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Abstract. We introduce the notion of ultra star operation on ultraproduct of

integral domains as a map from the set of induced ideals into the set of induced

ideals satisfying the traditional properties of star operations. A case of special

interest is the construction of an ultra star operation on the ultraproduct

of integral domains Ri’s from some given star operations ?i on Ri’s. We

provide the ultra b-operation and the ultra v-operation. Given an arbitrary

star operation ? on the ultraproduct of some integral domains, we pose the

problem of whether the restriction of ? to the set of induced ideals is necessarily

an ultra star operation. We show that the ultraproduct of integral domains

Ri’s is a ?-Prüfer domain if and only if Ri is a ?i-Prüfer domain for U-many i.

Mathematics Subject Classification (2010): 13A15, 13A18, 16W50

Keywords: Star operation, ultraproduct of domains, Prüfer domain

1. Introduction

Let R be an integral domain with quotient field K. Throughout this paper F (R)

denotes the set of all nonzero fractional ideals of R and f(R) denotes the set of all

nonzero finitely generated fractional ideals of R.

A star operation on R is a mapping A → A? of F (R) into F (R) such that for

all A,B ∈ F (R) and for all a ∈ K \ {0},

(i) (a)? = (a) and (aA)? = aA?;

(ii) A ⊆ A? and A ⊆ B ⇒ A? ⊆ B?, and

(iii) A?? := (A?)? = A?.

For an overview of star operations, the reader may refer to [5, Sections 32 and

34]. An I ∈ F (R) is a ?-ideal if I? = I. An obvious example of a star operation

is the identity map traditionally denoted by d and defined as Ad = A for all A ∈
F (R). Another well known star operation we intensively use in this paper is the

v-operation. For A,B ∈ F (R), (B : A) = {x ∈ K : xA ⊆ B} and A−1 = (R : A).

The v-operation is defined by Av = A−1−1 for all A ∈ F (R). The ideal Av is also

called the v-closure of A. If Av = A, then A is called a divisorial ideal of R. Another
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key example of star operation to be used in the paper is the so called b-operation

defined on an integrally closed domain R by Ab =
⋂
αAVα for all A ∈ F (R), where

{Vα} is the family of all valuation overrings of R.

The notion of star operation in commutative rings is often used to not only pro-

vide generalizations of classical domains, but to also produce a common treatment

and deeper understanding of those domains. One of these instances is the notion of

Prüfer ?-multiplication domain which generalizes the notion of Prüfer domains [3,6];

a notion that will be used in this paper. Under the same spirit, in this paper, we

introduce the notion of ultra star operation on an ultraproduct of integral domains

and provide some examples. We show that a “true” star operation on a domain

does not always restrict to an ultra star operation. For easy reference, in Section 2,

we review some definitions and results of ultraproducts of commutative rings that

can be found in [10,11] and provide some results to be used in later sections.

In Section 3, we define an ultra star operation on the ultraproduct R of integral

domains Ri’s and show how to build a “star operation”, called ultra star operation,

from star operations on Ri’s. We show that this construction yields the ultra v-

operation and the ultra b-operation when we start with the traditional v-operations

on the Ri’s and the traditional b-operations on the Ri’s respectively.

In Section 4, we show as an application of the introduction of the notion of ultra

star operation that if an ultra star operation ? on R is built from star operations

?i’s on the components Ri’s as in Proposition 3.1, then R is a ?-Prüfer domain if

and only if Ri is a ?i-Prüfer domain for U-many i. We recall here that if U is an

ultrafilter on a nonempty set X, a property P holds for U-many i if the set of all

i ∈ X such that Ri satisfy P is an element of U (see Section 2 below).

2. Notations and preliminaries

Let X be a set. Let P(X) be the collection of all subsets of X. A nonempty set

F ⊆ P(X) is a filter on P(X) if for all A,B ∈ P(X) we have:

(1) if A,B ∈ F , then A ∩B ∈ F ;

(2) if A ∈ F and A ⊆ B, then B ∈ F .

A filter F on P(X) is proper if it is properly contained in P(X). A proper filter

F is a maximal filter if the only filter that contains it is P(X). By Zorn’s Lemma,

every proper filter of P(X) is contained in a maximal filter of P(X).

An ultrafilter U on X is a maximal filter on P(X). Equivalently, a filter U on

X is an ultrafilter if and only if for all A ⊆ X, either A ∈ U or X \ A ∈ U .

If an ultrafilter U contains a finite subset of X, then it contains a singleton set,
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say {x}, and x is an element of every element of U . In this case U is a principal

ultrafilter. An ultrafilter that is not principal is called a free ultrafilter. Let {Ri}i∈I
be the collection of commutative rings indexed by a set I. The direct-product R

of the commutative rings {Ri}i∈I is a commutative ring consisting of elements

(ai)i∈I = (a1, a2, . . . , ai, . . .), with ai ∈ Ri.
If U is an ultrafilter on I, then we define on R a relation ∼ by

(ai)i∈I ∼ (bi)i∈I ⇐⇒ {i ∈ I : ai = bi} ∈ U .

The quotient set R/ ∼ is denoted
∏
U Ri =: R is called the ultraproduct of the

Ri’s with respect to the ultrafilter U . We denote simply by (ai) the element of R

determined by the equivalence class of (ai). In the case that for all i ∈ I, Ri = R,

then R is called the ultrapower of R and is denoted RU .

2.1. Los’ Theorem. A property P holds for U-many i if the set of all i such

that Ri satisfy P is an element of U . Any first order formula over the language of

commutative rings utilizes the symbols +, ., =, 0, 1. One of the most fundamental

properties of ultraproducts due to Los is that they preserve first order properties.

Theorem 2.1. (Los’ Theorem) Let φ be a formula in the first order language of

rings. Then R satisfies φ if and only if Ri satisfies φ for U-many i.

It follows from Los’ Theorem that R is an integral domain (a field resp.) if and

only if Ri is an integral domain (a field resp.) for U-many i. This is because the

theory of integral domains and fields consists of finitely many axioms, all of which

can be easily be expressed in the first order language of integral domains and fields.

If U is a principal ultrafilter, say {i} ∈ U , then it is not hard to see that R ∼= Ri.

Thus, throughout this paper, we are interested in a collection of integral domains

{Ri}i∈I indexed by an infinite set I, and U is a non principal ultrafilter. The

quotient field of each Ri is denoted Fi. The quotient field of R is the ultraproduct∏
U Fi =: F.

An ideal A of a commutative ring R is definable in R if there exists a first order

formula ψ(x, y1, . . . , yn) in the language of commutative rings and r1, . . . , rn ∈ R
such that

r ∈ A⇔ ψ(r, r1, . . . , rn) is true in R.

A finitely generated ideal A of a domain R with quotient field K and its dual A−1

are definable, as well as the maximal ideal of any quasilocal ring (see [10]). For

example, if A := (r1, r2, . . . , rn) is a finitely generated ideal of R, then x ∈ K is in
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A−1 if there exist some r, α1, α2, . . . , αn ∈ R such that r = xα1r1 + xα2r2 + . . . +

xαnrn). Thus A−1 is defined in K by the formula

φ(s, t1, t2, . . . , tn) : ∃r, α1, α2, . . . , αn(r = sα1t1 + sα2t2 + . . .+ sαntn),

since x ∈ A−1 if and only if φ(x, r1, r2, . . . , rn) is true in K.

Recall that an ideal A of R is induced if A = (Ai)U for some subsets Ai of Ri,

i ∈ I. Observe that A = (Ai) is an induced ideal of R if and only if Ai is an ideal

of Ri for U-many i. Some facts about the algebra of induced ideals are provided in

Proposition 2.2. Recall also that an ideal A of a commutative ring is n-generated

if A can be generated by n elements. Note that an ideal A is n-generated if and

only if A = (Ei)U for some n-generated ideals Ei of Ri.

Proposition 2.2. (See also [10, Lemma 2.1]) Suppose that A = (Ai)U and B =

(Bi)U are induced ideals of R. Then

(i) A ⊆ B if and only if Ai ⊆ Bi for U-many i;

(ii) R/A ∼=
∏
U Ri/Ai;

(iii) A is a prime (maximal) ideal if and only if Ai is a prime (maximal) ideal

of Ri for U-many i;

(iv) A is an n-generated ideal if and only if Ai is an n-generated ideal for U-

many i;

(v) A ∩B = (Ai ∩Bi)U ;

(vi) A−1 = (A−1i )U ;

(vii) A is an invertible ideal of R if and only if there exists n > 0 such that Ai

is an n-generated invertible ideal of Ri for U-many i;

(viii) A is a divisorial ideal of R if and only if Ai is a divisorial ideal of Ri for

U-many i.

Proof. All the statements are shown in [10, Lemma 2.1] except (vi). To see (vi),

if A = (Ai)U , let x = (xi) ∈ A−1. Then x(Ai)U ⊆ R, that is, by (i), xiAi ⊆ Ri

for U-many i. Thus xi ∈ A−1i for U-many i and so x ∈ (A−1i )U by Los’ Theorem.

Hence A−1 = (A−1i )U . �

In general, except in some very special cases, an ultraproduct of Noetherian rings

is non-Noetherian (see for example [13, Page 12, 1.4.13]) with a very complicated

prime spectrum. However, it is of interest in applications to understand ultraprod-

uct of Noetherian rings. For example H. Shoutens studies in [13, Chapter 8] tight

closures in positive characteristic by relying on ultraproduct of Noetherian rings.

We next assume that the Ri’s are Noetherian and are chosen such that the

ultraproduct R is Noetherian. Then we aim to prove that an induced ideal J of R
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is integrally closed if and only if each component Ji of J is an integrally closed ideal

of Ri for U-many i. Recall that for an ideal A of an integral domain R, the integral

closure Ab of A consists of r ∈ R satisfying the integral dependence equation of r

over A: rs + a1r
s−1 + a2r

s−2 + . . .+ ras−1 + as = 0 for some positive integer s and

some ai ∈ Ai [7, Definition 1.1.1]. Equivalently Ab =
⋂
α AVα, where {Vα} is the

family of all valuation overrings of R [5, page 398]. An ideal A of R is said to be

integrally closed if Ab = A.

Proposition 2.3. Let us assume that the Ri’s are Noetherian domains such that

R is Noetherian. Then an induced ideal A = (Ai)U of R is integrally closed if and

only if Ai is an integrally closed ideal of Ri for U-many i.

Proof. (⇐) Suppose in one direction that the Ai’s are integrally closed for U-

many i and let us show that A = (Ai)U is integrally closed. Let f ∈ Ab satisfying

an integral dependence equation witnessing this. Write f as an ultraproduct of

elements fi ∈ Ri, then Los’ Theorem gives for U-many i an integral dependence

equation witnessing that fi lies in the integral closure of Ai, whence in Ai, and

hence lies in A = (Ai)U .

(⇒) Conversely, suppose A := (Ai)U is integrally closed but not the Ai’s for

U-many i. Let’s choose some fi ∈ Ri in the integral closure of Ai but not in Ai

itself. Let fU be the ultraproduct of those fi’s. By Los’ Theorem, fU does not lie

in A whence not in its integral closure as Ab = A, since R is Noetherian, so that by

a well-known integrality criterion (see [13, Theorem 8.4.1]), there exists a Discrete

Valuation Ring (for short DVR) V containing A such that fU /∈ AV . We may

assume V to be complete and with algebraic closed residue field, and then by some

arguments on cataproducts (see [13, Proof of Theorem 11.1.4]), it follows that there

exists for each i a DVR Vi containing Ri such that their cataproduct V] is equal

to V (recall that the cataproduct V] is the quotient of the ultraproduct VU modulo

the intersection of the powers of the maximal ideal [13, page 172]). Hence R is

contained in VU and we must have fU /∈ AVU (lest this membership would then also

be true in the quotient V] = V ). By Los’ Theorem, fi /∈ AiVi for U-many i, which

in turn means by the integrality criterion alluded to above that fi does not belong

to the integral closure of Ai (since the Ri’s are Noetherian), a contradiction. �

Remark 2.4. 1. Note that even though we assume the Ri’s to be Noetherian,

we do not need it to show the direction (⇐).

2. Observe that an induced ideal A = (Ai)U is integrally closed if and only if

A satisfies the sentence φn that asserts that if a, b ∈ A and f(a, b) = 0 for
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some degree n and for some f(x, y) := xn+rn−1x
n−1y+. . .+r0y

n ∈ A[x, y].

Note that Schmidt-van den Dries theorem [13, Section 7.2] proves that the

necessary bounds exist so that the integral closure of ideals would be a

definable condition. And hence Los’ Theorem will only prove Proposition

2.3 for ultraproduct of ideals generated by polynomials of degree d (these

form a strict subclass of all induced ideals). Hence definability is not always

the road to go, especially that the two directions of Proposition 2.3 might

need different proofs (notice that the direction (⇐) of the proof cannot be

reversed since we might get integral equations of increasing degree, which

become meaningless in the ultraproduct).

3. Ultra star operations on ultra product of domains

In the star operation context, it is customary to replace the v-operation by

an arbitrary star operation in results such as Proposition 2.2 (viii) in order to

generalize concepts. Proposition 2.2 (viii) is therefore our motivation to introduce

the notion of induced star operation on an ultraproduct of integral domains.

From now on assume that ?i is a star operation on Ri for each i ∈ I and denote

Ind(R) the collection of induced ideals of R. Defined the map:

? : Ind(R)→ Ind(R), A = (Ai)U 7→ A? = (A?ii )U .

Proposition 3.1. The map ? as defined above does satisfy the following properties:

(Ind1) R? = R and ((ai)A)? = (ai)A
?;

(Ind2) A ⊆ A? and A ⊆ B ⇒ A? ⊆ B?, and

(Ind3) A?? := (A?)? = A?;

for all A,B ∈ Ind(R) and for all (ai) ∈ F \ {0}.

Proof. Statements (Ind2) and (Ind3) are clear by combining axioms (ii) and (iii)

of each ?i described in the introduction and Proposition 2.2 (i).

For (Ind1), note that R = (Ri)U and hence R? = R, since R?ii = Ri. Note also

that ((ai)A)U = (aiAi)U and it will then follow that ((ai)A)? = (ai)A
?, since

(aiAi)
?i = aiA

?i
i . �

We have then motivated the following definition:

Definition 3.2. (i) An ultra star operation ? on R is a mapping from Ind(R)

into Ind(R) satisfying the conditions Ind1, Ind2 and Ind3 in Proposition

3.1.
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(ii) A strong ultra star operation ? on R is a star operation ? on R in the

classical sense preserving induced ideals, i.e., for each induced ideal A of R

A? is an induced ideal of R.

Remark 3.3. It is clear that any strong ultra star operation on R is an ultra star

operation, but the converse is not necessarily true (see Question.)

If we are given some star operations ?i on Ri for each i, then ? constructed in

Proposition 3.1 is an ultra star operation on R.

Example 3.4. 1. The identity d is clearly an ultra star operation on R.

2. The v-operation on R preserves the induced ideals. In fact, by Proposition

2.2 (vi), we have Av = A−1−1 = (A−1−1i )U = (Avii )U . So the v-operation is

a strong ultra star operation on R.

3. In Proposition 3.1, if each ?i = vi for each i, then the mapping A = (Ai)U 7→
A? = (Avii )U is an ultra star operation that coincides with the restriction

of the v-operation of R on the set of induced ideals in view of Proposition

2.2 (vi) and (viii). So the mapping A = (Ai)U 7→ A? = (Avii )U may be

legitimately called the ultra v-operation on R.

4. If each ?i = bi for each i, where bi is the integral closure of ideals of Ri,

where each Ri is assumed to be integrally closed so that each bi is a star

operation on Ri, then the mapping A = (Ai)U 7→ A? = (Abii )U is an ultra

star operation. Note that by Proposition 2.3, A? is an integrally closed

ideal of R (we do not need the assumption of the Ri’s being Noetherian

for this) and therefore can be legitimately labeled as the ultra b-operation.

Also note that R is integrally closed as all the Ri’s are integrally closed. In

fact, recall that a domain R is integrally closed if and only if for all n > 0,

R satisfies the sentence φn that asserts that if a, b ∈ R and f(a, b) = 0 for

some degree n form f(x, y) := xn + rn−1x
n−1y + . . .+ r0y

n ∈ R[x, y], then

b divides a ∈ R. Thus the statement holds by Los’ Theorem.

Note however that we do not know whether the ultra b-operation coincide with

the restriction of the b-operation of R. More generally, we do not expected all

star operations on R to preserve induced ideals and therefore we may not obtain

an ultra star operation just by restricting any star operation of R on the set of

induced ideals. We can make the following observation for the b-operation in the

case we assume that the Ri’s are Noetherian domains such that R is Noetherian:

if A = (Ai)U is an induced ideal of R, then Ab = (Ai)
b
U ⊆ (Abii )bU = (Abii )U , the

later equality holds by combining Proposition 2.2 (i) and Proposition 2.3. If Ab is
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induced, then Ab = (Bi)U . So (Ai)U ⊆ (Bi)U ⊆ (Abii )U , that is Ai ⊆ Bi ⊆ Abii for

U-many i.

Question: If A is an induced ideal of R, must Ab be an induce ideal?

Remark 3.5. 1. The ?i’s in the construction of ? in Proposition 3.1 are ar-

bitrary star operations on Ri’s. If we pick the star operation to be of the

same kind (say for example, the ?i is the identity for all i), then the ultra

star operation ? obtained should be denoted ?U . For instance dU means

the ultra star operation obtained by considering the identity on each Ri

in Proposition 3.1, vU is the ultra v-operation on R when the v-operation

is considered on each Ri, and bU is the ultra b-operation on R when the

b-operation is considered on each Ri.

2. Though we could not decide, even in the special case where the Ri’s are

chosen Noetherian such that R is also Noetherian, if the b-operation is a

strong ultra star operation, note that we can at least construct an ultra

star operation as in Proposition 3.1 from the bi-operations on Ri’s without

the assumption on the Ri’s being Noetherian. So the ultra star operation

bU may not coincide with the b-operation on R.

3. From Proposition 2.3, we can choose different kinds of star operations on

Ri’s (for instance, one could randomly pick the identity, the v-operations,

the b-operations at different components of the ultraproduct R) to built a

complex ultra star operation on R.

4. Ultra star operations and Prüfer ?-multiplication domains

In this section we aim to establish that if an ultra star operation ? on R is built

from star operations on the components Ri’s as in Proposition 3.1, then R is a

?-Prüfer domain if and only if Ri is a ?i-Prüfer domain for U-many i. We also

show that if an ultra star operation ?f on R is built from finite type star operations

associated to the (?i)f ’s, then R is a ?f -Prüfer domain if and only if Ri is a Prüfer

?i-multiplication domain for U-many i.

Recall that given a star operation ? on an integral domain R, an ideal A of R is

a ?-ideal if A? = A. We have the following proposition relating the ?-ideals of R

and the ?i-ideals of Ri’s.

Proposition 4.1. Let ? be an ultra star operation on R built from the star opera-

tions ?i’s on Ri’s. Then an induced ideal A = (Ai)U of R is a ?-ideal if and only

if Ai is a ?i-ideal of Ri for U-many i.
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Proof. Suppose A = (Ai)U is a ?-ideal of R. Then (Ai)U = ((Ai)U )? = (A?ii )U . So

A?ii ⊆ Ai for U-many i, by proposition 2.2 (i). Since Ai ⊆ A?ii for all i, it follows

that A?ii = Ai for U-many i.

Conversely, suppose that A?ii = Ai for U-many i. Clearly A = (Ai)U = (A?ii )U and

hence A is a ?-ideal. �

Given a star operation ? on R, one can construct a new star operation ?f as

follows: for each A ∈ F (R), A?f = ∪{B?|B ⊆ A and B ∈ f(R)}. Note that

df = d, where d is the identity star operation and if ? is the v-operation we denote

vf := t and call it the t-operation. A nonzero ideal A of R is a ?-ideal if A? = A.

Similarly, we call a ?-ideal of R a ?-prime ideal of R if it is also a prime ideal.

We call a maximal element, if such exists, in the set of all proper ?-ideals of R a

?-maximal ideal of R. We denote Spec?(R) the set of all ?-prime ideals of R and

Max?(R) the set of all ?-maximal ideals of R. An A ∈ F(R) is said to be ?-invertible

if (AA−1)? = R, whereas a domain R is a Prüfer ?-multiplication domain (in short,

P?MD) if every finitely generated ideal A of R is ?f -invertible, i.e., (AA−1)?f = R

for any A ∈ f(R). Thus a Prüfer domain is a PdMD and PvMD is often called a

pseudo Prüfer domain.

For lacking a specific reference, we aim to first prove that a domain R is a P?MD

if and only if each ideal of R with two generators is ?f -invertible. Note that this

result is a generalization of the facts that a domain is Prüfer if and only if each

ideal with two generators is invertible [12, page 7]. The same result has been shown

in the v-domain ([9]) and in the PvMD ([8]) cases. We start with the recollection

of some facts about star operations. Let ? be a star operation on R. Recall that

? is stable if (A ∩ B)? = A? ∩ B?. Define ?̃ by A?̃ := ∩{ARM |M ∈ Max?f (R)},
for all A ∈ F (R). Then it is well known that ?̃ is a stable star operation on R of

finite type called the stable star operation of finite type associated to ?. It is not

hard to see that Max?̃(R)=Max?f (R) [4, Corollary 3.5(2)]. From the latest fact, it

then follows that an ideal A is ?̃-invertible if and only if it is ?f -invertible (in fact,

if a star operation ? is of finite type, then (AA−1)? = R if and only if AA−1 * M

for all M ∈ Max?(R)). From this observation it then follows that P?MD, P?fMD,

and P?̃MD coincide.

Lemma 4.2. Let A be a finitely generated ideal of an integral domain R and ? a

star operation on R. If A is ?f -invertible, then ARM is principal for every M ∈
Max?f (R).
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Proof. Suppose that A is ?f -invertible. From the above observation, it follows

that A is ?̃-invertible, i.e., (AA−1)?̃ = R. We have, for each maximal ?f -ideal M ,

RM = (AA−1)?̃RM = ∩{(AA−1)RM |M ∈ Max?f (R)}RM = (AA−1)RM . Thus

ARM is invertible and therefore principal. �

Lemma 4.3. Let R be an integral domain and let ? be a star operation on R. Then

the following statements are equivalent for an integral domain R.

(i) RM is a valuation domain for all M ∈ Max?f (R).

(ii) R is a P?MD.

(iii) Every nonzero fractional ideal with two generators is ?f -invertible.

Proof. For (i) ⇔ (ii) [2, Corollary 1.2]. (ii) ⇒ (iii) is clear. So it remains to

prove that (iii) ⇒ (i). Let x, y ∈ R, note that if P is a prime ideal of R, we have

xRP +yRP = (a, b)RP for some a, b ∈ R. But if P is a ?f -maximal ideal of R then,

by Lemma 4.2 and by hypothesis, (a, b)RP is principal, that is, RP is a valuation

domain. �

Remark 4.4. Note that the above proof of the preceding lemma is a general version

of the proof for the PvMD case (see [8, Lemma 1.7]).

Now that we have a bound on finitely generated ideals to characterize P?MD, we

return to ultraproduct. Recall that an ideal J of a commutative ring is n-generated

if J can be generated by n-elements.

Lemma 4.5. Let ? be the ultra star operation on R built from the ?i’s on Ri’s.

Then an n-generated ideal A is a ?-invertible ideal of R if and only if Ai is an

n-generated ?i-invertible ideal of Ri for U-many i.

Proof. Suppose that A = (Ai)U is an n-generated ?-invertible ideal of R, that is,

(AA−1)? = R. Note that since A is n-generated, Ai is n-generated for U-many i. So

since A−1 = (A−1i )U , we have (AA−1)? = ((AiA
−1
i )?i)U = R. Thus (AiA

−1
i )?i = Ri

for U-many i. So Ai is an n generated ?i-invertible ideal of Ri for U-many i.

Conversely suppose that Ai is n-generated and (AiA
−1
i )?i = Ri for U-many i. Then

((Ai)U (A−1i )U )? = ((AiA
−1
i )?i)U = (Ri)U = R. �

Remark 4.6. Let ?i’s be star operations on Ri’s. Consider (?i)f be the star

operation of finite type associated with each ?i. If we denote ?f the ultra star

operation on R built from the (?i)f ’s (note that ?f is just a notation, so does not

mean ?f is the finite type associated to ?), then using Lemma 4.5, we have that an

n-generated ideal A is a ?f -invertible ideal of R if and only if Ai is an n-generated

(?i)f -invertible ideal of Ri for U-many i.
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Let us recall that for a general star operation ?, a ?-Prüfer domain is an integral

domain in which every finitely generated nonzero ideal is ?-invertible, equivalently

every two generated nonzero ideal is ?-invertible, see [1, Theorem 2.2]. Note then

that a P?MD is a ?f -Prüfer domain.

Proposition 4.7. Let ? be the ultra star operation on R built from ?i’s on Ri’s

and ?f be the ultra star operation on R built from finite type star operations (?i)f

associated with each ?i. Then

(i) R is a ?-Prüfer domain if and only if Ri is a ?i-Prüfer domain for U-many

i.

(ii) R is a ?f -Prüfer domain if and only if Ri is a P?iMD for U-many i.

Proof. Lemma 4.3 states that a domain is a P?MD if and only if every nonzero

fractional ideal with two generators is ?f -invertible. By Lemma 4.5 (Resp. Remark

4.6), every 2-generated ideal A of R is ?-invertible (Resp. ?f -invertible) if and only

if Ai is a 2-generated ?i-invertible (Resp. a 2-generated (?i)f -invertible) ideal of

Ri for U-many i. Hence the proposition follows from [1, Theorem 2.2], Lemma 4.3,

and Los’ Theorem. �

As a consequence of Proposition 4.7, we obtain [10, Proposition 2.2 (iii)] in the

case ? = d and more if ? = v and ? = t.

Corollary 4.8. Let ? be the ultra star operation on R obtained from the ?i’s on

Ri’s.

(i) Case ?i = d. R is a Prüfer domain if and only if Ri is a Prüfer domain

for U-many i.

(ii) Case ?i = v. R is a v-Prüfer domain if and only if Ri is a v-Prüfer domain

for U-many i.

(iii) Case ?i = t. R is a vf -Prüfer domain if and only if Ri is a PvMD for

U-many i.
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