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Abstract. Let K be a field, E the exterior algebra of a finite dimensional

K-vector space, and F a finitely generated graded free E-module with homo-

geneous basis g1, . . . , gr such that deg g1 ≤ deg g2 ≤ · · · ≤ deg gr. Given the

Hilbert function of a graded E–module of the type F/M , with M graded sub-

module of F , the existence of the unique lexicographic submodule of F with

the same Hilbert function as M is proved by a new algorithmic approach. Such

an approach allows us to establish a criterion for determining if a sequence of

nonnegative integers defines the Hilbert function of a quotient of a free E–

module only via the combinatorial Kruskal–Katona’s theorem.
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1. Introduction

The notion of Hilbert function is central in commutative algebra and in alge-

braic geometry and is important in combinatorics and in computational algebra.

Let K be a field and A a graded K–algebra. The Hilbert function of a graded

K-algebra A computes the vector space dimension of its graded components. It

encodes important information on A such as its Krull dimension or its multiplicity

[11]. The possible Hilbert functions of standard graded K-algebra A are described

by Macaulay’s theorem [14,15]. The Hilbert function of the Stanley–Reisner ring

of a simplicial complex ∆ is determined by the f -vector of ∆, and vice versa.

The possible f -vectors of a simplicial complex are characterized in the theorem of

Kruskal–Katona [12,13]. This theorem is the “squarefree” analogue of Macaulay’s

theorem and may be also interpreted as a theorem on Hilbert functions of quotients

of exterior algebras in [5].
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Let K be a field, V a K-vector space with basis e1, . . . , en, and E the exterior

algebra of V . Let F = ⊕ri=1Egi be a finitely generated graded free E-module with

homogeneous basis g1, . . . , gr such that deg g1 ≤ deg g2 ≤ · · · ≤ deg gr.

In [4], the authors of this paper have given a generalization of the combinato-

rial Kruskal–Katona theorem [5, Theorem 4.1] for finitely generated modules over

exterior algebras. More precisely, they have described the possible Hilbert func-

tions of graded E–modules of the form F/M , with M graded submodule of the

free E-module F via the class of lexicographic submodules (see also [3]). The con-

struction of such a submodule has been realized using the classical way (which

involves suitable sets of monomials of F ). More in details, if M is a graded sub-

module of F , the construction of the lexicographic submodule M lex with the same

Hilbert function of M proceeds as follows: for each graded component Mj of M ,

let M lex
j be the K–vector space spanned by the (unique) lexicographic segment Lj

of F (Definition 2.5) with |Lj | = dimKMj . Then one defines M lex = ⊕jM lex
j .

However, the calculations could be tedious. Hereafter, we describe an alterna-

tive way for determining the lexicographic submodule we are looking for. Our

approach (Theorem 3.2) manipulates sequences of nonnegative integers. More

in details, if M is a graded submodule of F , we associate to F/M the sequence

HsF/M = (HF/M (f1), HF/M (f1 + 1), . . . ,HF/M (fr + n)) ∈ Nfr+n−f1+1
0 . We call

HsF/M the Hilbert sequence of the graded E-module F/M . Using the Kruskal–

Katona theorem (Theorem 2.9), and operating on the given Hilbert sequence by

repeated subtractions, one obtains r suitable sequences which are the Hilbert se-

quences of r graded K–algebras E/Ii, with Ii (i = 1, . . . , r) lexicographic ideals

of E, and L = ⊕ri=1Iigi will be the unique lexicographic submodule of F with

HF/L = HF/M . Consequently, we get a new criterion (Criterion 3.3) that, given a

sequence H of nonnegative integers (of a certain length), finds out if H determines

the Hilbert function of a quotient of the type F/M .

The paper is organized as follows. Section 2 contains preliminary notions and

results. Moreover, we discuss in details the Hilbert functions of graded E-modules.

In Section 3, we describe a new procedure for the construction of the unique lexico-

graphic submodule for a given Hilbert function (Theorem 3.2). Furthermore, a new

criterion (Criterion 3.3) to verify if a sequence of nonnegative integers determines

the Hilbert function of quotients of graded E–modules is given. Finally, Section 4

contains some examples illustrating our procedures.

All the examples in the paper are constructed by a Macaulay2 package created

by the authors of this article.
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2. Preliminaries and notations

Let K be a field. We denote by E = K 〈e1, . . . , en〉 the exterior algebra of a K-

vector space V with basis e1, . . . , en. For any subset σ = {i1, . . . , id} of {1, . . . , n}
with i1 < i2 < · · · < id we write eσ = ei1 ∧ . . . ∧ eid , and call eσ a monomial of

degree d. We set eσ = 1, if σ = ∅. The set of monomials in E forms a K-basis of

E of cardinality 2n.

In order to simplify the notation, we put fg = f ∧ g for any two elements f

and g in E. An element f ∈ E is called homogeneous of degree j if f ∈ Ej , where

Ej =
∧j

V . An ideal I is called graded if I is generated by homogeneous elements.

If I is graded, then I = ⊕j≥0Ij , where Ij is the K-vector space of all homogeneous

elements f ∈ I of degree j. We denote by indeg(I) the initial degree of I, that is,

the minimum s such that Is 6= 0.

Let M be the category of finitely generated Z-graded left and right E-modules

M satisfying am = (−1)deg a degmma for all homogeneous elements a ∈ E, m ∈M .

If M ∈ M, the function HM : Z → Z given by HM (d) = dimKMd is called the

Hilbert function of M [6,9].

For any not empty subset S of E (respectively, of F ), we denote by Mon(S) the

set of all monomials in S (respectively, of F ), and we denote its cardinality by |S|.
Moreover, we denote by Mond(S) the set of all monomials of degree d in S.

Let F ∈M be a free module with homogeneous basis g1, . . . , gr, where deg(gi) =

fi for each i = 1, . . . , r, with f1 ≤ f2 ≤ · · · ≤ fr. We write F = ⊕ri=1Egi. The

elements of the form eσgi, where eσ ∈ Mon(E), are called monomials of F , and

deg(eσgi) = deg(eσ) + deg(gi).

Definition 2.1. A graded submodule M of F is a monomial submodule if M is a

submodule generated by monomials of F , i.e.,

M = I1g1 ⊕ · · · ⊕ Irgr,

with Ii a monomial ideal of E, for each i.

In the study of the behavior of the Hilbert function of a graded E-module, the

class of lexicographic modules plays a fundamental role.

Denote by >lex the lexicographic order (lex order, for short) on Mond(E), i.e., if

eσ = ei1ei2 · · · eid and eτ = ej1ej2 · · · ejd are monomials belonging to Mond(E) with

1 ≤ i1 < i2 < · · · < id ≤ n and 1 ≤ j1 < j2 < · · · < jd ≤ n, then eσ >lex eτ if

i1 = j1, . . ., is−1 = js−1 and is < js for some 1 ≤ s ≤ d.
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Definition 2.2. A nonempty subset M of Mond(E) is called a lexicographic seg-

ment (lex segment, for short) of degree d if for all v ∈M and all u ∈ Mond(E) such

that u >lex v, we have that u ∈M .

Definition 2.3. A monomial ideal I of E is called a lexicographic ideal (lex ideal,

for short) if for all monomials v ∈ I and all monomials u ∈ E with deg v = deg u

and u >lex v, then u ∈ I, i.e., Mond(I) is a lex segment, for all d.

Remark 2.4. The trivial ideals of E are monomial lex ideals.

It is well–known that if I is a graded ideal of E, then there exists a unique lex

segment ideal of E, usually denoted by I lex, such that HE/I = HE/Ilex [5, Theorem

4.1] (see also [11, Theorem 6.3.1]).

Now, let Fd be the part of degree d of F = ⊕ri=1Egi, i.e., the K-vector space

of homogeneous elements of F of degree d. Denote by Mond(F ) the set of all

monomials of degree d of F . We order such a set by the ordering >lexF
defined as

follows:

if ugi and vgj are monomials of F such that deg(ugi) = deg(vgj), then ugi >lexF
vgj

if i < j or i = j and u >lex v.

For instance, if E = K〈e1, e2, e3〉 and F = Eg1 ⊕ Eg2, with deg g1 = 2 and

deg g2 = 3, the monomials of F of degree 4 , with respect to >lexF
, are ordered as

follows:

e1e2g1 >lexF
e1e3g1 >lexF

e2e3g1 >lexF
e1g2 >lexF

e2g2 >lexF
e3g2.

Definition 2.5. A nonempty subset N of Mond(F ) is called a lexicographic segment

of F (lexF segment, for short) of degree d if for all v ∈ N and all u ∈ Mond(F )

such that u >lexF
v, then u ∈ N .

Definition 2.6. Let L be a monomial submodule of F . L is a lexicographic submod-

ule (lex submodule, for short) if for all u, v ∈ Mond(F ) with v ∈ L and u >lexF
v,

one has u ∈ L, for every d, i.e., Mond(L) is a lexF segment of degree d, for each

degree d.

Definition 2.6 is equivalent to the following one [3, Proposition 3.12] (see also [7,

Proposition 3.8]).

Definition 2.7. Let L be a graded submodule of F . L is a lex submodule of F

if L = ⊕ri=1Iigi, with Ii lex ideals of E (i = 1, . . . , r), and (e1, . . . , en)ρi+fi−fi−1 ⊆
Ii−1, for i = 2, . . . , r, with ρi = indegIi.
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Example 2.8. Let E = K〈e1, e2, e3, e4〉 and F = Eg1 ⊕Eg2 ⊕Eg3, with deg g1 =

−2, deg g2 = −1 and deg g3 = 3. The submodule

L = (e1e2, e1e3, e2e3e4)g1 ⊕ (e1e2, e1e3, e1e4, e2e3)g2 ⊕ (e1e2e3, e1e2e4)g3

is a lex submodule of F .

In order to keep the paper self-contained, we recall some notions from [4].

If a = (a1, . . . , ap) and b = (b1, . . . , bp) are two sequences of nonnegative integers,

we say that a > b if (a1, . . . , ap) > (b1, . . . , bp) in the lexicographic ordering, i.e.,

the difference as − bs is positive for the first index 1 ≤ s ≤ p where it is not zero.

We make the following conventions:(
m

k

)
= 0 if m < k or k < 0.

One can observe that if F = ⊕ri=1Egi, we have that

HF (d) =

r∑
i=1

HEgi(d) =

r∑
i=1

(
n

d− fi

)
,

and consequently, if M is a graded submodule of F , one has

HF/M (d) +HM (d) =

r∑
i=1

(
n

d− fi

)
,

where
(

n
d−fi

)
is the number of monomials of degree d− fi in F .

Let a and i be two positive integers. Then a has the unique i-th Macaulay

expansion [11, Lemma 6.3.4]

a =

(
ai
i

)
+

(
ai−1
i− 1

)
+ · · ·+

(
aj
j

)
with ai > ai−1 > · · · > aj ≥ j ≥ 1. We define

a(i) =

(
ai
i+ 1

)
+

(
ai−1
i

)
+ · · ·+

(
aj
j + 1

)
.

We also set 0(i) = 0 for all i ≥ 1.

The next result, known as the Kruskal-Katona theorem, classifies Hilbert func-

tions of quotients of exterior algebras.

Theorem 2.9. ([5, Theorem 4.1]) Let (h1, . . . , hn) be a sequence of nonnegative

integers. Then the following conditions are equivalent:

(a) 1 +
∑n
i=1 hit

i is the Hilbert series of a graded K-algebra E/I;

(b) 0 < hi+1 ≤ h(i)i , 0 < i ≤ n− 1.
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From now on, if 1 +
∑n
i=1 hit

i is the Hilbert series of a graded K-algebra E/I,

I ( E, the sequence (1, h1, . . . , hn) is called the Hilbert sequence of E/I. We will

denote it by HsE/I .

From the Kruskal-Katona theorem, one can deduce that a sequence of nonneg-

ative integers (h0, h1, . . . , hn) is the Hilbert sequence of a graded K–algebra E/I,

with I ( E graded ideal of initial degree ≥ 1, if h0 = 1, h1 ≤ n and condition (b) in

Theorem 2.9 holds. Note that if I = 0, then HsE/I = HsE = (1, n,
(
n
2

)
, · · · ,

(
n
n

)
).

Finally, we set HsE/I = (0, . . . , 0︸ ︷︷ ︸
n+1

), if I = E.

Let us consider the graded E-module F = ⊕ri=1Egi. One can quickly verify that

HF (d) = dimK Fd = 0, for d < f1 and d > fr + n. (1)

Now, we discuss the Hilbert function of a graded E–algebra F/M , with M

submodule of F .

Discussion 2.10. Assume M is a monomial submodule of F . From (1), it follows

that

HF/M (t) =

fr+n∑
i=f1

HF/M (i)ti,

and we can associate to F/M the following sequence

(HF/M (f1), HF/M (f1 + 1), . . . ,HF/M (fr + n)) ∈ Nfr+n−f1+1
0 . (2)

Such a sequence is called the Hilbert sequence of F/M and it is denoted by HsF/M .

The integers f1, f1 + 1, . . . , fr + n are called the HsF/M -degrees. It is clear that

HsF/M ≤ HsF .

Moreover, we define

indegHsF/M = min{d : HF/M (d) 6= 0}, for d = f1, . . . , fr + n.

We use the standard notation [p] for the set {1, 2, . . . , p}.
Consider the sequence HsF/M defined in (2). The entries HF/M (fi) (i = 1, . . . , r)

are called the critical values of HsF/M . Moreover, we define

µfi = |{s ∈ [r] : fs = fi}|, for i = 1, 2, . . . , r,

and we call µfi the multiplicity of HF/M (fi).

Now, let us consider the case HF/M (f1) = 0. In such a situation, one has:

M = Eg1 ⊕ T2,

where T2 is a submodule of Eg2 ⊕ · · · ⊕ Egr. Indeed, if HF/M (f1) = 0, then

Mf1 = Ff1 and so Mj = Fj , for j = f1, . . . , f2 − 1. Hence, HF/M (j) = 0, for

j = f1, . . . , f2 − 1.
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Now, let us consider the critical value HF/M (f2).

If HF/M (f2) = 0, we can repeat the same reasoning done for HF/M (f1) = 0,

i.e., HF/M (j) = 0, for j = f2, . . . , f3 − 1, and M = Eg1 ⊕ Eg2 ⊕ T3, where T3 is a

submodule of Eg3 ⊕ · · · ⊕ Egr. And so on.

Now, let k be the minimum integer such that HF/M (fk) 6= 0, i.e., indegHsF/M =

fk. Note that M = Eg1 ⊕ · · · ⊕ Egk−1 ⊕ Tk, where Tk is a submodule of Egk ⊕
· · · ⊕ Egr.We have:

HF/M (fk) ≤ µfk ,

and

HF/M (fk + 1) ≤ nµfk + µfk+1.

The integer HF/M (fk) is called the initial critical value (of F/M) and fk the

initial critical degree (of F/M).

A classification of Hilbert functions of quotients of graded free E–modules can

be found in [4]. The key point of such a classification is that if M is a graded

submodule of F , then there exists a unique lex submodule of F with the same

Hilbert function as M denoted by M lex.

3. The Lex–Algorithm

In this Section, fixed a graded submoduleM of F , we give a new procedure for the

construction of M lex. The algorithmic construction of the lex submodule is based on

the additive property of Hilbert functions and on Kruskal–Katona’s theorem. The

idea dates back to the computation of all admissible Hilbert sequences of quotients

of exterior algebras in [2] and from the realisation that, given a Hilbert sequence

HsF/M , there exist only r = rankF Hilbert sequences of the type E/I (I graded

ideal in E), which determine M lex. The choice of such r sequence is forced by some

restrictions, as next theorem will point out.

Let p, q ∈ Z such that p < q. A finite sequence H of nonnegative integers is

called [p, q]–sequence if it is indexed by the set [p, q]:

H = (hi)i∈[p,q] = (hp, hp+1, . . . , hq).

We set

H(j) = hj , for j ∈ [p, q];

the integers j are called H–degrees.

One can observe that the sequence HsF/M is a [f1, fr + n]–sequence, and the

integers j ∈ [f1, fr + n] are the HsF/M–degrees.

Moreover, if p = 0, then H is the (q + 1)–tuple (h0, h1, . . . , hq).



278 LUCA AMATA AND MARILENA CRUPI

Example 3.1. Let p = −2 and q = 1. Then [−2, 1] = {−2,−1, 0, 1}. If H =

(0, 2, 7, 3) is a [−2, 1]–sequence, one has H(−2) = 0, H(−1) = 2, H(0) = 7, and

H(1) = 3.

Theorem 3.2. (The Lex–Algorithm) Let (hf1 , . . . , hfr+n) be the Hilbert sequence

of a graded E– module F/M . Then, there exists a unique lex submodule L of F

such that HF/L = HF/M .

Proof. Set HsF/M = (hf1 , . . . , hfr+n). We want to construct a lex submodule

L = ⊕ri=1Iigi of F such that HF/L = HF/M . Let us define

0p = (0, . . . , 0) ∈ Np, for p ≥ 1.

Step 1. Construction of Ir.

Let us consider the following subsequence of HsF/M :

(hfr , . . . , hfr+n) = (HF/M (fr), . . . ,HF/M (fr + n)). (3)

Define

- Hr(0) := min{1, HF/M (fr)},

- Hr(1) :=

min{n,HF/M (fr + 1)} if Hr(0) = 1

0 if Hr(0) = 0,

- Hr(2) := min{Hr(1)(1), HF/M (fr + 2)},
- Hr(i) := min{Hr(i− 1)(i−1), HF/M (fr + i)}, for 3 ≤ i ≤ n.

Setting Hr = (Hr(0), . . . ,Hr(n)), if Hr(0) = 1, then Kruskal-Katona’s theo-

rem (Theorem 2.9) assures that such a sequence is the largest extractable Hilbert

sequence from (3) for which there exists a lex ideal Ir ( E such that

HsE/Ir = Hr;

on the contrary, if Hr(0) = 0, then the only admissible Hilbert sequence is the null

sequence. In such a case, the corresponding lex ideal is Ir = E.

Step 2. Construction of Ir−1.

Let us define

H̃r = 0fr−f1 ]HsE/Ir = (0, . . . , 0︸ ︷︷ ︸
fr−f1

, Hr(0), . . . ,Hr(n)),

and consider the [f1, fr + n]–sequence

HsF/M − H̃r = (hf1 , . . . , hfr−1, hfr −Hr(0), . . . , hfr+n −Hr(n)) =

= (hf1 , . . . , hfr−1, hfr −Hr(0), . . . , hfr−1+n −Hr(n− fr + fr−1), 0, . . . , 0︸ ︷︷ ︸
fr−fr−1

).



HILBERT FUNCTIONS OF GRADED MODULES OVER AN EXTERIOR ALGEBRA 279

Note that if fr−1 < fr, then the last fr − fr−1 entries of HsF/M concern only the

ideal Ir. Furthermore, if f1 = f2 = . . . = fr, then H̃r = Hr.

Set

Hr = HsF/M − H̃r.

Starting from the (r − 1)-th critical degree, we can repeat on Hr the same

reasoning done for HsF/M . More precisely, define

- Hr−1(0) := min{1, Hr(fr−1)},

- Hr−1(1) :=

min{n,Hr(fr−1 + 1)} if Hr−1(0) = 1

0 if Hr−1(0) = 0,

- Hr−1(2) := min{Hr−1(1)(1), Hr(fr−1 + 2)},
- Hr−1(i) := min{Hr−1(i− 1)(i−1), Hr(fr−1 + i)}, for 3 ≤ i ≤ n,

and let Ir−1 be the unique lex ideal of E such that

HsE/Ir−1
= Hr−1 = (Hr−1(0), . . . ,Hr−1(n)).

Setting

H̃r−1 = 0fr−1−f1 ]HsE/Ir−1
]0fr−fr−1

= (0, . . . , 0︸ ︷︷ ︸
fr−1−f1

, Hr−1(0), . . . ,Hr−1(n), 0, . . . , 0︸ ︷︷ ︸
fr−fr−1

),

let us consider the [f1, fr + n]–sequence

Hr−1 = Hr − H̃r−1 =
(
Hr(f1), . . . ,Hr(fr−1 − 1), Hr(fr−1)−Hr−1(0), . . .

. . . , Hr(fr−1 + n)−Hr−1(n), 0, . . . , 0︸ ︷︷ ︸
fr−fr−1

) =

= (hf1 , . . . , hfr−1−1, Hr(fr−1)−Hr−1(0), . . . ,Hr(fr−2 + n)−Hr−1(n− fr−1 + fr−2),

0, . . . , 0︸ ︷︷ ︸
fr−fr−2

).

Proceeding as before, we will get a Hilbert sequence Hr−2 and a lex ideal Ir−2

such that Hr−2 = HsE/Ir−2
. Finally, iterating the previous procedure, after r steps,

we will obtain r lex ideals Ir, . . . , I1. The monomial submodule L = ⊕ri=1Iigi is

the lex submodule we are looking for. Indeed, the suitable choice of the r Hilbert

sequences Hr, Hr−1, . . . ,H1 assures that Ld is generated (as a K-vector space) by

a lexF segment of monomials of degree d of F .

Note that the r subtractions will return the (fr + n− f1 + 1)–tuple 0fr+n−f1+1,

and consequently HF/M = HF/L, i.e., HsF/M = HsF/L =
∑r
i=1 H̃i. �

In order to outline the basic idea behind the Theorem 3.2, we present a sketch

of the algorithm as pseudocode in Figure 1.
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Algorithm 1: Lexicographic submodule computation

Input: Sequence hs, free E-module F

Output: Lexicographic submodule with Hilbert sequence hs

begin

n← number of indeterminates of the exterior algebra E;

r ← rank of F ;

degs← list of degrees of a basis of F ;

length← max{degs} −min{degs}+ n+ 1;

foreach j ∈ {1 . . r} do

ind← degs(r − j)−min{degs};
seq(0)← min{hs(ind), 1};
if seq(0) = 1 then

seq(1)← min{hs(ind+ 1), n};
else

seq(1)← 0;

end

foreach k ∈ {2 . . n} do

seq(k)← min{hs(ind+ k), seq(k − 1)(k−1)};
end

hs← hs− (0ind ] seq ] 0length−1−n−ind);

Ir−j ← lex ideal with Hilbert sequence seq;

end

if hs = 0length then

return M = ⊕ri=1Iigi;

else

Error: “expected a Hilbert sequence”;

end

end

Figure 1. Algorithm in Theorem 3.2

The procedure in Theorem 3.2, allows us to give a criterion for determining when

a sequence of nonnegative integers is the Hilbert function of a graded E–algebra of

the type F/M , with M graded submodule of F .

Criterion 3.3. Let F = ⊕ri=1Egi be a finitely generated graded free E-module

and the generators gi of degrees fi are ordered such that f1 ≤ f2 ≤ · · · ≤ fr.
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A sequence of nonnegative integers

H = (hf1 , . . . , hfr+n)

is the Hilbert sequence of graded E–module F/M , if applying the algorithm in

Theorem 3.2, after r steps, the repeated subtractions from H of the largest Hilbert

sequences (in the sense of the aforementioned theorem) of graded K–algebras of

the type E/I, return the null sequence 0fr+n−f1+1.

4. Examples

In this Section, we collect some examples in order to illustrate the strategy used

in Theorem 3.2.

In order to simplify the notation, once we fix a sequence of nonnegative integers

H, when we say that a graded ideal I of E has H as Hilbert sequence, or that H is

the Hilbert sequence of a graded ideal I, we mean that HsE/I = H. Moreover, in

what follows, we refer to Hilbert sequences of quotients of the type E/I (I graded

ideal of E), whenever it is not specified.

Example 4.1. Let E = K〈e1, e2, e3, e4〉, F = E3 and

M = (e1e2, e3e4)g1 ⊕ (e1e2, e2e3e4)g2 ⊕ (e2e3e4)g3

a submodule of F . M is not a lex submodule of F . The Hilbert sequence of F/M

is

HsF/M = (3, 12, 15, 4, 0).

Setting J1 = (e1e2, e3e4), J2 = (e1e2, e2e3e4) and J3 = (e2e3e4), one has

HsE/J1 = (1, 4, 4, 0, 0), HsE/J2 = (1, 4, 5, 1, 0), HsE/J3 = (1, 4, 6, 3, 0),

and HF/M (d) =
∑3
i=1HE/Ji(d), d ≥ 0, as the next table shows

Hs–degrees 0 1 2 3 4

HsE/J1 (1, 4, 4, 0, 0) +

HsE/J2 (1, 4, 5, 1, 0) +

HsE/J3 (1, 4, 6, 3, 0) =

HsF/M (3, 12, 15, 4, 0)

Now, we want to describe our new point of view.

Let us consider the sequence H = (3, 12, 15, 4, 0). The largest Hilbert sequence

of a graded ideal that can be extracted from H is H3 = (1, 4, 6, 4, 0). Indeed, there

exists the lex ideal I3 of E such that HsE/I3 = H3. It is I3 = (e1e2e3e4).

Using the same notations as in Theorem 3.2, let H3 = H−H̃3 = (3, 12, 15, 4, 0)−
(1, 4, 6, 4, 0) = (2, 8, 9, 0, 0). The largest Hilbert sequence that can be extracted from
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H3 isH2 = (1, 4, 6, 0, 0). In fact, H2 = HsE/I2 , with I2 = (e1e2e3, e1e3e4, e1e3e4, e2e3e4)

lex ideal of E.

Next, consider the sequence H2 = H3 − H̃2 = (2, 8, 9, 0, 0) − (1, 4, 6, 0, 0) =

(1, 4, 3, 0, 0). The largest Hilbert sequence that can be extracted from H2 is H1 =

H2. The lex ideal whose Hilbert sequence is H1 is I1 = (e1e2, e1e3, e1e4, e2e3e4).

We can observe that in such a case the sequence H1 = H2− H̃1 = (1, 4, 3, 0, 0)−
(1, 4, 3, 0, 0) = 05.

Next table describes our procedure:

H–degrees 0 1 2 3 4

H (3, 12, 15, 4, 0) −

HsE/I3 (1, 4, 6, 4, 0) −
HsE/I2 (1, 4, 6, 0, 0) −
HsE/I1 (1, 4, 3, 0, 0) =

05 (0, 0, 0, 0, 0)

Observe that in our situation f1 = f2 = f3 = 0, and so H̃i = HsE/Ii (i = 1, 2, 3).

Finally, M lex = ⊕ri Iigi is the unique lex submodule with Hilbert sequence H =

(3, 12, 15, 4, 0). More in details:

M lex = (e1e2, e1e3, e1e4, e2e3e4)g1⊕(e1e2e3, e1e2e4, e1e3e4, e2e3e4)g2⊕(e1e2e3e4)g3.

Remark 4.2. Note that, given a Hilbert sequence H of a quotient of a free E-

module F , rankF = r, if one applies to H r repeated subtractions by the non–

largest admissible Hilbert sequences of K-algebras E/Ti, with Ti lex ideals of E,

for i = 1, . . . , r (in the sense of Theorem 3.2 and according to Kruskal–Katona

Theorem), then the submodule N = ⊕riTigi is not a lex submodule. Otherwise the

inclusions in Definition 2.7 are not satisfied, although every Ti is lex.

Indeed, let us consider Example 4.1. We can subtract from H the Hilbert se-

quences (1, 4, 6, 3, 0), (1, 4, 5, 1, 0), (1, 4, 4, 0, 0), and, consequently, we can get the

corresponding lex ideals T3 = (e1e2e3), T2 = (e1e2, e1e3e4), T1 = (e1e2, e1e3, e2e3e4).

But, (e1, e2, e3, e4)indeg T2 = (e1, e2, e3, e4)2 * T1 and N = ⊕riTigi is not a lex sub-

module.

Example 4.3. Let E = K〈e1, e2, e3, e4〉 and F = ⊕3
i=1Egi with f1 = −2, f2 =

0, f3 = 2. Consider the monomial submodule

M = (e1e2, e3e4)g1 ⊕ (e1e2, e2e3e4)g2 ⊕ (e2e3e4)g3

of F . The Hilbert sequence of F/M is

HsF/M = (1, 4, 5, 4, 6, 5, 6, 3, 0).
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Setting J1 = (e1e2, e3e4), J2 = (e1e2, e2e3e4) and J3 = (e2e3e4), one has

HsE/J1 = (1, 4, 4, 0, 0), HsE/J2 = (1, 4, 5, 1, 0), HsE/J3 = (1, 4, 6, 3, 0)

and HF/M (d) =
∑3
i=1HE/Ji(d− fi), d ≥ −2, as shown in next table,

Hs–degrees −2 −1 0 1 2 3 4 5 6

H̃1 (1, 4, 4, 0, 0, 0, 0, 0, 0) +

H̃2 (0, 0, 1, 4, 5, 1, 0, 0, 0) +

H̃3 (0, 0, 0, 0, 1, 4, 6, 3, 0) =

HsF/M (1, 4, 5, 4, 6, 5, 6, 3, 0)

where H̃i = 0fi−f1 ]HsE/Ji ] 0fr−fi (i = 1, 2, 3). We have indicated the Hilbert

sequences HsE/Ji (i = 1, 2, 3) in bold.

Let us consider the [−2, 6]–sequence H = (1, 4, 5, 4, 6, 5, 6, 3, 0). The largest

Hilbert sequence of a graded ideal I that can be extracted from the subsequence

(H(2), . . . ,H(6)) = (6, 5, 6, 3, 0) is H3 = (1, 4, 6, 3, 0). Indeed, there exists the lex

ideal I3 = (e1e2e3) of E such that HsE/I3 = H3.

With the same notations as in Theorem 3.2. SetH3 = H−H̃3 = (1, 4, 5, 4, 6, 5, 6, 3, 0)−
(0, 0, 0, 0, 1, 4, 6, 3, 0) = (1, 4, 5, 4, 5, 1, 0, 0, 0), the largest extractable Hilbert se-

quence from the subsequence (H3(0), . . . ,H3(4)) = (5, 4, 5, 1, 0) isH2 = (1, 4, 5, 1, 0) =

HsE/I2 , with I2 = (e1e2, e1e3e4).

Next, consider the sequenceH2 = H3−H̃2 = (1, 4, 5, 4, 5, 1, 0, 0, 0)−(0, 0, 1, 4, 5, 1, 0, 0, 0)

= (1, 4, 4, 0, 0, 0, 0, 0, 0). The largest Hilbert sequence that can be extracted from the

subsequence (H2(−2), . . . ,H2(2)) = (1, 4, 4, 0, 0) is H1 = (1, 4, 4, 0, 0) = HsE/I1 ,

with I1 = (e1e2, e1e3, e2e3e4).

We can observe that in such a case the sequenceH1 = H2−H̃1 = (1, 4, 4, 0, 0, 0, 0, 0, 0)−
(1, 4, 4, 0, 0, 0, 0, 0, 0) = 09.

H–degrees −2 −1 0 1 2 3 4 5 6

H (1, 4, 5, 4, 6, 5, 6, 3, 0) −

H̃3 (0, 0, 0, 0, 1, 4, 6, 3, 0) −
H̃2 (0, 0, 1, 4, 5, 1, 0, 0, 0) −
H̃1 (1, 4, 4, 0, 0, 0, 0, 0, 0) =

09 (0, 0, 0, 0, 0, 0, 0, 0, 0)

H̃i = 0fi−f1 ] HsE/Ii ] 0fr−fi (i = 1, 2, 3), and we have indicated the Hilbert

sequences HsE/Ii (i = 1, 2, 3) in bold. Finally,

M lex = ⊕ri Iigi = (e1e2, e1e3, e2e3e4)g1 ⊕ (e1e2, e1e3e4)g2 ⊕ (e1e2e3)g3.
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The Hilbert sequence of a quotient of the form F/M can have zeros as initial

values. The number of such zeros is fk − f1, where fk is the initial critical degree

of the Hilbert sequence, as next example will show. Moreover, we can note that

the existence of initial zeros implies the presence of some improper ideals as initial

components in the direct decomposition. The converse is not true.

Example 4.4. Let E = K〈e1, e2, e3, e4〉 and F = ⊕8
i=1Egi with f1 = −3, f2 =

f3 = −1, f4 = f5 = f6 = 2, f7 = f8 = 7. Let us consider the [−3, 7]–sequence

H = (0, 0, 1, 4, 6, 7, 13, 7, 1, 0, 1, 4, 5, 2, 0).

By applying the algorithm in Theorem 3.2, as in the previous examples, we obtain

by repeated subtractions from H, the following Hilbert sequences Hi = HsE/Ii ,

with Ii lex ideal of E (i = 1, . . . , 8):

H8 = (1, 4, 5, 2, 0), H7 = (0, 0, 0, 0, 0), H6 = (1, 4, 6, 1, 0), H5 = (1, 4, 1, 0, 0),

H4 = (1, 4, 0, 0, 0), H3 = (1, 4, 6, 4, 1), H2 = (0, 0, 0, 0, 0), H1 = (0, 0, 0, 0, 0)

and

I8 = (e1e2), I7 = E, I6 = (e1e2e3, e1e2e4, e1e3e4), I5 = (e1e2, e1e3, e1e4, e2e3, e2e4),

I4 = (e1e2, e1e3, e1e4, e2e3, e2e4, e3e4), I3 = (0), I2 = E, I1 = E.

H–degrees −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11

H (0, 0, 1, 4, 6, 7, 13, 7, 1, 0, 1, 4, 5, 2, 0) −

H̃8 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 4, 5, 2, 0) −
H̃7 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) −
H̃6 (0, 0, 0, 0, 0, 1, 4, 6, 1, 0, 0, 0, 0, 0, 0) −
H̃5 (0, 0, 0, 0, 0, 1, 4, 1, 0, 0, 0, 0, 0, 0, 0) −
H̃4 (0, 0, 0, 0, 0, 1, 4, 0, 0, 0, 0, 0, 0, 0, 0) −
H̃3 (0, 0, 1, 4, 6, 4, 1, 0, 0, 0, 0, 0, 0, 0, 0) −
H̃2 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) −
H̃1 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) =

015 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

(H̃i = 0fi−f1 ] HsE/Ii ] 0fr−fi (i = 1, . . . , 8), and the Hilbert sequences HsE/Ii
(i = 1, . . . , 8) are indicated in bold).

By means of repeated subtractions, we obtain the null sequence 015. Hence, the

sequence H is the Hilbert sequence of a quotient of a free E–module. Indeed, there
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exists the lex submodule

L = ⊕ri Iigi = Eg1 ⊕ Eg2 ⊕ (0)g3 ⊕ (e1e2, e1e3, e1e4, e2e3, e2e4, e3e4)g4⊕

(e1e2, e1e3, e1e4, e2e3, e2e4)g5 ⊕ (e1e2e3, e1e2e4, e1e3e4)g6 ⊕ Eg7 ⊕ (e1e2)g8.

such that H = HsF/L = (0, 0, 1, 4, 6, 7, 13, 7, 1, 0, 1, 4, 5, 2, 0) =
∑8
i=1 H̃i.

We close this Section with an example of a sequence of nonnegative integers H

that is not a Hilbert sequence of a quotient of a free E–modules.

Example 4.5. Let E = K〈e1, e2, e3, e4〉 and F = ⊕3
i=1Egi with f1 = −3, f2 =

−1, f3 = 2. Let us consider the [−3, 2]–sequence

H = (1, 2, 2, 4, 3, 3, 4, 5, 2, 0).

By using the Lex–Algorithm and by repeated subtractions from H, we obtain

the Hilbert sequences Hi = HsE/Ii , with Ii lex ideal of E (i = 1, 2, 3):

H3 = (1, 4, 5, 2, 0), H2 = (1, 4, 3, 1, 0), H1 = (1, 2, 1, 0, 0),

I3 = (e1e2), I2 = (e1e2, e1e3, e1e4), I1 = (e1, e2).

Next table describes the construction.

H–degrees −3 −2 −1 0 1 2 3 4 5 6

H (1, 2, 2, 4, 3, 3, 4, 5, 2, 0) −

H̃3 (0, 0, 0, 0, 0, 1, 4, 5, 2, 0) −
H̃2 (0, 0, 1, 4, 3, 1, 0, 0, 0, 0) −
H̃1 (1, 2, 1, 0, 0, 0, 0, 0, 0, 0) =

(0, 0, 0, 0, 0, 1, 0, 0, 0, 0)

At the end, we do not obtain the null sequence 010, and so H is not a Hilbert

sequence of a quotient of the given free E-module F according to Criterion 3.3.

On the other hand, it is relevant to analyze the second difference that comes into

play (according to the Lex–Algorithm):

H2 = H3−H̃2 = (1, 2, 2, 4, 3, 2, 0, 0, 0, 0)−(0, 0, 1, 4, 3, 1, 0, 0, 0, 0) = (1, 2, 1, 0, 0, 1, 0, 0, 0, 0).

In this case, the largest Hilbert sequence of a gradedK-algebra E/I is (1, 4, 3, 1, 0).

In fact, for the sequence (1, 4, 3, 2, 0) no ideal I of E with HsE/I = (1, 4, 3, 2, 0)

does exist (see Kruskal–Katona’s theorem). Finally, the submodule

N = ⊕3
i=1Iigi = (e1, e2)g1 ⊕ (e1e2, e1e3, e1e4)g2 ⊕ (e1e2)g3

has Hilbert sequence HsF/N = (1, 2, 2, 4, 3, 2, 4, 5, 2, 0) < H. HsF/N is the largest

extractable Hilbert sequence from H attaining a submodule of F .
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Remark 4.6. The procedures described in this paper are part of two Macaulay2

packages “ExteriorIdeals.m2” [2], “ExteriorModules.m2”, and tested with Macaulay

1.10. We believe that these packages may reveal useful for further applications.

Indeed, functions for computing monomial ideals in a polynomial ring are available

in many computer algebra systems, CAS, (for instance, CoCoA [1], Macaulay2 [10]

and Singular [8]); on the contrary, to the best of our knowledge, specific packages for

manipulating classes of monomial ideals (or monomial submodules) in an exterior

algebra have not been implemented yet.

All the examples in this paper have been constructed by such packages.
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