A NOTE ON FLAG-TRANSITIVE $5-(v, k, 4)$ DESIGNS

Shaojun Dai and Shangzhao Li

Received: 22 March 2019; Revised: 30 May 2019; Accepted: 29 June 2019
Communicated by Abdullah Harmancı

Abstract

This article is a contribution to the study of the automorphism groups of $5-(v, k, 4)$ designs. Let $\mathcal{S}=(\mathcal{P}, \mathcal{B})$ be a non-trivial $5-(q+1, k, 4)$ design. If G acts flag-transitively on \mathcal{S}, then G is not two-dimensional projective linear group $P S L(2, q)$.

Mathematics Subject Classification (2010): 05B05, 20B25
Keywords: Flag-transitive, 5-designs, $\operatorname{PSL}(2, q)$ groups

1. Introduction

For positive integers $t \leq k \leq v$ and λ, we define a $t-(v, k, \lambda)$ design to be a finite incidence structure $\mathcal{S}=(\mathcal{P}, \mathcal{B})$, where \mathcal{P} denotes a set of points, $|\mathcal{P}|=v$, and \mathcal{B} a set of blocks, $|\mathcal{B}|=b$, with the properties that each block is incident with k points, and each t-subset of \mathcal{P} is incident with λ blocks. A flag of \mathcal{S} is an incident point-block pair (x, B) with x is incident with B, where $x \in \mathcal{P}$ and $B \in \mathcal{B}$. We consider automorphisms of \mathcal{S} as pairs of permutations on \mathcal{P} and \mathcal{B} which preserve incidence structure. The full automorphism group of an incidence structure \mathcal{S} will be denotes by $\operatorname{Aut}(\mathcal{S})$. We call a group $G \leq \operatorname{Aut}(\mathcal{S})$ of automorphisms of \mathcal{S} flagtransitive (respectively block-transitive, point t-transitive, point t-homogeneous) if G acts transitively on the flags (respectively transitively on the blocks, t-transitively on the points, t-homogeneously on the points) of \mathcal{S}. For short, \mathcal{S} is said to be, e.g., flag-transitive if \mathcal{S} admits a flag-transitive automorphism group.

For historical reasons, a $t-(v, k, \lambda)$ design with $\lambda=1$ is called a Steiner t-design (sometimes this is also known as a Steiner system). If $t<k<v$ holds, then we speak of a non-trivial Steiner t-design.

Investigating t-designs for arbitrary λ, but large t, Cameron and Praeger proved the following result:

[^0]Theorem 1.1. ([2]) Let $\mathcal{S}=(\mathcal{P}, \mathcal{B})$ be a $t-(v, k, \lambda)$ design. If $G \leq \operatorname{Aut}(\mathcal{S})$ acts blocktransitively on \mathcal{S}, then $t \leq 7$, while if $G \leq \operatorname{Aut}(\mathcal{S})$ acts flag-transitively on \mathcal{S}, then $t \leq 6$.

Among the properties of homogeneity of incidence structures, flag transitivity obviously is a particularly important and natural one. Originally, F. Buekenhout et al. ([1]) reached a classification of flag-transitive Steiner 2-designs. Recently, Huber ([5]) completely classified all flag-transitive Steiner t-designs using the classification of the finite 2 -transitive permutation groups. Hence the determination of all flagtransitive t-designs with $\lambda \geq 2$ has remained of particular interest and has been known as a long-standing and still open problem.

In 2010, Xu ([9]) completely classified flag-transitive $6-(v, k, \lambda)$ designs with $\lambda \leq 5$. In 2010, Liu ([7]) completely classified flag-transitive 5 - $(v, k, 2)$ design and $\operatorname{PSL}(2, q)$ groups. In 2017, Dai ([3]) completely classified flag-transitive 4-($v, k, 4)$ design and $P S L(2, q)$ groups. The present paper continues the work of classifying flag-transitive t-designs. We discuss the flag-transitive 5 - $(v, k, 4)$ designs and $P S L(2, q)$ groups and get the following:

Theorem 1.2. Let $\mathcal{S}=(\mathcal{P}, \mathcal{B})$ be a non-trivial $5-(q+1, k, 4)$ design. If G acts flagtransitively on \mathcal{S}, then G is not two-dimensional projective linear group $\operatorname{PSL}(2, q)$.

The second section describes the definitions and contains several preliminary results about flag-transitivity t-designs. In the third section we give the proof of Theorem 1.2.

2. Preliminary results

Here we gather notation which are used throughout this paper. For a t-design $\mathcal{S}=(\mathcal{P}, \mathcal{B})$ with $G \leq \operatorname{Aut}(\mathcal{S})$, let r denotes the number of blocks through a given point, G_{x} denotes the stabilizer of a point $x \in \mathcal{P}$ and G_{B} the setwise stabilizer of a block $B \in \mathcal{B}$. We define $G_{x B}=G_{x} \cap G_{B}$.

For integers m and n, let (m, n) denotes the greatest common divisor of m and n, and $m \mid n$ if m divides n. All other notation is standard.

Lemma 2.1. ([5]) Let G act flag-transitively on $t-(v, k, \lambda)$ design $\mathcal{S}=(\mathcal{P}, \mathcal{B})$. If $t \geq 3$, then G is 2-transitive and the following cases hold:
(1) $|G|=\left|G_{x}\right|\left|x^{G}\right|=\left|G_{x}\right| v$, where $x \in \mathcal{P}$;
(2) $|G|=\left|G_{B}\right|\left|B^{G}\right|=\left|G_{B}\right| b$, where $B \in \mathcal{B}$;
(3) $|G|=\left|G_{x B}\right|\left|(x, B)^{G}\right|=\left|G_{x B}\right| b k$, where $x \in B$.

Lemma 2.2. ([8]) Let $\mathcal{S}=(\mathcal{P}, \mathcal{B})$ be a non-trivial $t-(v, k, \lambda)$ design. Then $v>k+t$ and

$$
\lambda(v-t+1) \geq(k-t+2)(k-t+1)
$$

Lemma 2.3. ([8]) Let $\mathcal{S}=(\mathcal{P}, \mathcal{B})$ be a non-trivial $5-(v, k, \lambda)$ design. Then
(1) $b k=v r$;
(2) $b=\frac{\lambda v(v-1)(v-2)(v-3)(v-4)}{k(k-1)(k-2)(k-3)(k-4)}$.

Lemma 2.4. ([8]) Let $1 \leq i<t, \mathcal{S}=(\mathcal{P}, \mathcal{B})$ is a $t-(v, k, \lambda)$ design. Then \mathcal{S} is also an $i-\left(v, k, \lambda_{i}\right)$ design, where

$$
\lambda_{i}=\lambda \frac{\binom{v-i}{t-i}}{\binom{k-i}{t-i}}
$$

Let q be a prime power p^{f}, and U a subgroup of $P S L(2, q)$. Furthermore, let N_{l} denotes the number of orbits of length l and let $(2, q-1)=n$. For the list of subgroups of $P S L(2, q)$, we refer to $[4,6]$.

Lemma 2.5. Let U be the cyclic group of order c with $c \left\lvert\, \frac{q \pm 1}{n}\right.$. Then
(1) if $c \left\lvert\, \frac{q+1}{n}\right.$, then $N_{c}=(q+1) / c$;
(2) if $c \left\lvert\, \frac{q-1}{n}\right.$, then $N_{1}=2, N_{c}=(q-1) / c$.

Lemma 2.6. Let U be the dihedral group of order $2 c$ with $c \left\lvert\, \frac{q \pm 1}{n}\right.$. Then
(1) for $q \equiv 1(\bmod 4)$, we have
(a) if $c \left\lvert\, \frac{q+1}{2}\right.$, then $N_{c}=2$ and $N_{2 c}=(q+1-2 c) /(2 c)$;
(b) if $c \left\lvert\, \frac{q-1}{2}\right.$, then $N_{2}=1, N_{c}=2$, and $N_{2 c}=(q-1-2 c) /(2 c)$, unless $c=2$, in which case $N_{2}=3$ and $N_{4}=(q-5) / 4$.
(2) for $q \equiv 3(\bmod 4)$, we have
(a) if $c \left\lvert\, \frac{q+1}{2}\right.$, then $N_{2 c}=(q+1) /(2 c)$;
(b) if $c \left\lvert\, \frac{q-1}{2}\right.$, then $N_{2}=1$ and $N_{2 c}=(q-1) /(2 c)$.
(3) for $q \equiv 0(\bmod 2)$, we have
(a) if $c \mid(q+1)$, then $N_{c}=1$ and $N_{2 c}=(q+1-c) /(2 c)$;
(b) if $c \mid(q-1)$, then $N_{2}=1, N_{c}=2$, and $N_{2 c}=(q-1-c) /(2 c)$.

Lemma 2.7. Let U be the elementary Abelian group of order $\bar{q} \mid q$. Then $N_{1}=1$, $N_{\bar{q}}=q / \bar{q}$.

Lemma 2.8. Let U be a semi-direct product of an elementary Abelian subgroup of order $\bar{q} \mid q$ and the cyclic subgroup of order c, where c divides $\bar{q}-1$ and $q-1$. Then $N_{1}=1, N_{\bar{q}}=1, N_{c \bar{q}}=(q-\bar{q}) /(c \bar{q})$.

Lemma 2.9. Let U be $P S L(2, \bar{q})$ and $\bar{q}^{m}=q, m \geq 1$. Then $N_{\bar{q}+1}=1, N_{\bar{q}(\bar{q}-1)}=1$ if m is even, and all other orbits are regular.

Lemma 2.10. Let U be $P G L(2, \bar{q})$ and $\bar{q}^{m}=q, m>1$ even. Then $N_{\bar{q}+1}=1$, $N_{\bar{q}(\bar{q}-1)}=1$, and all other orbits are regular.

Lemma 2.11. Let U be isomorphic to A_{4}. Then
(1) for $q \equiv 1(\bmod 4)$, we have
(a) if $3 \left\lvert\, \frac{q+1}{2}\right.$, then $N_{6}=1$ and $N_{12}=(q-5) / 12$;
(b) if $3 \left\lvert\, \frac{q-1}{2}\right.$, then $N_{4}=2, N_{6}=1$, and $N_{12}=(q-13) / 12$;
(c) if $3 \mid q$, then $N_{4}=1, N_{6}=1$ and $N_{12}=(q-9) / 12$.
(2) for $q \equiv 3(\bmod 4)$, we have
(a) if $3 \left\lvert\, \frac{q+1}{2}\right.$, then $N_{12}=(q+1) / 12$;
(b) if $3 \left\lvert\, \frac{q-1}{2}\right.$, then $N_{4}=2$ and $N_{12}=(q-7) / 12$;
(c) if $3 \mid q$, then $N_{4}=1$ and $N_{12}=(q-3) / 12$.
(3) for $q=2^{f}, f \equiv 0(\bmod 2)$, then $N_{1}=1, N_{4}=1$, and $N_{12}=(q-4) / 12$.

Lemma 2.12. Let U be isomorphic to S_{4}. Then
(1) for $q \equiv 1(\bmod 8)$, we have
(a) if $3 \left\lvert\, \frac{q+1}{2}\right.$, then $N_{6}=1, N_{12}=1$, and $N_{24}=(q-17) / 24$;
(b) if $3 \left\lvert\, \frac{q-1}{2}\right.$, then $N_{6}=1, N_{8}=1, N_{12}=1$, and $N_{24}=(q-25) / 24$;
(c) if $3 \mid q$, then $N_{4}=1, N_{6}=1$, and $N_{24}=(q-9) / 24$.
(2) for $q \equiv-1(\bmod 8)$, we have
(a) if $3 \left\lvert\, \frac{q+1}{2}\right.$, then $N_{24}=(q+1) / 24$;
(b) if $3 \left\lvert\, \frac{q-1}{2}\right.$, then $N_{8}=1$ and $N_{24}=(q-7) / 12$.

Lemma 2.13. Let U be isomorphic to A_{5}. Then
(1) for $q \equiv 1(\bmod 4)$, we have
(a) if $q=5^{f}, f \equiv 1(\bmod 2)$, then $N_{6}=1$ and $N_{60}=(q-5) / 60$;
(b) if $q=5^{f}, f \equiv 0(\bmod 2)$, then $N_{6}=1, N_{20}=1$, and $N_{60}=$ $(q-25) / 60$;
(c) if $15 \left\lvert\, \frac{q+1}{2}\right.$, then $N_{30}=1$ and $N_{60}=(q-29) / 60$;
(d) if $3 \left\lvert\, \frac{q+1}{2}\right.$ and $5 \left\lvert\, \frac{q-1}{2}\right.$, then $N_{12}=1, N_{30}=1$, and $N_{60}=$ $(q-41) / 60$;
(e) if $3 \left\lvert\, \frac{q-1}{2}\right.$ and $5 \left\lvert\, \frac{q+1}{2}\right.$, then $N_{20}=1, N_{30}=1$, and $N_{60}=$ ($q-49$)/60;
(f) if $15 \left\lvert\, \frac{q-1}{2}\right.$, then $N_{12}=1, N_{20}=1, N_{30}=1$, and $N_{60}=(q-$ 61)/60;
(g) if $3 \mid q$ and $5 \left\lvert\, \frac{q+1}{2}\right.$, then $N_{10}=1$ and $N_{60}=(q-9) / 60$;
(h) if $3 \mid q$ and $5 \left\lvert\, \frac{q-1}{2}\right.$, then $N_{10}=1, N_{12}=1$, and $N_{60}=(q-21) / 60$.
(2) for $q \equiv 3(\bmod 4)$, we have
(a) if $15 \left\lvert\, \frac{q+1}{2}\right.$, then $N_{60}=(q+1) / 60$;
(b) if $3 \left\lvert\, \frac{q+1}{2}\right.$ and $5 \left\lvert\, \frac{q-1}{2}\right.$, then $N_{12}=1$ and $N_{60}=(q-11) / 60$;
(c) if $3 \left\lvert\, \frac{q-1}{2}\right.$ and $5 \left\lvert\, \frac{q+1}{2}\right.$, then $N_{20}=1$ and $N_{60}=(q-19) / 60$;
(d) if $15 \left\lvert\, \frac{q-1}{2}\right.$, then $N_{12}=1, N_{20}=1$, and $N_{60}=(q-31) / 60$.

3. Proof of Theorem 1.2

Suppose that $G=P S L(2, q)$ acts flag-transitively on $5-(q+1, k, 4)$ designs. Then G is point-transitive and $|G|=q\left(q^{2}-1\right) / n$, where $q=p^{f}>3, n=(2, q-1)$.

By Lemma 2.1(1), we have

$$
\left|G_{x}\right|=\frac{|G|}{v}=\frac{q\left(q^{2}-1\right) / n}{q+1}=q(q-1) / n
$$

Again by Lemma 2.3(2) and Lemma 2.1(3),

$$
b=\frac{4 v(v-1)(v-2)(v-3)(v-4)}{k(k-1)(k-2)(k-3)(k-4)}=\frac{v\left|G_{x}\right|}{k\left|G_{x B}\right|}
$$

Thus

$$
\begin{equation*}
4\left|G_{x B}\right|(q-2)(q-3) n=(k-1)(k-2)(k-3)(k-4), \tag{1}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
4\left|G_{x B}\right|(q-2)(q-3) n-24=k\left(k^{3}-10 k^{2}+35 k-50\right) \tag{2}
\end{equation*}
$$

By Lemma 2.2,

$$
\begin{equation*}
4(q-3) \geq(k-3)(k-4) \tag{3}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\left|G_{x B}\right|(q-2) n \leq(k-1)(k-2) \tag{4}
\end{equation*}
$$

If $k<9$, then

$$
\begin{equation*}
\left|G_{x B}\right|(q-2)(q-3) n=280,120,40 \tag{5}
\end{equation*}
$$

by Eq.(1). By Lemma 2.2, we get $k>5$ and $q>10$. Thus q is not exist by Eq.(5). If $k \geq 9$, then $(k-1)(k-2)<2(k-3)(k-4)$ and $q \geq 14$. We have

$$
\begin{equation*}
\left|G_{x B}\right|(q-2) n<8(q-3) \tag{6}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
\left|G_{x B}\right| n \leq 7 \tag{7}
\end{equation*}
$$

Since G_{B} acts transitively on the points of B, we have

$$
\begin{equation*}
k=\left|x^{G_{B}}\right|=\left|G_{B}: G_{x B}\right| \tag{8}
\end{equation*}
$$

We assume that $k \geq 9$ and distinguish three cases:

Case 1. $\left|G_{x B}\right|=1$.
If q is even, then $n=1$ and $k \mid\left(4 q^{2}-20 q\right)$ by Eq.(2). By Lemmas 2.5-2.13, we have to consider G_{B} is conjugate to a cyclic group of order c with $c \mid(q+1)$ and $c=k$. Thus

$$
k \mid\left(4 q^{2}-20 q, q+1\right)=(q+1,24)=(q+1,3)
$$

Obviously, $k=3$ which is clearly impossible.
If q is odd, then $n=2$ and $k \mid\left(8 q^{2}-40 q+24\right)$ by Eq.(2). Examining the list of subgroups of $\operatorname{PSL}(2, q)$ with their orbits on the projective line by Lemmas 2.5-2.13, we have to consider the following subcase:

Subcase 1.1. G_{B} is conjugate to a cyclic group of order c with $c \left\lvert\, \frac{q+1}{2}\right.$ and $c=k$. Thus

$$
k \left\lvert\,\left(8 q^{2}-40 q+24, \frac{q+1}{2}\right)=\left(\frac{q+1}{2}, 72\right)\right.
$$

We have $k=9,12,18,24,36,72$. If $k=9$, then $q=17$ by Eq.(1). Obviously, \mathcal{S} is a 5 - $(18,9,4)$ design. By Lemma $2.4, \mathcal{S}$ is also a 4 -design which is impossible since λ_{4} is not integer. If $k=18$, then $q=87$ by Eq.(1) which is impossible since q is prime power. If $k=12,24,36,72$, then q is not exist by Eq.(1).

Subcase 1.2. G_{B} is conjugate to a dihedral group of order $2 c$ with $c \left\lvert\, \frac{q+1}{2}\right.$, $q \equiv 3(\bmod 4)$ and $2 c=k$. Thus

$$
k \mid\left(8 q^{2}-40 q+24, q+1\right)=(q+1,72)
$$

We have $k=12,18,24,36,72$. This is easily ruled out as Subcase 1.1.
Subcase 1.3. G_{B} is conjugate to A_{4} with $k=12, S_{4}$ with $k=24$ or A_{5} with $k=60$. We get that q is not exist by Eq.(1).

Case 2. $\left|G_{x B}\right|=2$.
If q is even, then $n=1$ and $k \mid\left(8 q^{2}-40 q+24\right)$ by Eq.(2). By Lemmas 2.5-2.13, we have to consider the following subcase:

Subcase 2.1. G_{B} is conjugate to a cyclic group of order c with $c \mid(q-1)$, which is impossible as $c=2 k$ is even.

Subcase 2.2. G_{B} is conjugate to a dihedral group of order $2 c$ with $c \mid(q+1)$ and $c=k$. Thus

$$
k \mid\left(8 q^{2}-40 q+24, q+1\right)=(q+1,72)=(q+1,9)
$$

Obviously, $k=9$ with $q=17$, which is a contradiction.
Subcase 2.3. G_{B} is conjugate to a elementary Abelian group of order $\bar{q} \mid q$ and $2 k=\bar{q}$. Thus

$$
k \left\lvert\,\left(8 q^{2}-40 q+24, \frac{q}{2}\right)=\left(\frac{q}{2}, 24\right)=\left(\frac{q}{2}, 8\right) .\right.
$$

Obviously, $k \leq 8$, which is a contradiction.

If q is odd, then $n=2$ and $k \mid\left(16 q^{2}-80 q+72\right)$ by Eq.(2). By Lemmas 2.5-2.13, we have to consider the following subcase:

Subcase 2.4. G_{B} is conjugate to a cyclic group of order c with $c \left\lvert\, \frac{(q-1)}{2}\right.$ and $c=2 k$. Thus

$$
k \left\lvert\,\left(16 q^{2}-80 q+72, \frac{q-1}{4}\right)=\left(\frac{q-1}{4}, 8\right) .\right.
$$

We have $k \leq 8$, which is a contradiction.
Subcase 2.5. G_{B} is conjugate to a dihedral group of order $2 c$ with $c=k$. If $c \left\lvert\, \frac{q+1}{2}\right.$ and $q \equiv 1(\bmod 4)$, then

$$
k \left\lvert\,\left(16 q^{2}-80 q+72, \frac{q+1}{2}\right)=\left(\frac{q+1}{2}, 168\right)=\left(\frac{q+1}{2}, 8\right) .\right.
$$

If $c \left\lvert\, \frac{q-1}{2}\right.$ and $q \equiv 3(\bmod 4)$, then

$$
\left(16 q^{2}-80 q+72, \frac{q-1}{2}\right)=\left(\frac{q-1}{2}, 8\right) .
$$

We have $k \leq 8$, which is a contradiction.
Subcase 2.6. G_{B} is conjugate to a elementary Abelian group of order $\bar{q} \mid q$ and $2 k=\bar{q}$, which is impossible as q is odd.

Subcase 2.7. G_{B} is conjugate to A_{4} with $k=6, S_{4}$ with $k=12$ or A_{5} with $k=30$. We get that q is not exist by Eq.(1).

Case 3. $\left|G_{x B}\right| \geq 3$.
If q is even, then $n=1$ and $\left|G_{x B}\right|=3,4,5,6,7$. Thus $k \mid\left(4\left|G_{x B}\right|(q-2)(q-3)-\right.$ 24) by Eq.(2). By Lemmas 2.5-2.13, we have to consider the following subcase:

Subcase 3.1. G_{B} is conjugate to a dihedral group of order $2 c$ with $c \mid(q-1)$ and $2 c=3 k$. Thus let $k=4 m+1$. We have $q \mid b$ by Lemma 2.3(2). Again by Lemma 2.1(2), $b=\frac{q\left(q^{2}-1\right)}{\left|G_{B}\right|}$. Then $\left|G_{B}\right|$ is odd, which is impossible as $\left|G_{B}\right|=2 c$ is even.

Subcase 3.2. G_{B} is conjugate to a semi-direct product of an elementary Abelian subgroup of order $\bar{q} \mid q$ and the cyclic subgroup of order c, where c divides $\bar{q}-1$ and $q-1$, and $k \mid \bar{q}$. If $\left|G_{x B}\right|=3$, then $k \mid\left(12 q^{2}-60 q+48, q\right)=(q, 48)=(q, 16)$. If $\left|G_{x B}\right|=4$, then $k \mid\left(16 q^{2}-80 q+72, q\right)=(q, 72)=(q, 8)$. If $\left|G_{x B}\right|=5$, then $k \mid$ $\left(20 q^{2}-100 q+96, q\right)=(q, 96)=(q, 32)$. If $\left|G_{x B}\right|=6$, then $k \mid\left(24 q^{2}-120 q+120, q\right)=$ $(q, 120)=(q, 8)$. If $\left|G_{x B}\right|=7$, then $k \mid\left(28 q^{2}-140 q+144, q\right)=(q, 144)=(q, 16)$. We have $k=16,32$. But q is not exist.

Subcase 3.3. G_{B} is conjugate to $\operatorname{PSL}(2, \bar{q})$ with $\bar{q}^{m}=q, m \geq 1$ and $k=\bar{q}+1$ or $\bar{q}(\bar{q}-1)$ if m is even. If $k=\bar{q}+1$, then $\left|G_{x B}\right|=\bar{q}(\bar{q}-1)$. Thus, by Eq.(1),

$$
4(q-2)(q-3)=(\bar{q}-2)(\bar{q}-3) .
$$

This is impossible as $\bar{q}^{m}=q$. If $k=\bar{q}(\bar{q}-1)$, then $\left|G_{x B}\right|=\bar{q}+1$ and
$\bar{q}(\bar{q}-1) \mid(4(q-2)(q-3)(\bar{q}+1)-24)=4 \bar{q}^{2 m+1}+4 \bar{q}^{2 m}-20 \bar{q}^{m+2}-20 \bar{q}^{m+1}+24 \bar{q}$.

Since $\left(4 \bar{q}^{2 m+1}+4 \bar{q}^{2 m}-20 \bar{q}^{m+2}-20 \bar{q}^{m+1}+24 \bar{q}, \bar{q}-1\right)=(\bar{q}-1,8)=1$, which is a contradiction.

Subcase 3.4. G_{B} is conjugate to $P G L(2, \bar{q})$ with $\bar{q}^{m}=q, m>1$ even and $k=\bar{q}+1$ or $\bar{q}(\bar{q}-1)$. By q even, $P G L(2, \bar{q}) \cong P S L(2, \bar{q})$. We get that q is not exist by subcase 3.3 .

Subcase 3.5. G_{B} is conjugate to A_{4} and $k=4$, which is impossible since $k \geq 9$.
If q is odd, then $n=2$ and $\left|G_{x B}\right|=3$. Thus $k \mid\left(24 q^{2}-120 q+120\right)$ by Eqs.(2) and (7).

Subcase 3.6. G_{B} is conjugate to a dihedral group of order $2 c$ with $c \left\lvert\, \frac{(q-1)}{2}\right.$ with $q \equiv 1(\bmod 4)$ and $2 c=3 k$. Thus

$$
k \left\lvert\,\left(24 q^{2}-120 q+120, \frac{q-1}{3}\right)=\left(\frac{q-1}{3}, 24\right) .\right.
$$

We have $k=12,24$ which is impossible since q is not exist by Eq.(1).
Subcase 3.7. G_{B} is conjugate to a semi-direct product of an elementary Abelian subgroup of order $\bar{q} \mid q$ and the cyclic subgroup of order c, where c divides $\bar{q}-1$ and $q-1$, and $k \mid \bar{q}$. Thus

$$
k \mid\left(24 q^{2}-120 q+120, q\right)=(q, 120)=(q, 8)
$$

We have $k=8$, which is impossible since $k \geq 9$.
Subcase 3.8. G_{B} is conjugate to $P S L(2, \bar{q})$ with $\bar{q}^{m}=q, m \geq 1$ and $k=\bar{q}+1$ or $\bar{q}(\bar{q}-1)$ if m is even. If $k=\bar{q}+1$, then $\left|G_{x B}\right|=\frac{\bar{q}(\bar{q}-1)}{2}=3$. If $k=\bar{q}(\bar{q}-1)$, then $\left|G_{x B}\right|=\frac{\bar{q}+1}{2}=3$. We have $k=4$ or 20 , which is impossible since q is not exist by Eq.(1).

Subcase 3.9. G_{B} is conjugate to $P G L(2, \bar{q})$ with $\bar{q}^{m}=q, m>1$ even and $k=\bar{q}+1$ or $\bar{q}(\bar{q}-1)$. If $k=\bar{q}+1$, then $\left|G_{x B}\right|=\bar{q}(\bar{q}-1)=3$. If $k=\bar{q}(\bar{q}-1)$, then $\left|G_{x B}\right|=\bar{q}+1=3$. We have $k=2$ which impossible since since $k \geq 9$.

Subcase 3.10. G_{B} is conjugate to S_{4} with $k=8$ or A_{5} with $k=20$, which is impossible by Eq.(1).

This completes the proof of Theorem 1.2.

Acknowledgement. The authors would like to thank the referee for the valuable suggestions and comments.

References

[1] F. Buekenhout, A. Delandtsheer, J. Doyen, P. B. Kleidman, M. W. Liebeck and J. Saxl, Linear spaces with flag-transitive automorphism groups, Geom. Dedicata, 36(1) (1990), 89-94.
[2] P. J. Cameron and C. E. Praeger, Block-transitive t-designs, II: large t, In Finite geometry and combinatorics, Deinze, 1992, London Math. Soc. Lecture Note Ser., Cambridge Univ. Press, 191 (1993), 103-119.
[3] S. Dai and S. Li, Flag-transitive 4- $(v, k, 4)$ designs and PSL(2,q) groups, Util. Math., 105 (2017), 3-11.
[4] M. Huber, A census of highly symmetric combinatorial designs, J. Algebraic Combin., 26(4) (2007), 453-476.
[5] M. Huber, Flag-Transitive Steiner Designs, Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2009.
[6] B. Huppert, Endliche Gruppen I, Die Grundlehren der Mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin-New York, 1967.
[7] W. J. Liu, Q. H. Tan and L. Z. Gong, Flag-transitive 5-($v, k, 2)$ designs, J. Jiangsu Univ. (Natural Science Edition), 31(5) (2010), 612-615.
[8] H. Shen, The Theory of Combinatorial Design, Shanghai Jiao Tong Univ. Press, Shanghai, 2008.
[9] X. Xu and W. Liu, On flag-transitive $6-(v, k, \lambda)$ designs with $\lambda \leq 5$, Ars Combin., 97 (2010), 507-510.

Shaojun Dai (Corresponding Author)
School of Mathematical Sciences
Tianjin Polytechnic University
No. 399 Binshuixi Road, Xiqing District
300387 Tianjin, P. R. China
e-mail: daishaojun@tjpu.edu.cn

Shangzhao Li
School of Mathematics and Statistics
Changshu Institute of Technology
215500 Changshu, Jiangsu, P. R. China
e-mail: lszfd2004@163.com

[^0]: Supported by the National Natural Science Foundation of China (11301377, 11701046, 11671402), the Natural Science Foundation of Jiangsu Province (BK20170433) and the Universities Natural Science Foundation of Jiangsu Province (16KJB110001).

