fi = mi ◦ d for each i ∈ I. C is an

(E ,M)-category if and only if IdC is an (E ,M)-functor.

Let (Strong) Mono denote the conglomerate of all (strong) mono-sources in a

given category. This means that Mono consists of all sources S = (mi : X → Xi)i∈I

such that mi ◦ f = mi ◦ g for all i ∈ I implies f = g, and Strong Mono consists of

all mono-sources S = (mi : X → Xi)i∈I such that when we have an epi e : Y → Z,

a morphism g : Y → X and a source R = (hi : Z → Xi)i∈I with S ◦ g = R◦ e, then

there is a (unique) morphism t : Z → X with t ◦ e = g and S ◦ t = R. A 1-strong

mono-source in C is called a strong mono. Set is an (Epi, Mono)-category, and this

is the only nontrivial factorization structure for Set [2, Example 15.3]. Since in Set

Mono = Strong Mono, it is an (Epi, Strong Mono)-category.
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Observe that for E = Epi and M = Strong Mono, if the category has (E ,M)-

factorizations, then it is automatically an (E ,M)-category.

Lemma 2.4. If C is an (Epi,Strong Mono)-category and F preserves strong mono-

sources, then strong mono-sources in CF are precisely the sources carried by strong

mono-sources in C.

Proof. Let S = (mi : (A,α)→ (Ai, αi))i∈I be a source in CF . Assume that UF (S)

is a strong mono-source in C and let h : (C, γ) → (D, δ), f : (C, γ) → (A,α),

and K = (di : (D, δ) → (Ai, αi))i∈I be an epi, a morphism and a source in CF ,

respectively, such that K ◦ h = S ◦ f . Then one has UF (K) ◦ h = UF (S) ◦ f
with h an epi in C. Thus there is a diagonal fill-in d : D → A in C such that

d ◦ h = f and UF (S) ◦ d = UF (K). Since h is an epi in C, one easily checks that

d : (D, δ) → (A,α) is a morphism in CF and that S ◦ d = K. Conversely, if S is a

strong mono-source in CF , factorize UF (S) in C as an epi e : A→ B followed by a

strong mono-sourceM = (ti : B → Ai)i∈I . Since F preserves strong mono-sources,

F (M) := (F (ti) : F (B) → F (Ai))i∈I is a strong mono-source in C. Moreover by

setting R := (αi ◦ ti : B → Ai)i∈I , one has R ◦ e = F (M) ◦ F (e) ◦ α. Thus the

diagonal fill-in yields a unique morphism β : B → F (B) such that β ◦ e = F (e) ◦ α
and F (M) ◦ β = R; i.e., β ◦ e = F (e) ◦ α and F (ti) ◦ β = αi ◦ ti for every i ∈ I. In

other words, e : (A,α)→ (B, β) is an epi and M := (ti : (B, β)→ (Ai, αi))i∈I is a

source in CF carried by a strong mono-source in C such that S = M◦ e. To end

the proof, it suffices to show that e is an iso in CF . Since S is a strong mono-source

in CF , the last equality which can also be rewritten as S ◦ id(A,α) = M◦ e yields

a unique diagonal fill-in u : (B, β) → (A,α) in CF such that u ◦ e = id(A,α) and

S ◦ u =M. Thus e is also a split mono. Hence it is an iso in CF . �

Corollary 2.5. If C is an (Epi,Strong Mono)-category and F preserves strong

mono-sources, then CF is an (Epi,Strong Mono)-category with (Epi,Strong Mono)-

factorizations created by the forgetful functor UF .

Proof. Epis in CF are carried by epis in C and by Lemma 2.4 strong mono-sources

in CF are carried by strong mono-sources in C. Thus since isos in CF are also carried

by isos in C and both Epi and Strong Mono are closed under composition with isos

in C, so they are in CF , and the category CF has (Epi,Strong Mono)-factorizations.

The unique (Epi,Strong Mono)-diagonalization property is immediate from the

definition of Strong Mono-sources. �

Remark 2.6. In case C = Set, every mono is strong and setting F ′(X) = F (X) if

X 6= ∅ and F ′(∅) = ∅ yields a functor F ′ preserving monos and the categories SetF
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and SetF ′ are isomorphic. Moreover strong monos are just 1-strong mono-sources.

Thus we retrieve the following well-known results (see [1, Lemmas 4.11 and 4.12

and Corollary 4.13]) in case C has (epi, strong mono)-factorizations:

(1) If F preserves strong monos, then strong monos in CF are precisely the

morphisms carried by strong monos in C. In particular, in case C = Set, the strong

monos in SetF are precisely the one-to-one homomorphisms.

(2) If C = Set or if F preserves strong monos, then CF has (epi,strong mono)-

factorizations. They are, in fact, created by forgetful functor UF .

3. Topological functors, topological categories and coalgebras

3.1. Some basic definitions and results. A functor T : C→ X is called topolog-

ical provided that every T -structured source (fi : X → T (Ci))i∈I in X has a unique

T -initial lift (fi : C → Ci)i∈I . When the uniqueness condition is dropped, one says

that T is a weak topological functor [14]. A concrete category (C,T) is called topo-

logical provided that T is topological. In this case, there are fully faithful functors

T1 (the discrete functor) and T2 (the indiscrete functor) with T1 a T a T2 and

T ◦ T1 = idX = T ◦ T2 [2, Proposition 21.12]. Likewise, given a conglomerate M

of sources in X, a concrete category (C,T) over an (E ,M)-category X is called M-

topological provided that T is so; i.e., every T -structured source in M has a unique

T -initial lift (see [2, Exercise 21K]). [2, Theorem 21.40] gives a characterization of

such categories. In case M = Mono it is called monotopological.

Example 3.1. (1) The constructs Top (of topological spaces and continuous map-

pings), Rel (of relations and relations preserving mappings), Unif (of uniform spaces

and uniformly continuous functions), PMet (of pseudometric spaces and contrac-

tions) and Prost (of preordered sets and order preserving mappings) are topological.

Moreover, the category TopGrp (of topological groups and continuous homomor-

phisms) is topological if it is considered as concrete over Grp but it is not so over

Top or Set. Considered as a concrete category over Top, the category Unif is M-

topological, where M is the collection of initial mono-sources. The constructs HUnif

(of separated uniform spaces) and Pos (of posets and order preserving mappings)

are monotopological [2, Examples 21.8 and 21.39].

(2) If D is a small category in the sense of [6] with finite limits, and T : C→ X is a

topological functor, then so is T ◦ − : Lex(D,C)→ Lex(D,X). So, as is the forgetful

functor from TopGrp to Grp, that from TopVec (of topological vector spaces and

continuous homomorphisms) to Vec is topological [6, Examples 2.2].
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(3) Examples of topological categories in the fuzzy setting can be found in Section

3 of [14].

Remark 3.2. Cotoplogical is the categorical dual of topological; i.e., a functor

T : C → X is called cotopological provided that every T -costructured sink (fi :

T (Ci) → X)i∈I has a unique T -final lift (fi : Ci → C)i∈I . By a result of Antoine

[4], the functor T is topological if and only if it is cotopological; i.e., T : C → X

is topological if and only if its opposite T op : Cop → Xop is so. See e.g. [5,

Theorem 4.1], [2, Theorem 21.9], [6, Remark 2.3]. This is known as the topological

duality theorem. In the case X = 1, it reduces to the result that a preorder admits

all joins if and only if it admits all meets [6]. Topological functors are faithful,

uniquely transportable and amnestic, see e.g., [5, Theorem 2.2], [2, Theorem 21.3

and Proposition 21.5]. Topological functors reflect epis, but need not reflect isos

and hence that need not reflect equalizers (or finite products) or extremal epis

(i.e. epis that do not factor through any proper subobject of their codomains), as

a result of [2, Theorem 19.14, Examples 13.37 (3) and Exercise 13C]. Also they

do reflect monos thanks to their faithfulness. Weak topological functors lift and

preserve weak limits and weak colimits, see [14] where a characterization thereof is

given.

The behavior of topological functors w.r.t strong monos follows from the next

result.

Lemma 3.3. Let (C, T ) be topological over X. Then T preserves strong mono-

sources. Moreover, a mono-source S in C that is T -initial is a strong mono-source

whenever T (S) is so.

Proof. Let S = (mi : C → Di)i∈I be a strong mono-source in C. Since T is right

adjoint, then by [2, Proposition 18.6] it preserves mono-sources. Thus T (S) :=

(T (mi) : T (C)→ T (Di))i∈I is a mono-source in X. Let e : X → Y , u : X → T (C)

andR = (vi : Y → T (Di))i∈I be an epi, a morphism and a source in X, respectively,

such that R ◦ e = T (S) ◦ u. We need to find a unique morphism δ : Y → T (C) in

X such that T (S) ◦ δ = R and δ ◦ e = u. Now the topologicity of T yields unique

T -initial lifts u : A → C and R = (vi : B → Di)i∈I in C, for the T -structured

1-source u : X → T (C) and the mono-source R, respectively. Thus the morphism

e : T (A) → T (B) and the source S ◦ u in C are such that T (S ◦ u) = T (R) ◦ e.
Therefore by the T -initiality of R, there exists a unique morphism e : A→ B such

that T (e) = e and R◦ e = S ◦u. On the other hand, as a faithful functor T reflects

epis. Therefore e is an epi in C. Thus, since S is a strong mono-source in C, there
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exists a unique diagonal fill-in d : B → C such that d ◦ e = u and S ◦ d = R.

It follows that T (d) : Y → T (C) is a morphism in X such that T (d) ◦ e = u and

T (S) ◦ T (d) = R. The uniqueness of T (d) as morphism satisfying the equations

T (d) ◦ e = u and T (S) ◦ T (d) = R follows from the fact that e is an epi. Hence

T (d) is a good candidate for δ.

Now assume that N = (ni : C → Di)i∈I is a mono-source in C that is T -initial

and T (N ) is a strong mono-source in X and let p : A → C, Q = (qi : B → Di)i∈I

and f : A → B be an epi, a source and a morphism in C, respectively, such that

Q ◦ f = N ◦ p. As a left adjoint, T preserves all colimits and hence epis. Thus

T (f) : T (A)→ T (B) is an epi in X such that T (Q)◦T (f) = T (N )◦T (p). Since T (N )

is a strong mono-source, there exists a unique diagonal fill-in µ : T (B)→ T (C) such

that µ ◦ T (f) = T (p) and T (N ) ◦ µ = T (Q). Therefore the T -initiality of N yields

a unique morphism µ : B → C in C such that T (µ) = µ and N ◦ µ = Q. Now

T (µ ◦ f) = T (µ) ◦ T (f) = µ ◦ T (f) = T (p). Thus the faithfulness of T yields that

µ ◦ f = p. The uniqueness of µ as morphism satisfying the equations µ ◦ f = p and

N ◦ µ = Q follows from the fact that f is an epi. �

Corollary 3.4. Every topological functor T : C → X preserves strong monos and

a mono in C that is T -initial is a strong mono whenever its image under T is so.

In the rest of this paper, we shall deal with functors T : C→ X, F : C→ C and

G : X→ X satisfying two major conditions:

(I) F preserves T -initial sources.

(II) T globally commutes with F and G, i.e. G ◦ T = T ◦ F .

For this reason, we need to show that functors satisfying these conditions exist and

can be built from existing ones. Firstly, we have the following:

Remark 3.5. (1) The class of endofunctors of C that preserve T -initial sources

contains IdC and is stable under composition.

(2) The class of pairs (H,K) where H : C → C and K : X → X are functors

such that K ◦ T = T ◦ H contains at least (IdC, IdX). Moreover, it is closed

under componentwise composition and, if (H,K) lies therein with H and K isos of

categories, then so does the pair (H−1,K−1).

(3) For all functors T : C → X and S : X → C, the following diagram obviously

commutes:

X
S //

T◦S
��

C

S◦T
��

T // X

T◦S
��

X
S
// C

T
// X

.
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(4) For a functor F : C → C and a monad T : C → C, a lifting of F to CT is a

functor FT : CT → CT such that F ◦ UT = UT ◦ FT, where UT : CT → C is the

forgetful functor.

Let D be a category with J-products for some nonempty set J and (Fj : C →
D)j∈J a family of functors. For each object A in C, let pAj : Πj∈JFj(A) → Fj(A)

denote the jth canonical projection of the product Πj∈JFj(A) of the Fj(A)’s in D.

Let f : A→ B be a morphism in C.

Πj∈JFj(A)

pAj
��

Πi∈JFj(f)
// Πj∈JFj(B)

pBj
��

Fj(A)
Fj(f)

// Fj(B)

For the source (Fj(f) ◦ pAj : Πj∈JFj(A) → Fj(B))j∈J , the universal property of

the product yields a unique morphism Πi∈JFj(f) : Πj∈JFj(A)→ Πj∈JFj(B) such

that pBj ◦ Πj∈JFj(f) = Fj(f) ◦ pAj , for each j ∈ J . Obviously the correspondence

Πi∈JFj : C→ D sending f : A→ B to Πi∈JFj(f) is functorial.

By the Internal Topological Characterization Theorem, a concrete category (C, T )

over X is topological if and only if T lifts limits uniquely and (C, T ) has indiscrete

structures; i.e., every object in X has an indiscrete lift [2, Theorem 21.18]. Thus,

the existence of indiscrete structures is a crucial condition for (C, T ) being topo-

logical. These include objects of the form T2(X) for any X in X, where T2 is right

adjoint to T . Constant functors with indiscrete value are examples of T -initial

sources-preserving functors as can be seen through the following that gives a way

of generating such functors.

Lemma 3.6. Let (C, T ) be concrete over X. Then:

(1) Every constant endofunctor of C sends any nonempty source to a T -initial

source. If moreover the constant value is indiscrete, then it sends every

source to a T -initial source.

(2) If C has J-products for some nonempty set J , T preserves J-products and

(Fj : C → C)j∈J is a family of T -initial sources-preserving functors, then

so is the functor Πj∈JFj.

Proof. (1) Let B be an object in C and let CB : C → C be the constant functor

with value B. Let (fi : A → Ai)i∈I be a nonempty source in C and let (gi : C →
CB(Ai))i∈I be a source in C and ρ : T (C) → T (CB(A)) a morphism in X such
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that T (gi) = T (CB(fi)) ◦ ρ for each i ∈ I. Then gi : C → B for each i ∈ I,

ρ : T (C) → T (B) and T (gi) = T (idB) ◦ ρ, i.e., T (gi) = ρ for each i ∈ I. Then

the faithfulness of T yields that for all i, i′ ∈ I, gi = gi′ . Let g be the common

value of the gi’s. Then g : C → B is a morphism in C such that T (g) = ρ and it

is unique again because T is faithful. Assume that in addition B is an indiscrete

object and I = ∅. By Remark 2.3 T -initial sources are precisely initial sources

and by [2, Examples 10.42 (1)] empty initial sources are precisely those with an

indiscrete base object. Thus in this case A is an indiscrete object and since by

assumption its image B under CB is indiscrete too, it follows that CB preserves

empty T -initial sources.

(2) Let (fi : A→ Ai)i∈I be a T -initial source in C. We want to show that its image

(Πj∈JFj(fi) : Πj∈JFj(A) → Πj∈JFj(Ai))i∈I under the functor Πj∈JFj : C → C is

also T -initial in C. We first deal with the case I 6= ∅. Let (gi : C → Πj∈JFj(Ai))i∈I
C

θ

zz

θj

��

gi

$$
Πj∈JFj(A)

pAj

��

Πj∈JFj(fi) // Πj∈JFj(Ai)

p
Ai
j

��
Fj(A)

Fj(fi)

// Fj(Ai)

T (C)

θ

xx

T (gi)

&&
T (Πj∈JFj(A))

T (pAj )

��

T (Πj∈JFj(fi)) // T (Πj∈JFj(Ai))

T (p
Ai
j )

��
T (Fj(A))

T (Fj(fi))

// T (Fj(Ai))

be a source in C and θ : T (C)→ T (Πj∈JFj(A)) a morphism in X such that T (gi) =

T (Πj∈JFj(fi)) ◦ θ, for each i ∈ I. Fix j ∈ J . Then T (pAj ) ◦ θ : T (C) → T (Fj(A))

in X and for each i ∈ I, by the definition of Πj∈JFj , T (Fj(fi)) ◦ T (pAj ) ◦ θ =

T (pAi
j ) ◦ T (Πj∈JFj(fi)) ◦ θ = T (pAi

j ) ◦ T (gi). Thus by the T -initiality of the source

(Fj(fi) : Fj(A) → Fj(Ai))i∈I , there exists a unique morphism θj : C → Fj(A) in

C such that Fj(fi) ◦ θj = pAi
j ◦ gi and T (θj) = T (pAj ) ◦ θ. Thus, for the source

(θj : C → Fj(A))j∈J the universal property of the product in C yields a unique

morphism θ : C → Πj∈JFj(A) such that for each j ∈ J one has θj = pAj ◦ θ. Fix

i ∈ I. Then for each j ∈ J one has:

pAi
j ◦Πj∈JFj(fi) ◦ θ = Fj(fi) ◦ pAj ◦ θ

= Fj(fi) ◦ θj

= pAi
j ◦ gi

and

T (pAj ) ◦ T (θ) = T (pAj ◦ θ)

= T (θj)

= T (pAj ) ◦ θ.
Since the pAi

j ’s and the T (pAj )’s are jointly monic in C and X, respectively, it holds

that Πj∈JFj(fi) ◦ θ = gi and T (θ) = θ, respectively.

Now we assume that I = ∅; i.e., A is an indiscrete object in C and we show that

(Πj∈JFj)(A) := Πj∈JFj(A) is so. Let B be an object in C and let γ : T (B) →
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T (Πj∈JFj(A)) be a morphism. We need to find a morphism γ : B → Πj∈JFj(A)

in C such that T (γ) = γ. The proof is essentially the same as above: it suffices to

replace C with B, θ with γ and ignore the part concerning the family (gi)i∈I . �

For each object A and each nonempty set J , CA × (−)JC maps every morphism

f : B → C of C to idA × fJ : A × BJ → A × CJ . Moreover, obviously identity

functors are T -initial sources-preserving. Thus from Lemma 3.6, the following that

yields examples of initial sources preserving functors is straightforward:

Corollary 3.7. Let (C, T ) be concrete over X. For every nonempty set J such that

C has J-powers, if T preserves J-powers, then the functor (−)JC := Πj∈JFj with

Fj = IdC for each j ∈ J preserves T -initial sources. Moreover, for all object A in

C, the functor CA × (−)JC preserves nonempty T -initial sources and in case A is

indiscrete, that preserves empty ones too.

Example 3.8. Take C = TopGrp and let T be the usual forgetful functor to Grp.

Since Grp is (co)complete with products being “direct products” considered as

sources via projections, [2, Theorem 21.16] implies that so is TopGrp, and prod-

ucts therein are carried by products in Grp (which in turn are carried by products

in Set) since as a right adjoint T preserves all limits. A similar observation holds

for TopVec and Vec. Recalling that products in Set may be formed by taking the

Cartesian product, let the notation of the form Πj∈JXj refer here to the Cartesian

product of sets, or to the Cartesian product equipped with the convenient structure.

If (Fj : C → C)j∈J and (Gj : X → X)j∈J for some nonempty set J are families of

functors such that Gj ◦T = T ◦Fj for each j ∈ J , then (Πj∈JGj)◦T = T ◦(Πj∈JFj)

where T denotes the usual forgetful functor in each of the following cases:

(1) C is a topological construct and X = Set.

(2) C = TopGrp (resp. TopVec) and X = Grp (resp. Vec).

3.2. The functor induced by global commutativity. The correspondence

F : CF → CF defined by (ϕ : (A,α) → (B, β)) 7→ (F (ϕ) : (F (A), F (α)) →
(F (B), F (β))) is functorial and we call it the iteration functor for F . Objects

in (CF )F are pairs ((A,α), θ) where α, θ : A→ F (A) are morphisms in C such that

F (α) ◦ θ = F (θ) ◦ α and a morphism ϕ : ((A,α), θ) → ((B, β), µ) in (CF )F is a

morphism ϕ : (A,α) → (B, β) in CF such that F(ϕ) ◦ θ = µ ◦ ϕ; i.e., a morphism

ϕ : A → B in C such that F (ϕ) ◦ α = β ◦ ϕ and F (ϕ) ◦ θ = µ ◦ ϕ; ϕ is both a

morphism from (A,α) to (B, β) and from (A, θ) to (B,µ). Therefore, there are two

coalgebraic forgetful functors from (CF )F to CF namely, UF : (ϕ : ((A,α), θ) →
((B, β), µ)) 7→ (ϕ : (A,α) → (B, β)) that is the usual coalgebraic forgetful functor
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and the functor U∗F : (ϕ : ((A,α), θ) → ((B, β), µ)) 7→ (ϕ : (A, θ) → (B,µ)). The

following is straightforward and stands as the leading ingredient in the sequel:

Lemma 3.9. Let T : C→ X and G : X→ X be functors such that G ◦ T = T ◦ F .

Then the correspondence TF,G : CF → XG defined by (ϕ : (A,α) → (B, β)) 7→
(T (ϕ) : (T (A), T (α)) → (T (B), T (β))) is functorial. Moreover, TF,G is faithful

(resp. an embedding) whenever T is so, and that is full whenever T is fully faithful.

XG

UG

**

G

��

CF
UF

//

F

��

TF,G

oo C

F

��

T
// X

G

��
XG CF

TF,G

oo
UF

// C
T
// X

In particular, F = FF,F . Furthermore, each square in the above diagram is commu-

tative, U∗F = (UF )F,F and (T ◦ UF )F,G = TF,G ◦ (UF )F,F .

The following yields some other nice properties that the functor TF,G inherits

from the functor T :

Theorem 3.10. Let T : C → X and let G : X → X be functors such that G ◦ T =

T ◦F . If T reflects identities (resp. is amnestic, is transportable or is conservative),

then so does (resp. is) the functor TF,G. If T is faithful, then the concrete category

(CF , TF,G) over XG is fibre-discrete (resp. amnestic or (uniquely)transportable)

whenever the concrete category (C, T ) over X is so. Also, UF reflects (in)discrete

objects in (C, T ).

Proof. (1) In case T reflects identities or isos, then so does TF,G since by Lemma

3.9, UG ◦ TF,G = T ◦ UF and UF does so by Example 2.2. Assume now that T

is amnestic and let ϕ : (A,α) → (B, β) be an iso in CF such that TF,G(ϕ) is an

identity in XG. Then again by taking into account the fact that UG◦TF,G = T ◦UF ,

one gets that T (ϕ) is an identity in X. Now ϕ iso in CF implies ϕ is an iso in C.

Thus the amnesticity of T implies that ϕ must be an identity in C, hence in CF

too.

Assume that T is transportable and let (A,α) be an object in CF and let ϕ :

TF,G((A,α))→ (X, ξ) be an iso in XG. Since UG ◦TF,G = T ◦UF and isos in XG are

carried by isos in X, ϕ : T (A) → X is an iso in X. Therefore the transportability

of (C, T ) yields a B in C with T (B) = X and an iso ϕ : A → B in C such that

T (ϕ) = ϕ. Let ψ : B → A be the inverse of ϕ and set β := F (ϕ) ◦ α ◦ ψ. Then

obviously ϕ : (A,α) → (B, β) is an iso in CF . To end the proof, we need to show
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that T (β) = ξ. Now

ξ ◦ ϕ = G(ϕ) ◦ T (α)

= G(T (ϕ)) ◦ T (α)

= T (F (ϕ)) ◦ T (α)

= T (F (ϕ) ◦ α)

= T (β ◦ ϕ)

= T (β) ◦ T (ϕ)

= T (β) ◦ ϕ

and ϕ is an iso and hence right-cancellable. Thus ξ = T (β).

(2) Assume that T is faithful and the concrete category (C, T ) over X is fibre-

discrete (resp. amnestic or transportable). Then T reflects identities (resp. is

amnestic or is transportable) thanks to Proposition 2.1 and [2, Remark 5.6]. There-

fore, from the above, (CF , TF,G) is fibre-discrete (resp. amnestic or transportable)

too. Now in this case uniquely transportable is equivalent to amnestic and trans-

portable again by Proposition 2.1. Thus the result about unique transportabil-

ity also holds. For the last assertion, we give the proof for discrete objects.

The indiscrete case is proved analogously. Let (A,α) be an object in (CF , TF,G)

such that A is discrete in (C, T ) and let (B, β) be an object in CF and ϕ :

TF,G((A,α)) → TF,G((B, β)) a morphism in XG, i.e., T (β) ◦ ϕ = G(ϕ) ◦ T (α).

Since UG ◦TF,G = T ◦UF , then by applying UG to ϕ, we get that ϕ : T (A)→ T (B)

is a morphism in X and since A is discrete in (C, T ), there exists a morphism

ϕ : A→ B in C such that T (ϕ) = ϕ. ϕ is in fact a morphism in CF from (A,α) to

(B, β). Indeed, T (β) ◦ϕ = G(ϕ) ◦T (α) implies T (β) ◦T (ϕ) = G(T (ϕ)) ◦T (α); i.e.,

T (β ◦ ϕ) = T (F (ϕ) ◦ α) and the faithfulness of T yields β ◦ ϕ = F (ϕ) ◦ α. �

Proposition 3.11. Let T : C → X and G : X → X be functors with T faithful

such that G ◦ T = T ◦ F . If (ϕi : (A,α) → (Ai, αi))i∈I is a TF,G-initial source

in CF and (F (ϕi) : F (A) → F (Ai))i∈I is a T -initial source in C, then the source

(F(ϕi) : F((A,α)) → F((Ai, αi)))i∈I is TF,G-initial too. In particular, in case F is

a constant functor with an indiscrete value, F preserves TF,G-initial sources.

Proof. Assume that (ϕi : (A,α) → (Ai, αi))i∈I is a TF,G-initial source in CF

such that the source (F (ϕi) : F (A) → F (Ai))i∈I is T -initial in C and let (ψi :

(C, γ)→ F((Ai, αi)))i∈I be a source in CF and θ : TF,G((C, γ))→ TF,G(F((A,α)))

a morphism in XG such that TF,G(F(ϕi)) ◦ θ = TF,G(ψi) for each i ∈ I. Then

T (F (α)) ◦ θ = G(θ) ◦ T (γ), (ψi : C → F (Ai))i∈I is a source in C and θ : T (C) →
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T (F (A)) is a morphism in X such that T (F (ϕi)) ◦ θ = T (ψi) for each i ∈ I. Thus

by assumption, there exists a unique morphism θ : C → F (A) such that T (θ) = θ

and F (ϕi) ◦ θ = ψi for each i ∈ I. One has:

T (F (θ) ◦ γ) = T (F (θ)) ◦ T (γ)

= G(T (θ)) ◦ T (γ)

= G(θ) ◦ T (γ)

= T (F (α)) ◦ θ

= T (F (α)) ◦ T (θ)

= T (F (α) ◦ θ).

Since T is faithful, it follows that F (θ) ◦ γ = F (α) ◦ θ; i.e. θ : (C, γ)→ F((A,α)) is

a morphism in CF such that TF,G(θ) = θ with F (ϕi) ◦ θ = ψi in CF for each i ∈ I
and it is unique as such since TF,G is faithful by Lemma 3.9. The last statement

follows from Lemma 3.6 (1). �

Corollary 3.12. Let T : C → X and G : X → X be functors with T faithful such

that G ◦ T = T ◦ F . If F preserves T -initial sources, then F preserves TF,G-initial

sources (ϕi : (A,α)→ (Ai, αi))i∈I in CF for which (ϕi : A→ Ai)i∈I is T -initial in

C.

4. Topologicity of categories of coalgebras

By Remark 3.2 every topological functor is faithful, amnestic and uniquely trans-

portable but need not be conservative (i.e., need not reflect isos). By Theorem 3.10

the functor TF,G has each of these properties whenever T has, but need not be

topological. To be so, in addition every TF,G-structured source must have a TF,G-

initial lift, by [2, Proposition 21.5]. In this section, it is shown that this holds under

some reasonable circumstances so that TF,G inherits topologicity and some of its

generalizations from T .

4.1. Topological categories of coalgebras. In Section 3 we have given, and

shown how to build from existing ones, examples of functors that preserve initial

sources as well example of functors that globally commute with pairs of functors.

These are the main ingredients that stand as hypothesis in our main theorem.

We start by exhibiting a simple introductory example that serves as motivation.

By Remark 2.3 a source in an arbitrary C is a product if and only if it is T -initial,

where T : C → 1 is the unique functor from C to 1. Moreover, T is faithful if C

is a preordered class and a source (p → ai)i∈I is a product (i.e. an initial source)
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if and only if p = ∧i∈Iai. On the other hand, in case C is a preordered class, an

endofunctor thereof is just a correspondence F : C → C which is order-preserving

and an object a carries a coalgebra structure α : a → F (a) just in case a ≤ F (a).

Clearly, CF is also a preordered class and in case C has meets, which amounts to

saying that T is topological, so does CF in case F preserves T -initial sources; i.e.,

F preserves meets. This is just an instance of the following:

Theorem 4.1. For every topological functor T : C→ X and every functor G : X→
X such that G ◦ T = T ◦ F and F preserves T -initial sources, the functor TF,G is

topological. That is, the concrete category (CF , TF,G) is topological over XG.

Proof. Let (ϕi : (X, ξ) → TF,G(Ai, αi))i∈I be a TF,G-structured source in XG.

Then (ϕi : X → T (Ai))i∈I is a T -structured source in X. Thus the topologicity of T

yields a unique T -initial lift (ϕi : C → Ai)i∈I thereof in C. We have T (ϕi) = ϕi and

(αi ◦ϕi : C → F (Ai))i∈I is a source in C. On the other hand, F preserves T -initial

sources. Thus (F (ϕi) : F (C) → F (Ai))i∈I is a T -initial source in C. Moreover,

since ϕi : (X, ξ) → (T (Ai), T (αi)) is a morphism in XG for each i ∈ I, it follows

that ξ : X → G(X) and T (αi) ◦ ϕi = G(ϕi) ◦ ξ (see (I)), i.e., ξ : T (C)→ T (F (C))

and T (αi)◦T (ϕi) = G(T (ϕi))◦ξ, for each i ∈ I. Thus the T -initiality of the source

(F (ϕi) : F (C)→ F (Ai))i∈I in C yields a unique morphism ξ : C → F (C) such that

T (ξ) = ξ and αi ◦ ϕi = F (ϕi) ◦ ξ, for each i ∈ I (see (II)). We need to show that

(ϕi : (C, ξ)→ (Ai, αi))i∈I is TF,G-initial in CF . Let (ψi : (A,α)→ (Ai, αi))i∈I

T (C) = X

ξ

��

ϕi // T (Ai)

T (αi)

��
T (F (C)) = G(X)

G(ϕi)

// G(T (Ai))

(I)

A

ψi

&&
θ

��
C

ϕi //

ξ

��

Ai

αi

��
F (C)

F (ϕi)

// F (Ai)

(II)

T (Ai)

T (A)

T (ψi)

OO

θ //

T (α)

��

T (C)

T (ϕi)
ff

T (ξ)

��
G(T (A))

G(θ)

// G(T (C))

(III)

be a source in CF and θ : TF,G((A,α))→ TF,G(C, ξ) a morphism in XG such that

TF,G(ψi) = TF,G(ϕi) ◦ θ for each i ∈ I. Then θ : (T (A), T (α))→ (T (C), T (ξ)) and

T (ψi) = T (ϕi) ◦ θ for each i ∈ I ; i.e., θ : T (A) → T (C), T (ξ) ◦ θ = G(θ) ◦ T (α)

and T (ψi) = T (ϕi) ◦ θ for each i ∈ I (see (III)). Therefore the T -initiality of the

source (ϕi : C → Ai)i∈I in C yields a unique θ : A → C in C such that T (θ) = θ

and ϕi ◦ θ = ψi for each i ∈ I (see (II)). Then one has:
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T (F (θ) ◦ α) = T (F (θ)) ◦ T (α)

= G(T (θ)) ◦ T (α)

= G(θ) ◦ T (α)

= T (ξ) ◦ θ

= T (ξ) ◦ T (θ)

= T (ξ ◦ θ).

Now by Remark 3.2 as a topological functor T is faithful. Thus it follows that

F (θ) ◦ α = ξ ◦ θ. Hence the morphism θ : (A,α) → (C, ξ) is in CF with T (θ) = θ

and ϕi ◦ θ = ψi for each i ∈ I. Its uniqueness as such follows from the faithfulness

of T . �

In case UF is topological, the concrete category (CF , UF ) is fibre-complete by [2,

Proposition 21.11], i.e., |Hom(A,F (A))| = 1 for each A in C by Example 2.2. As it

has been seen earlier, typical examples of categories in which this happens are thin

categories, i.e., preordered classes and these are precisely categories C for which the

unique functor C→ 1 is faithful. By Lemma 3.9 the equations UG ◦ TF,G = T ◦UF
and (T ◦ UF )F,G = TF,G ◦ (UF )F,F hold. Moreover it is well known (see e.g. [2,

Proposition 21.6]) that topological functors are closed under composition. Hence:

Remark 4.2. (1) If there exists an object A in C such that |(Hom(A,F (A))| ≥ 2,

then the coalgebraic forgetful functor UF is not topological.

(2) Assume that F , G and T are as in Theorem 4.1. If UF or UG is topological,

then so is T ◦ UF . Likewise, (T ◦ UF )F,G is topological whenever (UF )F,F is so.

From Theorem 4.1, Lemma 3.9 and Proposition 3.11 it follows:

Corollary 4.3. Let T : C→ X be a topological functor. Then the concrete category

(CIdC , TIdC,IdX) is topological over XIdX . Assume that G : X → X is a functor such

that G◦T = T ◦F . If F preserves TF,G-initial sources, then (TF,G)F,G is topological

too. In particular this is the case if F = Id or F = CA for some indiscrete object

A.

Corollary 3.7, Example 3.8 and Theorem 4.1 yield:

Example 4.4. Let T : C → X be the usual forgetful functor for C and X as in

Example 3.8, let I be a nonempty set and A an indiscrete object in C. Then the

categories (CCA
, TCA,CT (A)

) and (CA×(−)IC
, TA×(−)IC,T (A)×(−)IX

) are topological over
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XCT (A)
and XT (A)×(−)IX

, respectively, and the latter reduces (up to isomorphism) to

the topologicity of (C(−)IC
, T(−)IC,(−)IC

) over X(−)IX
in case A is a final object.

One of the reasons why topological functors are interesting is that their domains

have some properties if and only if their codomains have. These include being

(co)complete [2, Theorem 21.16]. As it has been mentioned in Section 2, categories

of coalgebras are cocomplete whenever the underlying category is, and that they

have all limits that exist and are preserved by the endofunctor. Now it is well known

that right adjoints preserve all existing limits. Therefore if (C, T ) is topological over

X, then:

• for any endofunctor F and G of C and X, respectively, the categories CF

and XG are cocomplete if C or X is so.

• if X or C is complete, then the category CT2◦T is complete.

As it is well known, one of the properties that categories of coalgebras hardly have

is that of being complete, and hence that of being strongly complete, i.e., both being

complete and having intersections. Dual is strongly cocomplete. E.g. Set, Top, Vec,

Grp, Hcomp, Pos, where Hcomp is the category of Hausdorff compact topological

spaces and continuous mappings are strongly (co) complete [2]. Fortunately, for a

strong mono preserving covarietor on a strongly complete category and in particular

for a covarietor over Set, the category of coalgebras is complete [1, Theorem 4.14

and Corollary 4.15]. Therefore [2, Theorem 21.16] implies:

Proposition 4.5. Under the assumptions of Theorem 4.1, the category CF is com-

plete if in addition one of the following conditions is satisfied:

(1) X is complete and G preserves limits.

(2) X is strongly complete and G is a covarietor preserving strong monos. In

particular if X = Set and G is a covarietor.

Conversely, XG is complete if in (1) or (2) the category X is replaced with C and

the functor G with F .

Let T−1
F,G(X, ξ) (resp. T−1(X)) denote the fibre of an object (X, ξ) (resp.X)

in XG (resp. X). As mentioned earlier, as a topological functor, TF,G (resp. T )

has both left and right adjoints, and these adjoints are fully faithful and are right

inverses thereof. Thus T−1
F,G(X, ξ) 6= ∅ (resp. T−1(X) 6= ∅) and, obviously, reduces

to a one-element set in case T is an embedding. Moreover it is well known that

the concrete category (CF , TF,G) (resp. (C, T )) is fibre-complete (see e.g. the proof

of [2, Proposition 21.11] for a description of the meets). Therefore T−1
F,G(X, ξ)

(resp. T−1(X)) is a (possibly large) complete lattice, i.e., every subclass thereof
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has a join and a meet. Let (A,α) ∈ T−1
F,G(X, ξ). Then TF,G((A,α)) = (X, ξ),

i.e., (T (A), T (α)) = (X, ξ). Thus A ∈ T−1(X). A mapping f : (A,≤) → (B,≤)

between posets is called an order embedding if a ≤ a′ ⇔ f(a) ≤ f(a′), for all

a, a′ ∈ A, i.e. f is both order-preserving and order-reflecting; see e.g. [13]. By

extending this terminology to correspondences between preordered classes, one has:

Proposition 4.6. Under the assumptions of Theorem 4.1, the restriction-corestriction

Φ(X,ξ) : T−1
F,G(X, ξ)→ T−1(X) of the forgetful functor UF : CF → C is an injective

order embedding which reflects (in)discrete objects.

Proof. Assume that (A,α) ≤ (B, β) in T−1
F,G(X, ξ). Then there exists a morphism

ϕ : (A,α) → (B, β) such that TF,G(ϕ) = id(X,ξ). Therefore T (A) = X = T (B)

and ϕ : A → B is a morphism in C such that T (ϕ) = idX . Hence A ≤ B in

T−1(X). Now assume that (A,α), (B, β) ∈ T−1
F,G(X, ξ) are such that Φ(X,ξ)(A,α) ≤

Φ(X,ξ)(B, β) in T−1(X). Then there exists a unique morphism ϕ : A→ B in C such

that T (ϕ) = idX . ϕ is in fact a morphism in CF from (A,α) to (B, β). Indeed, one

has

T (β ◦ ϕ) = T (β) ◦ T (ϕ)

= T (β) ◦ idX

= T (β)

and

T (F (ϕ) ◦ α) = T (F (ϕ)) ◦ T (α)

= G(T (ϕ)) ◦ T (α)

= idG(X) ◦ T (α)

= T (α).

Now T (β) = ξ = T (α) and T is faithful. Thus β ◦ ϕ = F (ϕ) ◦ α. More-

over TF,G(ϕ) = id(X,ξ). Hence (A,α) ≤ (B, β). Although UF need not be in-

jective on objects, Φ(X,ξ) is injective. Indeed, let (A,α), (B, β) ∈ T−1
F,G(X, ξ)

with Φ(X,ξ)(A,α) = Φ(X,ξ)(B, β). Then A = B and TF,G(A,α) = TF,G(B, β).

Thus A = B and T (α) = T (β) and since T is faithful, it follows that α = β

so that (A,α) = (B, β). The reflection of (in)discrete objects follows straight-

forwardly from Theorem 3.10 by observing that when T−1
F,G(X, ξ) and T−1(X)

are viewed as full concrete subcategories of CF and C over XG and X with the

inclusions I : T−1
F,G(X, ξ) → CF and J : T−1(X) → C, respectively, one has

J ◦ Φ(X,ξ) = Φ(X,ξ) ◦ I. �

4.2. M-topological categories of coalgebras. We find conditions under which

the functor TF,G is Strong Mono-topological.

Lemma 4.7. Assume that X is an (Epi,Strong Mono)-category and (C, T ) is a

concrete Strong Mono-topological category over X, G : X → X is a functor such

that G ◦ T = T ◦ F and F preserves T -initial sources. Then every TF,G-structured
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strong mono-source in XG carried by a strong mono-source in X has a unique TF,G-

initial lift.

Proof. Let (ϕi : (X, ξ) → TF,G((Ai, αi)))i∈I be a strong mono-source in XG such

that (ϕi : X → T (Ai))i∈I is a strong mono-source in X. By the Strong Mono-

topologicity of T , it has a unique T -initial lift (ϕi : C → Ai)i∈I in C. We have

T (ϕi) = ϕi for each i ∈ I and (αi ◦ ϕi : C → F (Ai))i∈I is a source in C. On the

other hand, F preserves T -initial sources. Thus, (F (ϕi) : F (C) → F (Ai))i∈I is a

T -initial source in C. Moreover, since ϕi : (X, ξ) → (T (Ai), T (αi)) is a morphism

in XG for each i ∈ I, it follows that ξ : X → G(X) and T (αi) ◦ ϕi = G(ϕi) ◦ ξ, i.e.,

ξ : T (C) → T (F (C)) and T (αi) ◦ T (ϕi) = G(T (ϕi)) ◦ ξ, for each i ∈ I. Thus the

T -initiality of the source (F (ϕi) : F (C)→ F (Ai))i∈I in C yields a unique morphism

ξ : C → F (C) such that T (ξ) = ξ and αi ◦ ϕi = F (ϕi) ◦ ξ, for each i ∈ I. The rest

of the proof is as in that of Theorem 4.1 where the faithfulness of T given by its

topologicity via Remark 3.2 is guaranteed by the fact that (C, T ) is concrete over

X. �

Theorem 4.8. Assume that in addition to the assumptions in Lemma 4.7 the

functor G preserves strong mono-sources. Then the functor TF,G is Strong Mono-

topological.

Proof. By Corollary 2.5 the category XG is an (Epi,Strong Mono)-category.

Moreover by Lemma 2.4 strong mono-sources in XG are precisely sources that are

carried by strong mono-sources in X. Thus by Lemma 4.7, every TF,G-structured

Strong Mono-source has a unique TF,G-initial lift. �

Corollary 4.9. Under the assumptions of Theorem 4.8, (CF , TF,G) is an epi-

reflective concrete subcategory of some topological category over XG.

Proof. This follows from Theorem 4.8 and [2, Theorem 21.40]. �
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