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Abstract. This article is a contribution to the study of the automorphism

groups of 5-(v, k, 4) designs. Let S=(P,B) be a non-trivial 5-(q+1, k, 4) design.

If G acts flag-transitively on S, then G is not two-dimensional projective linear

group PSL(2, q).
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1. Introduction

For positive integers t ≤ k ≤ v and λ, we define a t-(v, k, λ) design to be a

finite incidence structure S=(P,B), where P denotes a set of points, |P| = v, and

B a set of blocks, |B| = b, with the properties that each block is incident with k

points, and each t-subset of P is incident with λ blocks. A flag of S is an incident

point-block pair (x,B) with x is incident with B, where x ∈ P and B ∈ B. We

consider automorphisms of S as pairs of permutations on P and B which preserve

incidence structure. The full automorphism group of an incidence structure S will

be denotes by Aut(S). We call a group G ≤ Aut(S) of automorphisms of S flag-

transitive (respectively block-transitive, point t-transitive, point t-homogeneous) if

G acts transitively on the flags (respectively transitively on the blocks, t-transitively

on the points, t-homogeneously on the points) of S. For short, S is said to be, e.g.,

flag-transitive if S admits a flag-transitive automorphism group.

For historical reasons, a t-(v, k, λ) design with λ = 1 is called a Steiner t-design

(sometimes this is also known as a Steiner system). If t < k < v holds, then we

speak of a non-trivial Steiner t-design.

Investigating t-designs for arbitrary λ, but large t, Cameron and Praeger proved

the following result:
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Theorem 1.1. ([2]) Let S=(P,B) be a t-(v, k, λ) design. If G ≤ Aut(S) acts block-

transitively on S, then t ≤ 7, while if G ≤ Aut(S) acts flag-transitively on S, then

t ≤ 6.

Among the properties of homogeneity of incidence structures, flag transitivity

obviously is a particularly important and natural one. Originally, F. Buekenhout et

al. ([1]) reached a classification of flag-transitive Steiner 2-designs. Recently, Huber

([5]) completely classified all flag-transitive Steiner t-designs using the classification

of the finite 2-transitive permutation groups. Hence the determination of all flag-

transitive t-designs with λ ≥ 2 has remained of particular interest and has been

known as a long-standing and still open problem.

In 2010, Xu ([9]) completely classified flag-transitive 6-(v, k, λ) designs with

λ ≤ 5. In 2010, Liu ([7]) completely classified flag-transitive 5-(v, k, 2) design and

PSL(2, q) groups. In 2017, Dai ([3]) completely classified flag-transitive 4-(v, k, 4)

design and PSL(2, q) groups. The present paper continues the work of classify-

ing flag-transitive t-designs. We discuss the flag-transitive 5-(v, k, 4) designs and

PSL(2, q) groups and get the following:

Theorem 1.2. Let S=(P,B) be a non-trivial 5-(q+ 1, k, 4) design. If G acts flag-

transitively on S, then G is not two-dimensional projective linear group PSL(2, q).

The second section describes the definitions and contains several preliminary

results about flag-transitivity t-designs. In the third section we give the proof of

Theorem 1.2.

2. Preliminary results

Here we gather notation which are used throughout this paper. For a t-design

S=(P,B) with G ≤ Aut(S), let r denotes the number of blocks through a given

point, Gx denotes the stabilizer of a point x ∈ P and GB the setwise stabilizer of

a block B ∈ B. We define GxB = Gx ∩GB .

For integers m and n, let (m,n) denotes the greatest common divisor of m and

n, and m | n if m divides n. All other notation is standard.

Lemma 2.1. ([5]) Let G act flag-transitively on t-(v, k, λ) design S=(P,B). If

t ≥ 3, then G is 2-transitive and the following cases hold:

(1) |G| = |Gx||xG| = |Gx|v, where x ∈ P;

(2) |G| = |GB ||BG| = |GB |b, where B ∈ B;

(3) |G| = |GxB ||(x,B)G| = |GxB |bk, where x ∈ B.
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Lemma 2.2. ([8]) Let S=(P,B) be a non-trivial t-(v, k, λ) design. Then v > k+ t

and

λ(v − t+ 1) ≥ (k − t+ 2)(k − t+ 1).

Lemma 2.3. ([8]) Let S=(P,B) be a non-trivial 5-(v, k, λ) design. Then

(1) bk = vr;

(2) b = λv(v−1)(v−2)(v−3)(v−4)
k(k−1)(k−2)(k−3)(k−4) .

Lemma 2.4. ([8]) Let 1 ≤ i < t, S=(P,B) is a t-(v, k, λ) design. Then S is also

an i-(v, k, λi) design, where

λi = λ

(
v − i
t− i

)
(
k − i
t− i

) .
Let q be a prime power pf , and U a subgroup of PSL(2, q). Furthermore, let

Nl denotes the number of orbits of length l and let (2, q − 1) = n. For the list of

subgroups of PSL(2, q), we refer to [4, 6].

Lemma 2.5. Let U be the cyclic group of order c with c | q±1
n . Then

(1) if c | q+1
n , then Nc = (q + 1)/c;

(2) if c | q−1
n , then N1 = 2, Nc = (q − 1)/c.

Lemma 2.6. Let U be the dihedral group of order 2c with c | q±1
n . Then

(1) for q ≡ 1 (mod 4), we have

(a) if c | q+1
2 , then Nc = 2 and N2c = (q + 1− 2c)/(2c);

(b) if c | q−1
2 , then N2 = 1, Nc = 2, and N2c = (q − 1 − 2c)/(2c),

unless c = 2, in which case N2 = 3 and N4 = (q − 5)/4.

(2) for q ≡ 3 (mod 4), we have

(a) if c | q+1
2 , then N2c = (q + 1)/(2c);

(b) if c | q−1
2 , then N2 = 1 and N2c = (q − 1)/(2c).

(3) for q ≡ 0 (mod 2), we have

(a) if c | (q + 1), then Nc = 1 and N2c = (q + 1− c)/(2c);

(b) if c | (q − 1), then N2 = 1, Nc = 2, and N2c = (q − 1− c)/(2c).

Lemma 2.7. Let U be the elementary Abelian group of order q̄ | q. Then N1 = 1,

Nq̄ = q/q̄.

Lemma 2.8. Let U be a semi-direct product of an elementary Abelian subgroup of

order q̄ | q and the cyclic subgroup of order c, where c divides q̄−1 and q−1. Then

N1 = 1, Nq̄ = 1, Ncq̄ = (q − q̄)/(cq̄).
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Lemma 2.9. Let U be PSL(2, q̄) and q̄m = q, m ≥ 1. Then Nq̄+1 = 1, Nq̄(q̄−1) = 1

if m is even, and all other orbits are regular.

Lemma 2.10. Let U be PGL(2, q̄) and q̄m = q, m > 1 even. Then Nq̄+1 = 1,

Nq̄(q̄−1) = 1, and all other orbits are regular.

Lemma 2.11. Let U be isomorphic to A4. Then

(1) for q ≡ 1 (mod 4), we have

(a) if 3 | q+1
2 , then N6 = 1 and N12 = (q − 5)/12;

(b) if 3 | q−1
2 , then N4 = 2, N6 = 1, and N12 = (q − 13)/12;

(c) if 3 | q, then N4 = 1, N6 = 1 and N12 = (q − 9)/12.

(2) for q ≡ 3 (mod 4), we have

(a) if 3 | q+1
2 , then N12 = (q + 1)/12;

(b) if 3 | q−1
2 , then N4 = 2 and N12 = (q − 7)/12;

(c) if 3 | q, then N4 = 1 and N12 = (q − 3)/12.

(3) for q = 2f , f ≡ 0 (mod 2), then N1 = 1, N4 = 1, and N12 = (q − 4)/12.

Lemma 2.12. Let U be isomorphic to S4. Then

(1) for q ≡ 1 (mod 8), we have

(a) if 3 | q+1
2 , then N6 = 1, N12 = 1, and N24 = (q − 17)/24;

(b) if 3 | q−1
2 , then N6 = 1, N8 = 1, N12 = 1, and N24 = (q− 25)/24;

(c) if 3 | q, then N4 = 1, N6 = 1, and N24 = (q − 9)/24.

(2) for q ≡ −1 (mod 8), we have

(a) if 3 | q+1
2 , then N24 = (q + 1)/24;

(b) if 3 | q−1
2 , then N8 = 1 and N24 = (q − 7)/12.

Lemma 2.13. Let U be isomorphic to A5. Then

(1) for q ≡ 1 (mod 4), we have

(a) if q = 5f , f ≡ 1 (mod 2), then N6 = 1 and N60 = (q − 5)/60;

(b) if q = 5f , f ≡ 0 (mod 2), then N6 = 1, N20 = 1, and N60 =

(q − 25)/60;

(c) if 15 | q+1
2 , then N30 = 1 and N60 = (q − 29)/60;

(d) if 3 | q+1
2 and 5 | q−1

2 , then N12 = 1, N30 = 1, and N60 =

(q − 41)/60;

(e) if 3 | q−1
2 and 5 | q+1

2 , then N20 = 1, N30 = 1, and N60 =

(q − 49)/60;

(f) if 15 | q−1
2 , then N12 = 1, N20 = 1, N30 = 1, and N60 = (q −

61)/60;

(g) if 3 | q and 5 | q+1
2 , then N10 = 1 and N60 = (q − 9)/60;
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(h) if 3 | q and 5 | q−1
2 , then N10 = 1, N12 = 1, and N60 = (q−21)/60.

(2) for q ≡ 3 (mod 4), we have

(a) if 15 | q+1
2 , then N60 = (q + 1)/60;

(b) if 3 | q+1
2 and 5 | q−1

2 , then N12 = 1 and N60 = (q − 11)/60;

(c) if 3 | q−1
2 and 5 | q+1

2 , then N20 = 1 and N60 = (q − 19)/60;

(d) if 15 | q−1
2 , then N12 = 1, N20 = 1, and N60 = (q − 31)/60.

3. Proof of Theorem 1.2

Suppose that G=PSL(2, q) acts flag-transitively on 5-(q+ 1, k, 4) designs. Then

G is point-transitive and |G| = q(q2 − 1)/n, where q = pf > 3, n = (2, q − 1).

By Lemma 2.1(1), we have

|Gx| =
|G|
v

=
q(q2 − 1)/n

q + 1
= q(q − 1)/n.

Again by Lemma 2.3(2) and Lemma 2.1(3),

b =
4v(v − 1)(v − 2)(v − 3)(v − 4)

k(k − 1)(k − 2)(k − 3)(k − 4)
=

v|Gx|
k|GxB |

.

Thus

4|GxB |(q − 2)(q − 3)n = (k − 1)(k − 2)(k − 3)(k − 4), (1)

which is equivalent to

4|GxB |(q − 2)(q − 3)n− 24 = k(k3 − 10k2 + 35k − 50). (2)

By Lemma 2.2,

4(q − 3) ≥ (k − 3)(k − 4). (3)

Thus

|GxB |(q − 2)n ≤ (k − 1)(k − 2). (4)

If k < 9, then

|GxB |(q − 2)(q − 3)n = 280, 120, 40 (5)

by Eq.(1). By Lemma 2.2, we get k > 5 and q > 10. Thus q is not exist by Eq.(5).

If k ≥ 9, then (k − 1)(k − 2) < 2(k − 3)(k − 4) and q ≥ 14. We have

|GxB |(q − 2)n < 8(q − 3). (6)

In particular,

|GxB |n ≤ 7. (7)

Since GB acts transitively on the points of B, we have

k = |xGB | = |GB : GxB |. (8)

We assume that k ≥ 9 and distinguish three cases:
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Case 1. |GxB | = 1.

If q is even, then n = 1 and k | (4q2 − 20q) by Eq.(2). By Lemmas 2.5-2.13, we

have to consider GB is conjugate to a cyclic group of order c with c | (q + 1) and

c = k. Thus

k | (4q2 − 20q, q + 1) = (q + 1, 24) = (q + 1, 3).

Obviously, k = 3 which is clearly impossible.

If q is odd, then n = 2 and k | (8q2 − 40q + 24) by Eq.(2). Examining the list of

subgroups of PSL(2, q) with their orbits on the projective line by Lemmas 2.5-2.13,

we have to consider the following subcase:

Subcase 1.1. GB is conjugate to a cyclic group of order c with c | q+1
2 and

c = k. Thus

k | (8q2 − 40q + 24,
q + 1

2
) = (

q + 1

2
, 72).

We have k = 9, 12, 18, 24, 36, 72. If k = 9, then q = 17 by Eq.(1). Obviously, S is a

5-(18, 9, 4) design. By Lemma 2.4, S is also a 4-design which is impossible since λ4

is not integer. If k = 18, then q = 87 by Eq.(1) which is impossible since q is prime

power. If k = 12, 24, 36, 72, then q is not exist by Eq.(1).

Subcase 1.2. GB is conjugate to a dihedral group of order 2c with c | q+1
2 ,

q ≡ 3 (mod 4) and 2c = k. Thus

k | (8q2 − 40q + 24, q + 1) = (q + 1, 72).

We have k = 12, 18, 24, 36, 72. This is easily ruled out as Subcase 1.1.

Subcase 1.3. GB is conjugate to A4 with k = 12, S4 with k = 24 or A5 with

k = 60. We get that q is not exist by Eq.(1).

Case 2. |GxB | = 2.

If q is even, then n = 1 and k | (8q2− 40q+ 24) by Eq.(2). By Lemmas 2.5-2.13,

we have to consider the following subcase:

Subcase 2.1. GB is conjugate to a cyclic group of order c with c | (q−1), which

is impossible as c = 2k is even.

Subcase 2.2. GB is conjugate to a dihedral group of order 2c with c | (q + 1)

and c = k. Thus

k | (8q2 − 40q + 24, q + 1) = (q + 1, 72) = (q + 1, 9).

Obviously, k = 9 with q = 17, which is a contradiction.

Subcase 2.3. GB is conjugate to a elementary Abelian group of order q̄ | q and

2k = q̄. Thus

k | (8q2 − 40q + 24,
q

2
) = (

q

2
, 24) = (

q

2
, 8).

Obviously, k ≤ 8, which is a contradiction.
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If q is odd, then n = 2 and k | (16q2− 80q+ 72) by Eq.(2). By Lemmas 2.5-2.13,

we have to consider the following subcase:

Subcase 2.4. GB is conjugate to a cyclic group of order c with c | (q−1)
2 and

c = 2k. Thus

k | (16q2 − 80q + 72,
q − 1

4
) = (

q − 1

4
, 8).

We have k ≤ 8, which is a contradiction.

Subcase 2.5. GB is conjugate to a dihedral group of order 2c with c = k. If

c | q+1
2 and q ≡ 1 (mod 4), then

k | (16q2 − 80q + 72,
q + 1

2
) = (

q + 1

2
, 168) = (

q + 1

2
, 8).

If c | q−1
2 and q ≡ 3 (mod 4), then

(16q2 − 80q + 72,
q − 1

2
) = (

q − 1

2
, 8).

We have k ≤ 8, which is a contradiction.

Subcase 2.6. GB is conjugate to a elementary Abelian group of order q̄ | q and

2k = q̄, which is impossible as q is odd.

Subcase 2.7. GB is conjugate to A4 with k = 6, S4 with k = 12 or A5 with

k = 30. We get that q is not exist by Eq.(1).

Case 3. |GxB | ≥ 3.

If q is even, then n = 1 and |GxB | = 3, 4, 5, 6, 7. Thus k | (4|GxB |(q− 2)(q− 3)−
24) by Eq.(2). By Lemmas 2.5-2.13, we have to consider the following subcase:

Subcase 3.1. GB is conjugate to a dihedral group of order 2c with c | (q − 1)

and 2c = 3k. Thus let k = 4m + 1. We have q | b by Lemma 2.3(2). Again by

Lemma 2.1(2), b = q(q2−1)
|GB | . Then |GB | is odd, which is impossible as |GB | = 2c is

even.

Subcase 3.2. GB is conjugate to a semi-direct product of an elementary Abelian

subgroup of order q̄ | q and the cyclic subgroup of order c, where c divides q̄ − 1

and q − 1, and k | q̄. If |GxB | = 3, then k | (12q2 − 60q + 48, q) = (q, 48) = (q, 16).

If |GxB | = 4, then k | (16q2 − 80q + 72, q) = (q, 72) = (q, 8). If |GxB | = 5, then k |
(20q2−100q+96, q) = (q, 96) = (q, 32). If |GxB | = 6, then k | (24q2−120q+120, q) =

(q, 120) = (q, 8). If |GxB | = 7, then k | (28q2 − 140q + 144, q) = (q, 144) = (q, 16).

We have k = 16, 32. But q is not exist.

Subcase 3.3. GB is conjugate to PSL(2, q̄) with q̄m = q, m ≥ 1 and k = q̄ + 1

or q̄(q̄ − 1) if m is even. If k = q̄ + 1, then |GxB | = q̄(q̄ − 1). Thus, by Eq.(1),

4(q − 2)(q − 3) = (q̄ − 2)(q̄ − 3).



176 SHAOJUN DAI AND SHANGZHAO LI

This is impossible as q̄m = q. If k = q̄(q̄ − 1), then |GxB | = q̄ + 1 and

q̄(q̄− 1) | (4(q− 2)(q− 3)(q̄+ 1)− 24) = 4q̄2m+1 + 4q̄2m − 20q̄m+2 − 20q̄m+1 + 24q̄.

Since (4q̄2m+1 + 4q̄2m − 20q̄m+2 − 20q̄m+1 + 24q̄, q̄ − 1) = (q̄ − 1, 8) = 1, which is a

contradiction.

Subcase 3.4. GB is conjugate to PGL(2, q̄) with q̄m = q, m > 1 even and

k = q̄+ 1 or q̄(q̄−1). By q even, PGL(2, q̄) ∼= PSL(2, q̄). We get that q is not exist

by subcase 3.3.

Subcase 3.5. GB is conjugate to A4 and k = 4, which is impossible since k ≥ 9.

If q is odd, then n = 2 and |GxB | = 3. Thus k | (24q2 − 120q + 120) by Eqs.(2)

and (7).

Subcase 3.6. GB is conjugate to a dihedral group of order 2c with c | (q−1)
2

with q ≡ 1 (mod 4) and 2c = 3k. Thus

k | (24q2 − 120q + 120,
q − 1

3
) = (

q − 1

3
, 24).

We have k = 12, 24 which is impossible since q is not exist by Eq.(1).

Subcase 3.7. GB is conjugate to a semi-direct product of an elementary Abelian

subgroup of order q̄ | q and the cyclic subgroup of order c, where c divides q̄ − 1

and q − 1, and k | q̄. Thus

k | (24q2 − 120q + 120, q) = (q, 120) = (q, 8).

We have k = 8, which is impossible since k ≥ 9.

Subcase 3.8. GB is conjugate to PSL(2, q̄) with q̄m = q, m ≥ 1 and k = q̄ + 1

or q̄(q̄− 1) if m is even. If k = q̄+ 1, then |GxB | = q̄(q̄−1)
2 = 3. If k = q̄(q̄− 1), then

|GxB | = q̄+1
2 = 3. We have k = 4 or 20, which is impossible since q is not exist by

Eq.(1).

Subcase 3.9. GB is conjugate to PGL(2, q̄) with q̄m = q, m > 1 even and

k = q̄+ 1 or q̄(q̄− 1). If k = q̄+ 1, then |GxB | = q̄(q̄− 1) = 3. If k = q̄(q̄− 1), then

|GxB | = q̄ + 1 = 3. We have k = 2 which impossible since since k ≥ 9.

Subcase 3.10. GB is conjugate to S4 with k = 8 or A5 with k = 20, which is

impossible by Eq.(1).

This completes the proof of Theorem 1.2.
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